圆的认识教学设计

时间:2023-02-15 03:56:34 作者:ricozheng 教学设计 收藏本文 下载本文

【导语】“ricozheng”通过精心收集,向本站投稿了14篇圆的认识教学设计,以下是小编为大家准备了圆的认识教学设计,欢迎参阅。

篇1:圆的认识教学设计

教学目标:

1、使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径;能借助工具画图,能用圆规画指定大小的圆。

2、让学生经历从猜想到验证的过程,在活动中进一步积累认识图形的学习经验,增强空间观念,发展数学思考。

3、使学生进一步体验图形与生活的联系,感受生活中圆的存在与作用,感受其神奇与蕴含的美学价值,提高数学学习的兴趣

教学重点:

在观察、操作、画图等活动中感受并发现圆的特征。

教学难点:

归纳圆的特征,并能准确画出指定大小的圆。

教学用具:

教学课件

教学过程:

一、情景引入

出示一组生活中物体的图片,让学生欣赏。(如太阳、圆月、汽车的车轮、呼拉圈、光盘、钟面等)

1、刚才欣赏到的那些漂亮图片中的物体是什么形状?

2、在我们的生活中,就在我们的身边,还有那些地方能看到圆?

(学生衣服上的纽扣、身上的硬币、桌子里的杯子等等)

请学生用手指一指这些物体上的圆,并用手摸一摸,有什么感觉?

3、看来,在我们的大自然中、生活中圆是无处不在,今天就让我们一起来了解这个虽然不熟悉但和我们处处在一起的圆。(板书:圆的认识)

二、教学新知,初步画圆

1、刚才看了那么多的圆,说了那么多的圆。接下来请大家用你能想到的办法自己动手画一个圆。

2、请学生交流画圆的方法。如借助圆形的物体画,还有书上讲到的方法或是用圆规画)

3、通过刚才的看圆、说圆与画圆,你觉得圆与以前学过的平面图形有什么不同?

总结:以前学过的平面徒刑都是由线段围成的,圆是由曲线围成的,圆比较光滑,没有角。

4、大家介绍了很多画圆的方法。为了使我们能画出任意大小的圆来,勤劳、智慧的人们制成了专门用来画圆的工具DD圆规。

三、认识圆规,掌握用圆规画圆的方法。

1、认识圆规。

让学生取出课前准备好的圆规,一起认识圆规的的构成并介绍圆规两脚的功能:圆规有两只脚,一只是针尖,另一只脚是用来画圆的笔,两只脚可以随意叉开。

2、尝试画圆。

1 )你能试着用圆规画一个圆吗?学生独立画圆。

2 )刚才老师转了转,发现有些同学要么没画好,要么画出来的不圆,下面我们一起看大屏幕,注意观察如何使用圆规画圆。(使用实物投影仪,教师示范使用圆规画圆)

3 )说说,老师刚才是如何使用圆规画圆的?学生回答,教师总结并板书:两脚叉开DD固定针尖DD旋转成圆。

4 )学生按照这个方法再练习画一个圆,同时思考:通过两次画圆,应该注意什么?

总结:针尖要固定,不能移动;两脚间的距离保持不变;要旋转一周。

5 )练习画一个两脚之间距离是2 厘米的圆。

四、学习圆的各部分名称及特征。

1、认识圆心、半径、直径。

1 )教学圆心:刚才我们画圆时,针尖固定的这个点,我们把它叫做圆心,用字母O 来表示。找出你刚才所画的圆的圆心,并标上字母O 。同桌相互检查一下,有没有标对。

2 )教学半径:连接圆心和圆上一点的线段是半径,用字母r 表示。指导学生画一条圆的半径,并标上字母。在我们用圆规画圆时,这个半径就是指什么?(两脚之间的距离)因此圆的大小就是由圆的半径决定的。

让学生联系画一个半径是4 厘米的圆,画出一条半径,标上圆心和半径的字母。向全班展示自己的圆,看一看,自己画的、标的还有什么地方部不对。

3 )教学直径。

出示一个画有一条直径的圆,让学生观察这条线段的位置有什么特点?

总结:像这样通过圆心并且两端都在圆上的线段是直径,通常用字母d 表示。

同学们你们画的圆也有直径,请你画一条圆。

4 )闭好眼睛,回想标圆心、画半径与直径的方法。

2、练习,完成练一练的第1 题。

说说哪些不是半径或直径,为什么?

3、研究圆的特点。

我们已经认识了圆心、半径和直径,现在我们就继续来研究圆的特点。

1 )出示一张圆形的纸,你能找到它的圆心吗?(把圆对折两次)

通过对折,你还发现圆有什么地方比较特别吗?(对折后能完全重合,是轴对称图形)

2 )把你手中的圆通过:画一画、量一量、比一比、折一折,在小组内讨论交流下面问题:在同一个圆里可以画多少条半径,多少条直径?

在同一个圆里,半径的长度都相等吗?直径呢?

同一个圆的直径和半径有什么关系?

圆是轴对称图形吗?它有几条对称轴?

3 )学生汇报回答上述四个问题,教师适当引导:前面三个问题为什么要强调在同一个圆里?可以画无数条半径和直径,你是怎么知道的?你能用字母来表示半径与直径之间的关系吗?(板书:d=2r )

4 )通过刚才的讨论和交流,我们掌握了圆的特征,谁来总结一下圆的特征。

五、巩固练习。

1、练习十七的第1 题。

填写表格,并说一说半径与直径之间有什么关系?

2、练一练的第2 题。

画一个直径是5 厘米的圆,并用字母O、r、d 分别表示出它的圆心、半径和直径。

教师提问:使用圆规画一个直径是5 厘米的圆,先要确定什么?(求出半径,也就是两脚之间的距离)

3、判断题。

1 )圆有无数条对称轴。

2 )直径是半径的2 倍。

3 )画一个直径为4 厘米的圆,圆规两脚间的距离为4 厘米。

4 )圆的位置由圆心决定。

5 )两脚间的距离越大,画出的圆就越大。

六、欣赏生活中的圆

谈话:瞧,生活中,也蕴含着丰富的数学规律呢。其实,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏。

师:感觉怎么样?

师小结: 而这,不正是圆的魅力所在吗?

七、全课总结

谈话:其实短短的一节课,要想真正了解圆还不太容易。那么就让我们从今天起,走进历史,走进文化,走进圆的世界吧!

篇2:圆的认识教学设计

教学目的:

1、使学生认识圆,知道各部分的名称。

2、掌握圆的特征,理解直径和半径的相互关系。

3、初步学会用圆规画圆。

4、通过分组学习,动手操作,主动探索等活动培养学生的创新意识,及抽象概括等能力,进一步发展学生的空间观念。

教具准备:

圆规、实物投影仪、计算机软件。

教学过程:

一、复习导入

我想问一下,大家喜欢动画片吗 7 (喜欢)今天我也给大家带来一段动画片,想看吗?(想)请大家看屏幕,(出示课件)这四个小动物在举行自行车比赛,最后结果怎样呢?请往下看,现在比赛还没有结束,你能猜一下,最后谁能得第一?(小狗),为什么呢?(因为小狗的车轮是圆的)。那小白兔的车轮也是圆的,那你为什么不说它得第一呢 2 (因为小白兔的车轮的车轴没在中间)那为什么车轮做成圆的,车轴装在中间,跑起来就又快又稳呢?学完这节课,你就会明白的。

二、新课教学

1、实物举例。

一年级的时候,咱们已经初小认识过圆了,谁来说一说,除了车轮是圆的以外,在我们周围的物体上哪里还有圆?

圆和咱们原来学过的三角形。四边形相比有什么不同?

三角形和四边形都是由什么围成的?(线段)我们就把它们叫做平面上的直线图形。而圆是什么围成的。(曲线)所以,我们就把圆叫做平面上的曲线图形。

2、尝试画圆,初步感知圆的特征。

对于三角形和四边形的特征,咱们前面已经研究过了。

而作为由曲线围成的平面图形 -- 圆来说也有自己的特征,下我们就一起来研究一下。

为了便于咱们研究,咱们先来画一个圆,大家会画圆吗?(会)

谁能到黑板前快速画一个圆。(评价。你能敢上来画一个圆,已经很好了,请回。)

看来只用一只粉笔,是不太容易把圆画好的,想画好,咱们就得借住工具。下面就请大家拿出圆规试着画出一个圆,如果你画的时候有什么困难,就打开课本 108 页,看书是怎样说的。

(学生用圆规画圆。)

请大家坐好,谁能上来给大家演示一下,怎样用圆规画圆。

(让学生总结用圆规画圆要注意什么,教师适当补充。)

3、认识圆各部分的名称。

针尖固定的这一点我们就把它叫做圆心,也就是圆中心的一点,圆心一般用字母O表示。(板书:圆心O)

圆规两脚间的距离也就是连接圆心和圆上任意一点的一条线段。像这样的线段,我们就把它叫做半径,一般用字母 r 表示,谁来说一下什么叫半径?(学生回答。)

大家看,我在圆里再画一条线段,注意观察,我是怎样画的?

也就是通过圆心,并且两端都在圆上。

像这样的线段,我们就把它叫做圆的直径,一般用字母 d 表示。

板书: “ 直径 d” 。

谁来说一下,什么叫直径?(评价:很好很完整。)同桌同学互相说一下,什么叫直径。

4、分组讨论圆的特征。

刚才我们认识了圆心、半径和直径,下面请大家结合刚才咱们画圆的过程,讨论一下在同一个圆里(板书)半径有什么特征?直径有什么特征?它们之间有什么关系?请各小组开始讨论一下。(指导学生讨论。)

现在我请一个同学把你们组讨论的结果说一下。(同学反馈。)

评价:你们组讨论出了半径与直径的关系,很好。其他同学又做了补充。

过渡:刚才大家讨论出了这么多圆的特征,到底是不是这样呢?请大家看屏幕。(计算机演示特征。)

大家看,计算机演示的和大家讨论的结果一样吗?(一样。)

也就是说在同一个圆里,半径有多少条?并且所有半径的长度都怎样?(板书:无数条长度都相等)

也就是说,直径也具备这些特征。(完成板书。)

刚才大家还讨论出了半径与直径的关系,你能用字母表示一下它们之间的关系吗?

板书: d = 2r

或 r = d/2

5、巩固练习。

通过前面的学习我们又知道了圆的特征,下面我们一起做两组题,看哪些同学掌握得最好。先来看第一组,请你读一下题目要求(微机出示第一组,指名回答。)刚才我们知道了在同一个圆里,半径与直径的关系,现在咱们如果知道了半径的长度,能求出直径的长度吗?知道了直径的长度,能求半径吗?做完共同订正。

通过这两组的练习,可以看出,刚才大家掌握还是很不错的,下面请大家还得继续努力?

下面就请大家用这种方法再出几个圆,先画一个小点的,换个地方再画个大点。

再请大家画出一个半径为 3 厘米的圆;并分别用字母标出它的圆心、半径、直径。

请同桌同学互相用尺子检查一下,画对了吗?

请大家坐好,刚才咱们进一步巩固了怎样用圆规画圆,结合刚才画圆的过程,大家体会一下。画圆时圆心和半径各起了什么作用?

师:也就是:圆心决定圆的位置

半径决定圆的大小

6、全课总结。

大家回忆一下,通过刚才的学习,咱们都学会了哪些知识?

①认识圆的各部分的名称。

②知道了圆的特征。

③学会了用圆规画圆。

三、实际应用,深化知识。

记得刚上课看动画片时,大家都猜小狗能得第一,结果是不是这样的呢?请大家继续片下看。(播放动画。)

小狗果真得了第一,谁来说一下,小狗为什么能得第一?为什么车轴装在圆心上,谁跑得又快又稳呢?

学生发言(略)。

师总结:因为从圆心到圆上任意一点的距离是相等的,所以,车轴装在回心上,就能保证车轴到地面的距离始终不变,因此,车子跑起来就又快又稳,大家明白了吗?

篇3:圆的认识教学设计

教学目标 :

1、认识圆,知道圆的各部分名称,知道同一圆内半径、直径的特征,初步学会用圆规画圆。

2、使学生掌握圆的特征,理解在同一个圆里直径与半径的关系,能根据这种关系求圆的直径或半径。

3、培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念,使学生初步学会用数学知识解释、解决生活中的实际问题。

教学重难点 :

掌握圆的特征,理解在同一个圆里直径和半径的关系,能根据这种关系求圆的直径或半径。

教学准备 :

多媒体一套。学生准备硬币等圆形物体若干;圆规一把、直尺一把、三角尺一副;小剪刀一把;红色、蓝色彩笔各一支。

教学过程 :

一、导入新课

1、导入:同学们玩过套圈游戏吗?如果现在有几位同学要进行套圈比赛,站成什么形状比较合理?

2、你见过圆吗?生活中你在哪儿见过?能说说吗?一直说下去能说完吗?的确圆是无处不在的。(打开有关生活中圆的课件)问:同学们你们从中又看到了圆了吗?你会画圆吗?动手试一试,看谁想的方法多。

3、怎样可以画出一个圆?还有其它方法吗?

师根据学生口答边画圆边归纳方法:

( 1 )定长( 2 )定点( 3 )旋转

请大家用这个方法再画一个圆,并很快把它剪下来。

要进行套圈比赛的圆肯定比较大,用圆规画行吗?怎么办?

4、揭题:为什么站成圆形大家会觉得比较公平呢?

今天我们一起来学习圆的认识(板书课题),相信通过今天的学习大家一定会明白其中的道理。

二、探究新知

(一)认识圆心

1、圆形画好了,游戏可以开始了吗?套圈用的瓶子要放在哪儿呢?

2、你能很快找出圆的中心吗?试一试,找出刚才剪下的圆的中心。谁先发现,谁就先上来介绍。

说明:圆的中心叫 “ 圆心 ” ,就是画圆时针固定的一点,用字母 O 表示。(师板书:圆心 O )

(二)认识半径

1、圆画好了,瓶子放在圆心了,接下来怎样?(站人)站在哪里?(圆上)哪儿是 “ 圆上 ” ?指给你的同桌看一看,谁能上来指一指?

2、要站在圆上,随便哪一点都可以吗?为什么?怎样证明?(引导学生画一画、量一量)

说明:象这样,连接圆心到圆上任意一点的线段,叫做圆的半径,用字母 r 来表示。

3、你能画出几条半径?

4、认识特点:在同一个圆里,有( )条半径,它们的长度( )

5、想一想:( 1 )画圆时,圆规两脚间的距离其实就是圆的什么?针尖固定的一点呢?

6、在白纸上点两个点,以它们为圆心分别画一个半径 2 厘米的圆和一个半径 1.5 厘米的圆,比比哪个圆大些?想想圆的大小由什么决定?圆的位置由什么决定?

(三)认识直径及直径与半径的关系

1、刚才我们用折纸的方法确定圆心时,发现圆上有许多折痕。这些折痕叫什么?有什么特点?与半径有什么关系?请大家看看书、动动手画一画,看看能画几条?并在小组中说一说。

2、组织学生交流,教师画直径时有意两端不在圆上,让学生判断。

教师板书:( 1 )直径: d

( 2 ) d=2r 或 r=1/2d

追问:直径肯定是半径的 2 倍吗?你是怎么知道的?看一下你手中圆的直径,会不会是黑板上圆的半径的 2 倍?你认为应该怎么说?(板书:在同一个圆里)

3、口答:画一个直径是 5 厘米的圆,圆规两脚间的距离应是( )

4、完成课本的做一做。

三、全课总结

今天我们一起认识了什么?现在你能解释一下;为什么玩套圈游戏时大家站成圆形、瓶子放在圆心比较公平吗?

四、延伸拓展

1、同学们想一起到篮球场玩套圈游戏,你会怎么安排?说说你的想法。

2、在篮球场上要画一个直径 6 米的大圆,至少要准备一根多少米长的绳子?

站在这个圆上的同学中,离得最远的两个同学最多相距多少米?

追问:依据是什么?怎样证明 “ 两端在圆上的线段中,直径最长?

3、利用发现的规律你能测出硬币等圆形物体的直径吗?

4、生活中哪些物体必须做成圆形的,为什么?

(课件出示两辆跑车)让学生展开讨论:车轮为什么是圆的?

讲述:同学们,其实何尝是大自然对圆情有独钟?在我们人类生活中的每一个角落里,圆都扮演着重要角色,都成了美的使者和化身。(显示生活中圆的魅力)

篇4:“圆的认识”教学设计

成都市高新实验小学  曾秋声

l       教学内容:

小学数学十一册110-113页

l       教学目标 :

1、使学生认识圆,掌握圆的特征,理解直径与半径的关系,学会用圆规画圆。

2、使学生初步学会运用所学知识解决简单实际问题,培养学生观察、分析、抽象概括能力及初步的空间观念。

3、创设民主和谐的课堂氛围,培养学生的探索意识、合作意识及创新意识和创造能力,促进其非认知品质的健康发展。

l       教学准备:

圆规、三角板、大小不同的圆形纸片、多媒体教学软件、正方形纸片

l       教学程序:

一、导入

师出示一端系着绳子的红色小球,并握住绳子另一端将小球甩动起来。问:小球画出了一个什么图形?

学生回答后,揭示课题:圆的认识

二、教学圆的特点

1、结合实例,感知特点

师:你能举出周围物体哪里有圆吗?(学生回答后出示乒乓球、硬币)这两类物体有什么区别?

生:硬币表面是平的,乒乓球的表面是弯的。硬币只有正面看才是圆的,乒乓球不管从哪个方向看都是圆的。

师:说得好!足球、乒乓球这一类物体,我们把它叫做球形物体,硬币是圆形物体,它的正面的圆形是平面图形。

请同学们摸一摸你们手中的书和圆形学具的边缘,看有什么不同的感觉?

生:长方形的边是直的,圆的边是弯的。

师:对!所以我们把“圆”这样的图形叫做曲线图形。屏幕显示(文字和图形):平面上的曲线图形

2、巧设疑问,激发兴趣

师:有同学举例说车轮是圆的,那么车轮不做成圆的会怎么样呢?动画演示:车轮为椭圆的轿车上下颠簸着驶入画面。(生哄笑)

师:车轮做成圆的为什么就会平稳行驶呢?――这节课我们就来探索一下圆的奥秘。

3、操作讨论,发现特点

师:现在四人一组,用发下的圆形纸片来研究圆的特点。

屏幕显示:“折一折、量一量、议一议,看有什么发现?”

生操作,讨论。教师巡视。

4、汇报讨论结果

师:说一说你们有什么发现?

生1:我们发现多次对折后,折痕都通过同一个交点,这个交点在圆的中心。

师:真聪明!我们把圆中心的这一点叫做圆心,用字母o表示。(在黑板上贴出圆,画出圆心并标出字母o。)

生2:我通过测量还发现了对折后的折痕长度都相等,每条都是10厘米。

生3:我这个圆的每条折痕都是8厘米,我共测量了4条。

……

师:(板书:都相等)可以折出多少条折痕?(学生回答后板书:有无数条)我们把对折后的折痕叫做直径,用字母d表示。(在黑板上的`圆中画出直径并标上字母)请同学们在自己的圆上画出直径。

屏幕显示图形:下面圆中的线段是直径吗?说出理由。

在此基础上引导学生概括出直径的意义。

生4:通过测量,我还发现直径的一半也相等。

师:很好!我们把这条线段叫做半径,用字母r表示。(在黑板上的圆中标出半径及字母。)请大家在圆形纸片上画出半径。

屏幕显示图形:下面的线段是半径吗?(回答后引导学生概括半径的意义。)

师:谁能用字母表示直径和半径的关系?(引导学生说出d=2r   r=d/2并板书。)口答:如果圆的半径是4厘米,直径是多少?如果直径是12厘米,半径是多少厘米?

师:“所有的半径都相等,所有的直径都相等。”这句话对不对?(学生回答后板书:在同圆或等圆中)

6、小结

今天我们学习了圆的什么知识?

篇5:圆的认识教学设计

学习内容分析

圆是一种常见的平面图形,在我们的日常生活中有着广泛的应用。它是在学生掌握了直线图形的周长和面积计算,并且对圆已有初步认识的基础上进行教学的。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系。这样不仅扩展了知识面,而且从空间观念上来说,也进入了新的领域。因此,通过对圆的认识,不仅能提高解决问题的能力,而且也为学习圆的周长、面积、圆柱和圆锥的学习打下良好的基础。

学习者分析

六年级学生有着丰富的生活体验和知识积累,但空间观念比较薄弱,动手操作能力较低,学生学习水平差距较大,小组合作意识不强。以前学习的长方形、正方形等是直线平面图形,而圆则是曲线平面图形,估计学生在动手操作、合作探究方面会存在一些困难。

教学目标

知识与技能:

(1)认识圆,知道圆的各部分名称。

(2)使学生掌握圆的特征,理解和掌握在同一个圆里,半径和直径的关系,能在同一个圆里,找出任意的半径和直径并且会自主完成已知半径求直径或已知直径求半径的题目。

(3)使学生初步学会用圆规画圆。能用圆规画出已知半径大小的圆或已知直径大小的圆。

过程与方法:

(1)经历动手操作的活动过程,培养学生作图能力。

(2)通过分组学习,动手操作,主动探索等活动培养学生的创新意识,及抽象概括等能力,进一步发展学生的空间观念。

(3)在学习过程中,培养学生能与人合作、交流思维过程和结果的能力。

情感、态度与价值观:

通过对圆的认识,感受到美源于生活,体验圆与日常生活密切相关,感悟数学知识的魅力。

教学重点:圆的基本特征及半径与直径的相互关系。

解决措施:通过让学生折一折、画一画、量一量、猜一猜、比一比等活动让学生理解圆的基本特征及半径与直径的相互关系。

教学难点:如何让学生理解用圆规画圆的原理。

解决措施:通过展示学生用圆规画出来的圆,引导学生进行小组讨论:画得不好看和画得好看的圆里面的线段究竟分别有什么特征,然后师生共同验证,让学生充分理解利用圆规画圆的原理。

教学设计思路

一、复习旧知,导入新课

1、猜图形游戏。

2、对比椭圆和圆。

二、突出主题,探究新知

(一)认识圆的各部分名称及特征

1、认识圆的各部分名称及半径和直径的关系

2、练习1、2

(二)小组学习用圆规画圆

1、介绍用圆规画圆并认识圆规

2、根据要求学习用圆规画圆

(1)解释画圆的原理。

(2)归纳画圆的步骤

三、应用特征,解决问题

(一)判断题

(二)拓展延伸

四、总结评价

五、作业

篇6:圆的认识教学设计

教学目标

1、引导学生在观察、画圆、测量等活动中感受并发现圆的有关特点,知道什么是圆心、半径和直径,能用圆规画指定大小的圆。

2、在活动中,感受圆与其它图形的区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。

教学线索

(一)在活动中整体感知

1、思考:如何从各种平面图形中摸出圆?

2、操作并体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。

(二)在操作中丰富感受

1、交流:圆规的构造。

2、操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。

3、体会(学生第二次画圆):如果方法正确,为什么用圆规画不出直线图形或是其它的曲线图形?

4、引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的恒等,恰是“圆之所以为圆”的内在原因。

(三)在交流中建构认识

1、引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。

2、思考:半径有多少条、长度怎样,你是怎么发现的?

3、概括:介绍古代数学家的相关发现,并与学生的发现作比较。

4、类比:先介绍直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。

5、沟通:圆的内部特征与外部特征之间具有怎样的有机联系?

(四)在比较中深化认识

1、比较:正三角形、正方形、正五边形……中类似等长的“径”各有多少条?圆的半径又有多少条?

2、沟通:这些正多边形与圆这一曲线图形之间又有着怎样的内在联系?

(五)在练习中形成结构

1、寻找:给定的圆中没有标出圆心,半径是多少厘米?

2、想像:半径不同,圆的大小会怎样?圆的大小与什么有关?

3、猜测:不用圆规,还可能怎样画出一个圆?在交流中进一步丰富学生对半径、直径之间关系的认识。

4、沟通:用圆规如何画出指定大小的圆?

(六)在拓展中深化体验

1、渗透:在与直线图形的对比中,揭示圆的旋转不变性。

2、介绍:呈现直线图形旋转后的情形,再一次引导学生感受圆与直线图形的联系,体会圆与旋转的内在关联,丰富对圆这一曲线图形内在美感的认识。

篇7:《圆的认识》教学设计

学习内容分析

圆是一种常见的平面图形,在我们的日常生活中有着广泛的应用。它是在学生掌握了直线图形的周长和面积计算,并且对圆已有初步认识的基础上进行教学的。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系。这样不仅扩展了知识面,而且从空间观念上来说,也进入了新的领域。因此,通过对圆的认识,不仅能提高解决问题的能力,而且也为学习圆的周长、面积、圆柱和圆锥的学习打下良好的基础。

学习者分析

六年级学生有着丰富的生活体验和知识积累,但空间观念比较薄弱,动手操作能力较低,学生学习水平差距较大,小组合作意识不强。以前学习的长方形、正方形等是直线平面图形,而圆则是曲线平面图形,估计学生在动手操作、合作探究方面会存在一些困难。

教学目标

知识与技能:

(1)认识圆,知道圆的各部分名称。

(2)使学生掌握圆的特征,理解和掌握在同一个圆里,半径和直径的关系,能在同一个圆里,找出任意的半径和直径并且会自主完成已知半径求直径或已知直径求半径的题目。

(3)使学生初步学会用圆规画圆。能用圆规画出已知半径大小的圆或已知直径大小的圆。

过程与方法:

(1)经历动手操作的活动过程,培养学生作图能力。

(2)通过分组学习,动手操作,主动探索等活动培养学生的创新意识,及抽象概括等能力,进一步发展学生的空间观念。

(3)在学习过程中,培养学生能与人合作、交流思维过程和结果的能力。

情感、态度与价值观:

通过对圆的认识,感受到美源于生活,体验圆与日常生活密切相关,感悟数学知识的魅力。

教学重点:圆的基本特征及半径与直径的相互关系。

解决措施:通过让学生折一折、画一画、量一量、猜一猜、比一比等活动让学生理解圆的基本特征及半径与直径的相互关系。

教学难点:如何让学生理解用圆规画圆的原理。

解决措施:通过展示学生用圆规画出来的圆,引导学生进行小组讨论:画得不好看和画得好看的圆里面的线段究竟分别有什么特征,然后师生共同验证,让学生充分理解利用圆规画圆的原理。

教学设计思路

一、复习旧知,导入新课

1、猜图形游戏。

2、对比椭圆和圆。

二、突出主题,探究新知

(一)认识圆的各部分名称及特征

1、认识圆的各部分名称及半径和直径的关系

2、练习1、2

(二)小组学习用圆规画圆

1、介绍用圆规画圆并认识圆规

2、根据要求学习用圆规画圆

(1)解释画圆的原理。

(2)归纳画圆的步骤

篇8:《圆的认识》教学设计

教学内容:西师版六年级(上)教材1618页上圆的认识

教学目标:

1、认识圆的特征,知道什么是圆心、半径和直径。能正确判断一个图形是不是圆,并说明理由。

2、运用不同的思想方法认识:在同一个圆(或等圆)里,半径的长度都相等;直径的长度都相等并且等于半径的两倍;知道圆是轴对称图形,有无数条对称轴,能画出加圆的对称轴。

3、能用圆规画圆,知道半径(直径)决定圆的大小,圆心决定圆的位置。

4、了解圆在生产、生活和科学技术的应用,并能用圆的特征解释。

教学重难点:掌握圆的特征,会画圆。

教学方法:讲授法,探究法。学生学法:自学法、观察法,探究法。

教学具:圆片,三角板,PPT课件,圆规,尺子,白纸,剪刀,细线等。

教学过程:

一、再现场景,导入新课。

对于圆,同学们一定不会感到陌生吧?生活中,你们在哪儿见到过圆形?(学生说)今天,老师也给大家带来一些。见过平静的水面吗,如果我们从上面往下丢进一颗小石子(课件),你发现了什么?其实这样的现象在大自然中随处可见,让我们一起来看看。(课件展示生活中的圆形图片。)我们生活中常见的物体中都有圆。你能从这些物体中找到圆了吗?

圆和我们以前学过的平面图形有什么不同?

意大利诗人但丁、古希腊著名数学家毕达哥拉斯认为一切平面图形中最美的是圆。今天这节课,就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?板书课题

二、师生合作学习新知

(一)试一试

1、同学们能用手中的材料试着画一个圆吗?

2、交流反馈。

3、既然同学们能用这么多方法能画出圆,把自己的方法与别人的比较一下,能发现那种方法适用性更广一些?从而引导出用圆规画圆。介绍圆规的组成部件。

(二)说一说

1、请用圆规画圆的同学谁能把你的方法给老师和同学们说一下。

2、生说,教师在黑板上板画。适时规范学生的语言。(先将针尖和笔尖张开一定距离;然后将针尖固定在一个点上;最后使笔尖落在纸上,将圆规旋转一周,毛尖就画出了一个圆。)

3、其它学生用刚才那个同学的方法在纸上自由画一个圆。

(三)学一学

1、请同学们打开课本第17页例2下面这部分内容自学一遍。把你新学到的知识勾画出来,并重点理解一下。最后在你刚才画的一个圆里标出圆心、半径和直径。

2、学生自学,教师巡视,适时收集信息为下面反馈做好准备。

3、学生交流,边说边在自己画的圆中指出相应位置。教师适时追问,刚才针尖的位置是什么,它有什么作用?针尖与笔尖的距离是什么?它决定圆的什么?教师根据学生的回答用一个绳子系上一支粉笔头甩出不同大小的圆,加深学生理解。当学生说出圆心、半径和直径的概念不够规范时要用书上的规范用语,并通过重点词语理解概念。教师在追问及学生回答时适时板书。

三、独立探究,获取新知

1、请同学们拿出准备好的圆片独立探究。出示探究目标(课件出示):

1将自己手中的圆用不同的方式找到圆心、半径和直径并做好标识。(学生找圆心时若有困惑可适时引导:我发现有个同学真聪明,他将手中的圆对折几次后就很快地找到了圆心,学生们试试看。)

2在同一个圆中,有多少条半径?这些半径的长度之间有什么关系?你是怎样得到的?

3在同一个圆里,有多少条直径?这些直径的长度之间有什么关系?每一条直径的长度与半径有什么关系?这些关系你是怎么得到的?

4圆是不是轴对称图形?若是,它有多少条对称轴?能画出其中的一条吗?目标出示后,学生一定要认真读,明确要求,然后可以选择自己喜欢的一个或几个问题进行探究。教师巡视,适时指导调控时间。

2、学生交流反馈。教师适时板书。

四、介绍圆的历史

其实,早在二千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:圆,一中同长也。所谓一中,就是指一个DD同长就是指----

其实,我国古代关于圆的研究和记载还远不止这些。老师这儿还搜集到一份资料,《周髀算经》中有这样一个记载,说圆出于方,方出于矩,所谓圆出于方,就是说最初的圆形并不是用现在的这种圆规画出来的,而是由正方形不断地切割而来的(动画演示:圆向方的渐变过程)。现在,如果告诉你正方形的边长是6厘米,你能获得关于圆的哪些信息?

说起中国古代的圆,下面的这幅图案还真得介绍给大家(出示图),认识吗?

想知道这幅图是怎么构成的吗?

原来它是用一个大圆和两个同样大的小圆组合而成的(出示图)。现在,如果告诉你小圆的半径是3厘米,你又能知道什么呢?(学生说)

师:看来,只要我们善于观察,善于联系,我们还能获得更多有用的信息。

五、解释与应用

1、基本练习(制成课件)

2、解释现象。

现在让我们重新回到现实生活中来。平静的水面丢进石子,荡起的波纹为什么是一个个圆形?现在,你能从数学的角度简单解释这一现象了吗?

车轮是绕着轴承转动,轴承的位置在什么地方?为什么?

简单的自然现象中,有时也蕴含着丰富的数学规律呢。至于其他一些现象中又为何会出现圆,当中的原因,就留待同学们课后进一步去调查、去研究了。

其实,又何止是大自然对圆情有独钟呢,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏DD(课件展示)

六、总结与反思

1、请同学们将本节课所学知识整理一下,用一两句话说说你这节课最大的收获是什么?

2、教师总结:西方数学、哲学史上历来有这么种说法,上帝是按照数学原则创造这个世界的。对此,我一直无从理解。而现在想来,石子入水后浑然天成的圆形波纹,阳光下肆意绽放的向日葵,天体运行时近似圆形的轨迹,甚至于遥远天际悬挂的那轮明月、朝阳而所有这一切,给予我们的不正是一种微妙的启示吗?至于古老的东方,圆在我们身上遗留下的印痕又何尝不是深刻而广远的呢。有的说,中国人特别重视中秋、除夕佳节;有人说,中国古典文学喜欢以大团圆作结局;有人说,中国人在表达美好祝愿时最喜欢用上的词汇常常有圆满美满而所有这些,难道就和我们今天认识的圆没有任何关联吗?那就让我们从现在起,从今天起,真正走进历史、走进文化、走进民俗、走进圆的美妙世界吧!

篇9:圆的认识教学设计

圆的认识教学设计

执教教师:

设计理念

新课标指出:“学生是数学学习的主人”,教师要“向学生提供充分从事数学活动的机会”,并指出:“动手实践、自主探索、合作交流是学生学习数学的重要方式”。本课例我让学生自己动手来折圆纸片、同学之间合作交流,共同探究圆的一些特征。这样的组织教学,使整节课充满了“做数学”的过程,学生的主体性得到充分展现。

现代信息技术是为教学服务的,其主要功能就是“提供学生学习背景,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。”本课例的教学设计还着力利用信息技术让学生经历体验的过程,将抽象的数学知识形象化。引导学生积极主动的参与学习过程,培养学生的数学意识和数学能力。

教学内容

《义务教育课程标准实验教科书 数学》(人教版)六年级上册第56-58页。

(所用教材电子扫描图附后)

学情与教材分析

《圆的认识》一课是在学生认识直线图形和面积计算,对圆有了初步的感性认识的基础上进行教学的。它是学生学习曲线图形的开始。学习这部分内容不仅加深学生对周围事物的理解,提高解决简单问题的能力,也为后面学习圆的周长、面积的计算,打好基础,是很重要的一节几何知识的起始课。

小学生的思维多倾向于具体形象的特点,而小学六年级的学生,只具有初步的抽象概括能力,空间观念也正在形成之中,对几何形体的特征感到抽象,虽然在一年级时他们已初步感知过圆,但还没有建立圆的概念,也没有掌握圆的特征。学生对于建立正确的圆的概念以及掌握圆的特征还是比较困难的,因为学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。怎样才能把这些抽象内容变得具体形象呢?我以教材为依据,针对教材特点,联系我班学生动手操作能力较强、自学能力较强、学生具有讨论认真、善于合作学习的好习惯。制定了以下教学目标:

教学目标

1. 使学生认识圆,知道圆各部分的名称;掌握圆的特征,理解直径和半径的相互关系。初步学会用圆规画圆。

2.通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念。

3. 通过学习,提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用

教学准备

纸圆、剪刀、线绳、课件

(预设做圆材料有:瓶盖、硬币、绳子、圆规)

教学过程

一、创设情境,初步感知圆。

1、引入课题

(1)提问:对于圆,同学们一定不会感到陌生吧?生活中,你们在哪儿见到过圆形?

(2)欣赏圆

2、揭示课题

师:有人说,因为有了圆,我们的世界才变得如此美妙而神奇。今天这节课,就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?(板书课题)

【设计意图:一堂课好的“序幕”如同“吸铁石”,可以把学生牢牢地吸引住,使学生迅速进入“角色”。让学生通过“寻找圆、欣赏圆”,进而引出要学习的内容,贴切、自然,这样可以一开始就牢牢抓住学生的心,激发学生的学习兴趣和情感需要,调动学生进一步探究学习的欲望;同时也让学生感受到圆的美及无处不在,体现数学来源于生活。。】

二、自主合作,初步认识圆

1.做圆

师:俗话说:“没有规矩,不成方圆”。意思是说,如果没有圆规,是――(画不出圆的)可要是真没有了圆规,比如在圆规发明之前,我们就真画不出一个圆吗?今天,每个小组还准备了很多其他的材料。你能利用这些材料,试着画出一个圆吗?

(1) 展示学生做出的圆

(2) 让学生汇报做圆的方法

【学情预设:1、将圆形的瓶盖按在白纸上,沿着瓶盖的外框画了一个圆。2、在绳子的.一端系一支铅笔,另一端固定在白纸上,绳子绷紧,将铅笔绕一圈,也画出了一个圆】

2.画圆

师:现代人们都是用什么工具画圆?你会使用圆规画圆吗?

请大家用圆规随意在纸上画出一个圆,并说说用圆规画圆的方法。

(组织学生交流用圆规画圆的方法:定长、定点、旋转一周)

3、认识圆各部分名称

师:请同学们把刚才画的圆剪下来,跟老师一样把圆片对折后,打开,换过一个方向再对折,再打开。将折痕用笔描下来。

(1)认识圆心。

(学生折圆、汇报发现)师:我们把折痕相交的圆中心这一点叫做“圆心”,用字母o表示。(教师在黑板上贴出圆,画出圆心并标出字母o )请大家在你们的圆形纸上标出圆心,并用字母表示出来。

(2)认识直径。

师:如果我们把其中的一条折痕用笔描出来,就可以得到一条线段,这样的线段就是圆的“直径”,用字母d表示。(教师在黑板上画出直径,并标出字母d )请同学们也在你们的圆形纸上画出一条直径,并用字母表示出来。

师:在画直径时应该注意什么,谁能说一说什么样的线段叫做圆的直径?(引导学生概括“直径”概念,强调“圆上、圆内、圆外”的区别)

(3)认识半径。

(教师在刚才的基础上画出一条“半径”)师:这样的线段就是圆的半径,用字母r表示。(学生画半径,用字母表示,概括半径概念,课件出示,强调“任意一点”。)

(4)(课件出示)练习:判断下面的线段哪些是直径,哪些是半径?为什么?

$2$2$2$2$2$2$2$2$2$2

4、探究圆的特征。

(1)猜想

师:请你仔细观察手中的圆猜想一下:圆可能会有哪些特征呢?

(2)验证

活动要求;①折一折:将学具圆对折,对折后,两个半圆是完全重合的,打开,再变换不同的方向,继续对折这样4-5次。②看一看:仔细观察折痕③画一画:在圆上描出折痕④想一想:这些折痕有什么规律⑤量一量,测量一下折痕的长度,将数据记录在圆上。⑥议一议:在小组内和伙伴们说一下你的观点,他们同意吗?

$2$2$2$2$2$2$2$2$2$2$2$2$2$2$2(3)结论:在同一圆内(或等圆)有无数条半径,无数条直径,所有的直径都相等,所有的半径都相等,直径是半径2倍,也就是“ d = 2r 或 r = ” 。

(4)(半径、直径关系)练习:课本P60第2题。(课件出示口头练习)

【设计意图:数学“课标”中指出要让学生经历猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理的、清晰的阐述自己的观点。此外,引导学生探索、挖掘问题的根本原因有助于学生形成解决问题的一些基本策略,发展实践能力和创新精神;体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性。】

三、联系实际,初步应用圆

1、下面的说法对吗?为什么?

(1)所有半径都相等,所有的直径也相等。( )

(2)半径3厘米的圆比直径5厘米的圆小。( )

(3)圆的直径是半径的2倍。( )

(4)两端都在圆上的线段就是圆的直径。( )

2、车轮为什么要设计成圆的?车轴为什么要装在圆心?

【设计意图:学习数学的最终目的在于应用数学解决实际问题。通过不同层次的练习,这样可以使学生对刚刚形成的知识得到活学活用,帮助学生对知识的深层理解,从而培养了学生综合运用知识探索解决实际问题的能力;同时练习又注重与生活的联系,这样的练习学生乐于参与,也有实效。】

四、谈古论今,感受圆文化

1、古人眼中的圆

谈话:其实,早在两千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:“圆,一中同长也”。学完了今天的知识,你是怎样理解这段话的?

【预设一:一中就是指一个圆心。

预设二:同长指半径一样长,也可能指直径一样长。】

师:其实我国古代这一发现要比西方整整早一千多年。听到这里。同学们感受如何?

2、现代社会的圆

总结:从古到今,正因为有了圆而使生活变得格外多姿多彩,我们无法想象生活中如果没有了圆,将会是什么样子,这些不正是圆的魅力所在吗?从今天起,让我们一起走进圆的世界吧!

【设计意图:数学是一门科学,更是文化的重要载体,挖掘数学独有的文化本性,凸显数学强烈的文化特质,构建现代的数学文化观。】

五、全课总结,反思圆知识

1、这节课你都学会了什么?

篇10: 圆的认识教学设计

一、教学内容:

人教版《义务教育课程标准实验教科书、数学》六年级上册56―58页

二、教学目标

1、在具体的情景中使学生认识圆,知道圆各部分的名称。

2、通过观察,操作等活动探究圆的特征,理解在同一圆内直径和半径的关系。

3、学会使用圆规,掌握用圆规画圆的方法。

4、在观察操作过程中培养学生的创新意识和自主探究能力。发展学生的空间观念。

三、教学重难

教学重点:认识圆的.特征,学会用圆规画圆。

教学难点:明确圆心与圆的位置之间的关系,半径与直径、半径与圆的大小之间的关系。

四、教学具准备

教具准备:多媒体课件、圆规、直尺、圆片。

学具准备:圆规、直尺、圆片。

教学过程

五、教学过程

(一)情景创设,激情导入

同学们喜欢骑自行车吗?(喜欢)那么你们一定知道自行车车轮是什么形状的?为什么车轮要设计成圆形?(出示图片)

为什么车轮设计成圆呢?这里面有什么奥妙呢?学了今天的内容大家就会明白的。这节课我们就走进圆的世界去探寻其中的奥妙。板书课题:圆的认识

[设计意图:通过生活中实际例子引入课题,一方面引起学生的学习兴趣,另一方面为学习新知识做了铺垫,从思想上吸引了学生主动参与学习的活动。

(二)动手操作,探究新知

联系生活,理解概念

(1)师:除了车轮是圆形的,同学们在日常生活中还看见过哪些物体是圆形的?

(2)学生举例。

(3)老师也收集了一些关于圆的图片:请大家看屏幕(课件演示)。

(4)师:同学们我们不仅用圆来装扮我们的生活,还将圆的一些特征巧妙的用于生活。

(三)操作探究,认识圆各部分的名称及圆的特征。

1、折一折,认识圆心。

(1)让学生用老师准备好的圆形图片,对折后打开,换个方向后再对折打开,看有几条折痕,相交吗?再折几次,说说你发现了什么?学生相互交流自己的发现。(所有的折痕都相交于一点,这一点在圆的中心)

(2)教师揭示:这一点我们把它叫做圆心,用字母“ο”表示。

(3)课件演示后,学生自己在圆上标出圆心。

2、连一连,认识半径、直径

(1)连接圆心和圆上任意一点的线段叫做圆的半径,用字母“γ”表示。

(2)课件演示。

(3)让学生找出定义中的关键词

(4)教师解释圆上、圆内、圆外

(5)学生在自己的圆里画出一条半径,并用字母标出。

(6)想一想:同一个圆里能画出多少条半径?这些半径的长度会有什么关系呢?学生通过思考、讨论和实际测量认识到在同一个圆里有无数条半径,所有的半径的长度都相等。

(7)通过圆心并且两端都在圆上的线段叫做圆的直径,用字母“d”表示

(8)课件演示

(9)学生互相指一指直径,并在自己的圆里画出一条直径。

(10)想一想:同一个圆里有多少条直径,所有的直径的长度都相等吗?学生通过思考、讨论和实际测量认识到在同一个圆里有无数条直径,所有的直径的长度都相等。

3、比一比,掌握直径与半径的关系

(1)刚才我们认识了圆心、半径、直径以及半径、直径的特征,那么在同一个圆里半径和直径之间会有什么关系呢?

(2)学生自己先动手测量、比较,然后小组探讨交流。

(3)小组代表发言,小组一:我们通过测量发现直径的长度是半径的2倍,小组二:我们把直径对折过去发现刚好是两个半径的长度,所以认为直径是半径的2倍。

(4)教师归纳小结:在同一个圆里,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示是:d=2r或r=d/2

[设计意图:这一环节主要以动手操作为主线,通过折一折、量一量、指一指、比一比等活动,让学生自主参与,合作探究、分组交流,给予学生充分展示自我和展开探究活动的空间,让学生在自主探究中发现新知,学生学习的过程是感知的过程,是体验的过程,是感悟的过程,学生在感知、体验、感悟中发现新知,掌握新知。]

(四)动手操作,掌握圆的画法

1、认识圆规,教师介绍圆规各部分的名称。

2、教师在黑板上示范画圆

3、学生用圆规画圆,指名学生演示画圆,并让学生边演示边归纳画圆的步骤和方法。

4、画一个半径是3厘米的圆,并用字母标出圆心、半径和直径。画完后同桌互相检验。

5、按要求画圆,并观察你发现了什么?(画3个同心圆,3个大小不等的非同心圆)让学生通过观察、讨论、比较归纳:圆心确定圆的位置,半径决定圆的大小。

[设计意图:老师先示范画圆接着让学生试着用圆规画圆,画圆之后,让学生共同概括规律,是从感性到理性的一种提高。同时让学生反复画圆之后,结合画圆的过程体会圆心和半径的作用,便于学生深化对圆心和半径的认识。]

六、实践应用,深化知识

(1)、辨一辨。(对的在括号里打“√”,错的在括号里打“×”)

1、两端都在圆上的线段叫做直径。

2、画一个直径为4厘米的圆,圆规的两脚之间的距离应是4厘米。()

3、半径2厘米的圆比半径1、5厘米的圆大。()

4、圆的半径是射线。()

5、圆心到圆上任意一点的距离都相等。()

(2)、回放上课时车轮为什么是圆形的动画,谁能应用今天所学的知识解释车轮为什么要做成圆形?为什么车轴要装在圆心上?

(3)、下面投球比赛中,那种游戏方式最公平?

队列3

队列2

队列1

[设计意图:通过拓展训练,进一步巩固所学的知识,同时了解学生对知识掌握情况。让学生亲眼看见圆的知识的应用,真正体会到数学知识就在身边。]

七、总结新知畅谈收获

本节课你学习了什么知识?你有什么收获?

师:其实生活中的很多现象都象圆一样蕴含着丰富的数学规律,需要我们在不断的探索中来认识它,理解它,应用它。老师相信你们在今后的学习中,经过自己的实践,一定会探索出大自然中的更多奥妙。

板书设计:

圆的认识

圆心0在同圆内:

半径rr=d/2或

直径dd=2r

篇11:圆的认识-教学设计

圆的认识-教学设计

教学内容:九年义务教育人教版六年制小学数学第十一册第106---109页,圆的认识和圆的画法,完成练习二十五。

教学目标:

1.进一步认识圆,知道并理解圆的各部分名称;了解圆的特征,理解直径和半径的关系;学习用圆规画圆,初步能按要求画圆。

2.在数学活动中让学生经历知识再发现、再创造的过程,完成知识的意义赋予,从中培养探究意识、发现能力和解决简单实际问题的能力。

3.体验圆的美,享受成功的喜悦。

教学具准备:圆规、剪刀、水彩笔、白纸、直尺、一副三角尺、绳子、羊的头饰、一元硬币。

教学过程

一、揭题

1. 直线图形

师:(出示三角形、长方形、正方形、平行四边形、梯形的平面图)三角形、四边形都是由线段围成的平面图形,线段有什么特点?

生:线段有两个端点,是直的,可以度量。

师:所以我们称三角形、四边形是平面上的直线图形。(板书:直线图形)

2.曲线图形

师:(出示圆的平面图)这是我们学过的… …

生:齐说“圆”(板书:圆)

师:相对于线段围成的直线图形,圆是由曲线围成的,所以我们称圆是平面上的一种曲线图形。(板书:曲线图形)

3.引入圆的特征讨论

师:想一想:你周围的物体上哪里有圆?

生:(举例略)

师:同学们一年级时就初步认识过圆,现在都六年级了,你现在知道多少有关圆的知识?

生①:圆是一种优美的图形,建筑设计中应用广泛,如:圆形花坛,圆形装饰图案。生②:圆形便于滚动,所以车轮都是圆的。

生③:一张白纸经折叠后可以剪出一个近似的圆。

生④:(举起自己的圆规)这是圆规,用它可以画圆。

师:车轮为什么是圆的?为什么用圆规可以画出圆来呢?这就需要认识圆有什么特征,下面就来学习“圆的认识”。(板书:圆的认识)

二、新课

1.圆的画法

(1)自由画

师:拿出自己的圆规,在白纸上画一个圆。(师板书:画圆)

生:独立画

师:谁能说说你是怎样画出来的?

生:… …(用自己的话描述)

师:谁能用老师的教具圆规上黑板上画圆?(让两名同学上黑板画,提醒其余同学仔细观察他们是怎样画的?)

反馈①:一只手摁住圆规固定的脚,另一只手使圆规的另一只脚旋转,顺利画出圆。

反馈②:教具圆规不好使唤,想固定的那只脚不停移动,用力过猛又使圆规两脚的距离发生变化,无法画出圆。

师:为什么这位同学用圆规能轻巧地画出圆,而另一位同学却画不出圆呢?

(点拨总结出画圆的步骤:“分开”、“固定”、“旋转”。分别板书)

2.认识圆心

师:(以黑板上学生画的圆为例)用圆规画圆时针尖固定的这一点(用彩色粉笔点出)叫圆心(板书“圆心”)一般用字母O来表示(标出:O)。请同学们在自己画的圆上点出圆心,标出字母O。

生:独立完成。

3.认识半径

师:举起你们刚才画的圆,互相看一下,都一样大吗?

生:不一样大。

师:为什么大的大,小的小,与什么有关?

生:与圆规两脚分开的大小有关。

师:你们的意思是圆规两脚间的距离长时,画出的圆大,两脚间的距离短时,画出的圆就小。请在你的圆上画出一条表示两脚间距离的线段。

生:独立画。

师:(以黑板上学生画的圆为例)请同学们仔细看,圆规的一只脚固定在圆心O,当另一只脚旋转到A点时,圆规两脚间的距离是OA(画出线段OA);当另一只脚旋转到B点时,两脚间的距离是OB(再画出线段OB)

问:线段OA和OB相等吗?

生:相等。

师:你是凭观察得出的,那怎样验证呢?

生:测量。

师:指名上黑板测量OA与OB的长并报告测量结果。

生:确实一样长。

师:在这个圆的曲线上,像A、B这样的.点可以找出多少个?

生:无数个。

师:表示两脚间的距离的线段可以画多少条?设想一下它们的长度如何?

生:无数条且长度都相等(板书)

师:我们刚才研究的画圆时圆规两脚间的距离就叫做圆的半径(板书:半径)一般用字母r来表示。给你们刚才画的半径标上r。

师;半径这条线段的一个端点在哪里,另一个呢?

生:一个端点在圆心,另一个端点在圆的曲线上。(板书:圆心 圆的曲线上)

师:那什么叫半径呢?

生:用自己的话说(师完成半径定义的板书)

师:同一个圆里,半径有什么特点?

生:无数条且长度都相等。

4.认识直径

师:把自己画的圆剪下来

生:独立剪

师:示范对折,打开,出现一条折痕,用食指摸折痕;换个方向再重复一次。

生:在教师示范下同步进行。

师:像这样再重复折几次

生:独立对折、打开、摸折痕。

师:你折了好多次,可以发现什么?

反馈①:每折一次出现一条折痕。

追问:你折了几次,出现了几条折痕,与他不一样的呢?像这样的折痕在你的圆里能再折出来吗?

反馈②:对折后圆的两边能完全重合,圆被平均折成两份。

反馈③:每折一次出现一条折痕,每条折痕都是圆上的线段。

反馈④:这些折痕相交于圆心。

追问:你对折出几条折痕,谁折出的折痕比他多,他说的结论正确吗?在你的圆里,这样的折痕可以折出多少条?这个结论正确吗?

反馈⑤:这些折痕都一样长。

追问:怎样验证?

生:测量

师:量出你圆里每条折痕的长度

生:汇报结果。(指导学生说:“在我的圆里,… …”)

师:刚才说了这样的折痕有无数条,所以可以怎样下结论?

生:同一个圆里,所有的折痕长度都相等。

师:谁能给“折痕”起个名字?

生:直径(板书:直径)

师:直径一般用字母d来表示,在自己的圆里给折痕画出一条直径,标上字母d。

生:完成

师:同一个圆里,直径有多少条,长度有什么特点?

生:略

师:直径这条线段,它通过了…?它的两个端点分别在哪里?

生:通过圆心,两个端点都在圆的曲线上。(完成直径定义的相应板书)

反馈⑥:这些折痕的长度是半径长度的2倍或直径的长度是半径的2倍。

师追问:你是怎样得出这个结论的,说说道理。

生①:直径通过圆心,以圆心为界,可以把直径分成两条半径。

生②:在我的圆里,经过测量可以验证这个发现,我的圆里直径的长度都是□厘米,半径的长度都是□厘米,所以说直径是半径长度的2倍。

师:换过来说,半径的长度就是直径的… …。生:略师:写出字母公式:d=2r r= d 2 ,注意强调“同一个圆里”。

(以上6点反馈,学生说出多少就处理多少,先说出哪一点,就先处理那一点。)

三、巩固

1.第108页“做一做”。用彩色笔标出下面各圆的半径和直径。

2.第109页练习二十五第3题。已知半径长求直径;已知直径长求半径。

(此项练习放在直径与半径长度关系揭示后进行)

3.学习按要求画圆。完成第108页“做一做”(画半径是3厘米的圆)。

教师示范,引导学生逐步完成。

(1)在作业本适当的地方点一个点做圆心,要考虑上、下、左、右的间距。

(2)以圆心为起点,向右水平方向画一条3厘米长的线段。

(3)圆规一脚固定在圆心,另一只脚在3厘米长线段的终点处,然后绕圆心旋转。

(4)标出字母o、r、d。

4.第109页练习二十五第2题。为什么车轮都要做成圆的,车轴装在哪里?

与圆的特征有关。因为圆曲线上的每一点到圆心的距离相等,车轴装在圆心,车轴到地面的距离永远是半径,这样车轮行驶平稳。(配图:如果车轮在水平的路面上行驶,车轮运行时车轴移动形成的直线(轨迹)与地面平行)

5.阅读第109页第5题,独立填书。

想:怎样测量1元硬币的直径?

让学生在实物投影上边演示边说。

篇12: 《圆的认识》教学设计

教学目标:

1、使学生认识圆的各部分名称,掌握圆的特征及画圆的方法。

2、在活动中培养学生观察、动手操作、与他人合作交流等方面的能力。

3、使学生感受生活中圆的存在及作用,感受平面图形的学习价值,提高学生数学学习的兴趣和学好数学的信心。

教学过程:

一、创设情境,导入新课

(1)喜羊羊和灰太狼一起参加动物王国里举办的汽车设计大赛,喜羊羊设计一个圆形车轮的汽车,灰太狼设计一个方形车轮的汽车。它们行驶起来会是什么感觉呢?

(2)对于圆,我们一定不会感到陌生吧?生活中你们在哪见过它们呢?

(3)(课件出示)欣赏有关圆的美丽的图片,如向日葵、光环等。

数学来源于生活,又应用于生活。创设学生熟悉的生活情境,使学生产生积极的心理需求,感受数学与生活的密切联系,体验到生活中处处有数学与数学的运用。

二、自主探索,交流互动

1、感悟画圆法

师:好了,欣赏了那么多美丽的圆,大家想画这些圆吗?你们有什么办法把圆画出来呢?

……

2、尝试用圆规画圆

师:利用实物画圆这个方法大家都会了,我们就不研究了。你们想挑战用圆规画圆吗?

(生在纸上画圆,师巡视,仔细观察学生画圆时出现的问题)

师:老师发现大部分同学画的圆很漂亮,但有小部分同学画的圆不是很好喔!你猜猜,他们可能在什么地方出现了问题?大家愿不愿意帮帮他们呢?

……

师:其实大家所说到的就是用圆规画圆的步骤和应注意的地方。谁说说?师根据生说相机归纳与板书,并示范画圆。

(1)确定圆规两脚间的距离

(2)把针尖固定在一个点上

(3)把另一只脚旋转一周

3、画定长为2厘米的圆

师:同学们学会画圆了吧?想再画一个吗?不过这次老师有一个小小的要求喔,就是要使咱班同学画的圆一样大,怎么办?(圆规两脚间的距离定的一样长)

把静态的图片变为动态的操作,从学生的真实点出发,以练习作为贯穿用圆规画圆的教学过程的始终,并以观察、讨论、谈话等教学方法加以辅助,让学生在亲身经历知识的过程中掌握画圆的方法及注意点。

4、剪一剪、折一折

(1)认识圆心。师:把这些折痕都相交于圆中心的一点,我们把它叫做什么?用字母怎样表示?

小结:我们把圆中心的这一点叫做圆心,用字母“O”表示。请同学们用彩笔在圆上标出圆心。

(2)认识直径。师:我们任取一条折痕,观察它有什么特点?

小结:通过圆心,两端都在圆上,是一条线段。(揭示概念像这样通过圆心并两端都在圆上的线段就是圆的直径)用字母d表示,并在圆上标出。

(4)认识半径。师:画面中的线段有什么特点?

小结:一端在圆心上,另一端在圆上任意一点。揭示概念(连接圆心与圆上任意一点的线段叫做半径)用字母“r”表示。

(5)半径与直径的关系。师:我们认识了圆心、直径与半径,想想它们的特征及其关系?

a在剪成的圆里你能画多少条半径?它们的关系有什么关系?

b在剪成的圆里你能画多少条直径?

c直径与半径有什么关系?

在这里先让学生掌握画圆的方法,再让他们认识圆的各部分名称及其特征,既优化了教材的编排,又符合学生的认知结构,达到了教学目标的要求。

三、自练反馈,巩固练习

(1)填一填:

①同一圆里有条直径,有()条半径。

②在同一圆里,直径与半径的比是()。

③把一个圆规的两脚张开2厘米,画一个圆,它的直径是()。

(2)判一判,对的打“√”错的打“×”。

①两端都在圆上的线段叫圆的直径。()

②圆心到圆上任意一点的距离都相等。()

③直径是半径的2倍。()

(3)三题中选一题做:

①请你当裁判员:我们班举行迎“元旦”套圈比赛,参赛的同学应站成什么形状合理、又省时?请根据你的创意画出相应的示意图。

②请你当设计师:绿岛公园计划在圆形人工湖里建一个观影亭,请你拟定一个选择建设位置的方案并简要说明理由。

③体育老师想在操场上画一个10厘米的圆圈做游戏,可圆规太小,你能帮她想一个办法吗?

《课标》提倡:学生的数学学习内容应是现实的、有意义的、富有挑战性的,强调数学知识的来源与应用。这一环节将枯燥的练习,融入到当设计师、裁判员中来,促使学生以饱满的热情参与学习,又在活动中巩固所学的知识,在交流中开阔思维,培养学生的创新意识及实践能力。而且练习的设计富有层次性,体现了实践性、应用性、开放性。

四、回顾总结

师:在这节课里,我们学到了什么?我们生活中有些东西为什么要做成圆形的呢?感兴趣的话课后我们可以用今天所学的知识解释一下。

篇13:《圆的认识》教学设计

教学目标

1、认识圆,知道圆的各部分名称,知道同一圆内半径、直径的特征,初步学会用圆规画圆。

2、使学生掌握圆的特征,理解在同一个圆里直径与半径的关系,能根据这种关系求圆的直径或半径。

3、养学生的观察、分析、抽象、概括等思维能力和初步的空间观念,使学生初步学会用数学知识解释、解决生活中的实际问题。

教学重难点

掌握圆的特征,理解在同一个圆里直径和半径的关系,能根据这种关系求圆的直径或半径。

教学准备

多媒体一套。学生准备硬币等圆形物体若干;圆规一把、直尺一把、三角尺一副;小剪刀一把;红色、蓝色彩笔各一支。

教学过程

一、导入新课

二、探究

新知

三、全课总结

四、综合练习

五、延伸拓展

1、导入:玩过套圈游戏吗?如果现在有几位同学要进行套圈比赛,站成什么形状比较合理?

2、你见过圆吗?生活中你在哪儿见过?能说说吗?一直说下去能说完吗?的确圆是无处不在的,打开有关生活中圆的课件。问:同学们你们从中又看到了圆了吗?你会画圆吗?动手试一试,看谁想的方法多。

3、怎样可以画出一个圆?还有其它方法吗?

师根据学生口答边画圆边归纳方法:

(1)定长(2)定点(3)旋转

请大家用这个方法再画一个圆,并很快把它剪下来。

要进行套圈比赛的圆肯定比较大,用圆规画行吗?怎么办?

4、揭题:为什么站成圆形大家会觉得比较公平呢?

今天我们一起来学习圆的认识(板书课题),相信通过今天的学习大家一定会明白其中的道理。

(一)认识圆心

1、圆形画好了,游戏可以开始了吗?套圈用的瓶子要放在哪儿呢?

2、你能很快找出圆的中心吗?试一试,找出刚才剪下的圆的中心。谁先发现,谁就先上来介绍。

说明:圆的中心叫“圆心”,就是画圆时针固定的一点,用字母O表示。(师板书:圆心O)

(二)认识半径

1、圆画好了,瓶子放在圆心了,接下来怎样?(站人)站在哪里?(圆上)哪儿是“圆上”?指给你的同桌看一看,谁能上来指一指?

4、要站在圆上,随便哪一点都可以吗?为什么?怎样证明?(引导学生画一画、量一量)

说明:象这样,连接圆心到圆上任意一点的线段,叫做圆的半径,用字母r来表示。

3、认识特点:在同一个圆里,有( )条半径,它们的长度( )

4、想一想:(1)画圆时,圆规两脚间的距离其实就是圆的什么?针尖固定的一点呢?

5、在白纸上点两个点,以它们为圆心分别画一个半径2厘米的圆和一个半径1.5厘米的圆,比比哪个圆大些?想想圆的大小由什么决定?圆的位置由什么决定?

(三)认识直径及直径与半径的关系

1、刚才我们用折纸的方法确定圆心时,发现圆上有许多折痕。这些折痕叫什么?有什么特点?与半径有什么关系?请大家看看书、动动手,并在小组中说一说。

2、组织学生交流,教师画直径时有意两端不在圆上,让学生判断。

教师板书:(1)直径:d

(2)d=2r或R=1/2d

追问:直径肯定是半径的2倍吗?你是怎么知道的?看一下你手中圆的直径,会不会是黑板上圆的半径的2倍?你认为应该怎么说?(板书:在同一个圆里)

3、填表:P118 1

4、口答:画一个直径是5厘米的圆,圆规两脚间的距离应是( )

5、判断:P118 2

今天我们一起认识了什么?现在你能解释一下;为什么玩套圈游戏时大家站成圆形、瓶子放在圆心比较公平吗?

1、同学们想一起到篮球场玩套圈游戏,你会怎么安排?说说你的想法。

2、在这片篮球场上要画一个最大的圆,至少要准备一根多少米长的绳子?

站在这个圆上的同学中,离得最远的两个同学最多相距多少米?同意的请举手。追问:依据是什么?怎样证明“两端在圆上的线段中,直径最长?

利用发现的规律你能测出硬币等圆形物体的直径吗?

生活中哪些物体必须做成圆形的,为什么?

(课件出示两辆跑车)让学生展开讨论。

师:同学们,其实何尝是大自然对圆情有独钟?在我们人类生活中的每一个角落里,圆都扮演着重要角色,都成了美的使者和化身。(显示生活中圆的魅力)

篇14:《圆的认识》教学设计

课前与同学谈话省略

师:今天上课我们学什么?大声地说“学什么”

生齐:圆的认识

师:从哪里看到的?只给我看,

生指屏幕

师:屏幕上有,还有呢?

师:说,哪有?

师:没错,圆片,还有吗?

生:圆规

师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?

生齐:想

师出示一个信封,摸出一个圆片,师:是圆吗?

生:是

师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?

生齐:有

师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?

师:好,现在看谁的反应最快?

师从信封里摸出一个长方形

生:长方形

师:男孩的反应快,状态也不错。

师从信封里摸出一个正方形

生:正方形

师:还有一个图形

师从信封里摸出一个三角形

生:三角形

师:猜猜还有吗?

师从信封里摸出一个平行四边形

生:平行四边形

师从信封里摸出一个梯形

生:梯形

师:行了行了,小朋友们,都别你们猜到了。

教师课件演示各种图形,

师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?

生齐:没有

师:为什么?

生:因为圆是由曲线围成。

师:而其他图形呢?

生:都是由直线,哎!线段围成。

师:同意吗?

师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?

生:角

师:圆有角吗?

生:没有。

师:所以圆特别的?

生:光滑

师:说的真好

师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?

生齐:曲线

师:给它一个名称。

生:曲线图形

师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?

生齐:不难。

师:谁让你们聪明呢?还有难的。

师出师一个不规则图形

师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?

生齐:不会

师:为什么?

师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……

生齐:丰满

师:嘿!瞧,还有一个

师出示一个椭圆,

师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?

生:不会,

师:为什么?

师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……

生:瘦瘦的

师:瘦瘦的。圆呢?

教师出示圆形教具,转动。

师:怎么样?

生:一样

师:怎么看到的一样?

师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?

行,就你吧,近水楼台

师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?

生:看不见了

师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……

生:不是

师:可以吗?

生齐:可以

师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?

生:不能

师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?

生齐:ok!

师:好,伸出你最拿手的一只手,右边,准备好了吗?

生:准备好了

生1:不是.

师:对不对?

生:对.

生1:不是.

师:对不对?

生:对.

生1:更不是.

师:瞧,这更字用的多好.

生1:更不是.

师:小家伙厉害.

生1:不是.

生:对.

生1:是.

生:对.

师:掌声鼓励一下.

圆是曲线图形

可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,

画圆

张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,

生2:我认为是圆的半径变了.

师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?

生:不能.

师:除了这个地方改变以外,还有那些地方不能动?

生3:圆心改变了.

师:在画圆的过程中,针不能改变.

画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?

生:能.

师:先别动笔,边画边考虑.

圆和什么有关系?

生:圆心和半径.

师:我知道你们说的半径是什么意思?

谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察

生4(到黑板前画出远的半径)

师:对不对?

生:对.

师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?

生:圆心.

师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?

生:O.

师:请在你刚才画的圆上,标出圆心,写出字母O.

继续看这条线段,圆心的另一端在哪里?

生;圆上.

师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?

生:不是.

师:那有多少个?

生:无数个.

师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?

生;不知道.

师:不知道不怕,怕的是他人说这三个字:为什么?

我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.

生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.

师:因为平滑,所以有无数条.

生6:因为圆心到圆上的距离全部相等

生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.

师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?

生:随便

师:请问,在圆上有多少个这样随便的点?

生:无数.

师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?

生:为什么?

师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?

生:相等.

师:同意的请举手,我的三个字又来了.

生:为什么.

师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?

生:圆规.

师:还有尺寸,尺寸让你们用来干什么的?

生:量.

师:现在就动手量一量.

虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?

生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.

师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.

生:半径有无数条,长度都相等,都一样.

师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?

生:得出来了.

师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.

生:错.

师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?

生:也有无数条,直径都相等.

师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?

除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?

生9:因为我们知道所有的半径都相等.

师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?

生:有.直径是半径的二倍.

师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?

生:半径和直径都相等.

师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?

生:四条.

师:正五边形,有几条?

生:五条.

师:正六边形?

生:六条.

师:正八边形?

生:八条.

师:圆形?

生:无数条.

师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.

现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?

生:不一样.

师:半径几厘米的圆比较大?

生:5厘米.

半径几厘米的圆比较小?

生:3厘米.

师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?

生:半径.

师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?

生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.

师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?

生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.

师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?

生:不是.

师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?

生12:用一个碗扣在白纸上,描一下.

师:有可能,但不是.

生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.

师:人造圆规.

生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.

师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?

生15:少了宽度.

师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?

生:不是.

师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?

生:5厘米.

师:4厘米呢?

生:4厘米.

师:假如半径是3厘米,那么直径呢?

生:6厘米.

师:是不是我把圆扯开6厘米,就可以画圆了/

生;不是.要扯开3厘米.

师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?

生:没有.

师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?

生:近似一个圆,

师:想一想,刚才我们旋转的是什么呀?

生:中心.

师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?

生:圆.

师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏

课前与同学谈话省略

师:今天上课我们学什么?大声地说“学什么”

生齐:圆的认识

师:从哪里看到的?只给我看,

生指屏幕

师:屏幕上有,还有呢?

师:说,哪有?

师:没错,圆片,还有吗?

生:圆规

师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?

生齐:想

师出示一个信封,摸出一个圆片,师:是圆吗?

生:是

师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?

生齐:有

师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?

师:好,现在看谁的反应最快?

师从信封里摸出一个长方形

生:长方形

师:男孩的反应快,状态也不错。

师从信封里摸出一个正方形

生:正方形

师:还有一个图形

师从信封里摸出一个三角形

生:三角形

师:猜猜还有吗?

师从信封里摸出一个平行四边形

生:平行四边形

师从信封里摸出一个梯形

生:梯形

师:行了行了,小朋友们,都别你们猜到了。

教师课件演示各种图形,

师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?

生齐:没有

师:为什么?

生:因为圆是由曲线围成。

师:而其他图形呢?

生:都是由直线,哎!线段围成。

师:同意吗?

师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?

生:角

师:圆有角吗?

生:没有。

师:所以圆特别的?

生:光滑

师:说的真好

师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?

生齐:曲线

师:给它一个名称。

生:曲线图形

师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?

生齐:不难。

师:谁让你们聪明呢?还有难的。

师出师一个不规则图形

师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?

生齐:不会

师:为什么?

师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……

生齐:丰满

师:嘿!瞧,还有一个

师出示一个椭圆,

师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?

生:不会,

师:为什么?

师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……

生:瘦瘦的

师:瘦瘦的。圆呢?

教师出示圆形教具,转动。

师:怎么样?

生:一样

师:怎么看到的一样?

师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?

行,就你吧,近水楼台

师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?

生:看不见了

师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……

生:不是

师:可以吗?

生齐:可以

师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?

生:不能

师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?

生齐:ok!

师:好,伸出你最拿手的一只手,右边,准备好了吗?

生:准备好了

生1:不是.

师:对不对?

生:对.

生1:不是.

师:对不对?

生:对.

生1:更不是.

师:瞧,这更字用的多好.

生1:更不是.

师:小家伙厉害.

生1:不是.

生:对.

生1:是.

生:对.

师:掌声鼓励一下.

圆是曲线图形

可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,

画圆

张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,

生2:我认为是圆的半径变了.

师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?

生:不能.

师:除了这个地方改变以外,还有那些地方不能动?

生3:圆心改变了.

师:在画圆的过程中,针不能改变.

画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?

生:能.

师:先别动笔,边画边考虑.

圆和什么有关系?

生:圆心和半径.

师:我知道你们说的半径是什么意思?

谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察

生4(到黑板前画出远的半径)

师:对不对?

生:对.

师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?

生:圆心.

师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?

生:O.

师:请在你刚才画的圆上,标出圆心,写出字母O.

继续看这条线段,圆心的另一端在哪里?

生;圆上.

师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?

生:不是.

师:那有多少个?

生:无数个.

师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?

生;不知道.

师:不知道不怕,怕的是他人说这三个字:为什么?

我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.

生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.

师:因为平滑,所以有无数条.

生6:因为圆心到圆上的距离全部相等

生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.

师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?

生:随便

师:请问,在圆上有多少个这样随便的点?

生:无数.

师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?

生:为什么?

师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?

生:相等.

师:同意的请举手,我的三个字又来了.

生:为什么.

师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?

生:圆规.

师:还有尺寸,尺寸让你们用来干什么的?

生:量.

师:现在就动手量一量.

虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?

生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.

师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.

生:半径有无数条,长度都相等,都一样.

师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?

生:得出来了.

师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.

生:错.

师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?

生:也有无数条,直径都相等.

师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?

除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?

生9:因为我们知道所有的半径都相等.

师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?

生:有.直径是半径的二倍.

师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?

生:半径和直径都相等.

师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?

生:四条.

师:正五边形,有几条?

生:五条.

师:正六边形?

生:六条.

师:正八边形?

生:八条.

师:圆形?

生:无数条.

师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.

现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?

生:不一样.

师:半径几厘米的圆比较大?

生:5厘米.

半径几厘米的圆比较小?

生:3厘米.

师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?

生:半径.

师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?

生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.

师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?

生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.

师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?

生:不是.

师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?

生12:用一个碗扣在白纸上,描一下.

师:有可能,但不是.

生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.

师:人造圆规.

生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.

师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,

正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?

生15:少了宽度.

师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?

生:不是.

师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?

生:5厘米.

师:4厘米呢?

生:4厘米.

师:假如半径是3厘米,那么直径呢?

生:6厘米.

师:是不是我把圆扯开6厘米,就可以画圆了/

生;不是.要扯开3厘米.

师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?

生:没有.

师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?

生:近似一个圆,

师:想一想,刚才我们旋转的是什么呀?

生:中心.

师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?

生:圆.

师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏

圆的认识人教版教学设计

圆的认识教学设计优秀

圆的认识教学设计人教版版

圆的认识教学反思

《圆的认识》数学教学设计与反思

圆的教学设计

圆的认识教学随笔反思

圆的面积教学设计

圆的周长教学设计

梦圆飞天教学设计

圆的认识教学设计(通用14篇)

欢迎下载DOC格式的圆的认识教学设计,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档