“我平时很帅”通过精心收集,向本站投稿了5篇二年级数学知识点下册笔记,以下是小编为大家准备的二年级数学知识点下册笔记,仅供参考,欢迎大家阅读。
篇1:二年级数学知识点下册笔记
小学二年级数学重要知识点归纳
1、7的乘法口诀
(1)结合具体情境,探索、编制7的乘法口诀,学会从已有的知识出发探索新知识的方法。
(2)掌握7的乘法口诀,并能用它解决一些简单的实际问题,感受数学的趣味性和价值性。
2、“倍”的意义及应用
(1)结合具体情境体会“倍”的意义。
(2)利用操作和图示帮助学生理解两个数量之间的倍数关系,并探索“求一个数的几倍是多少”的计算方法。
(3)能利用乘法解决“求一个数的几倍是多少”的实际问题。
(4)学会运用数学思维去观察、发现、解决生活中的数学问题,发展应用数学的意识和解决问题的能力。
3、8的乘法口诀
(1)结合解决问题的过程,探索、编制并掌握8的乘法口诀。
(2)会用学过的乘法口诀计算表内乘法,并能解决简单的实际问题。
4、9的乘法口诀
(1)结合解决问题的过程,探索、编制并掌握9的乘法口诀。
(2)会用学过的乘法口诀计算表内乘法,并能解决简单的实际问题。
实践活动:看一看、摆一摆
(1)利用主题图复习第3、4、5、6单元的相关知识(观察物体、角的认识、表内乘法)。
(2)培养学生的观察能力、动手操作能力和解决实际问题的能力。
(3)让学生体会数学的趣味性和数学的价值性,提高学生学习数学的兴趣。
小学二年级数学长度单位知识点
【概念】
米:国际单位制中长度的标准单位是“米”,用符号“m”表示。
分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。
厘米:长度单位,简写符号为:cm。
毫米:英文缩写为mm
(1厘米=10毫米=0。1分米=0。01米=0。00001千米)
【认识米】
(1)米是常用的长度单位。
(2)测量较长物体的长度时,用“米”作单位。
(3)米用字母“m”表示。
(4)1米=100厘米。
【认识厘米】
(1)厘米是常用的长度单位。
(2)测量较短物体的长度时,用“厘米”作单位。
(3)厘米用字母“cm”表示。
(4)1米=100厘米。
【认识线段】
线段的特征:
①线段是直的;②线段有两个端点;③线段可以测量出长度。
【画线段】
画线段的方法:
从尺子的“0”刻度开始画起,需要画几厘米长的线段就画到尺子的几厘米处。(没有直接给出画几厘米,要先算再画最后标记)比如:画比5厘米短2厘米的线段。
小学二年级下册数学除法知识点
1、表内除法的知识点:
(1)理解平均分的意义。会根据表内乘法,计算简单的除法。
(2)会用乘法口诀求商。
(3)根据乘除法的意义解决一些简单的乘除法应用题。
(4)被除数÷除数=商被除数÷商=除数除数×商=被除数
2、除法:是四则运算之一,已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
3、除法的性质
一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)
4、除法公式
(1)被除数÷除数=商
(2)被除数÷商=除数
(3)除数×商=被除数
5、被除数
除法运算中被另一个数所除的数,如24÷8=3,其中24是被除数
6、除数:在除法算式中,除号后面的数叫做除数。
例:8÷2=4则2为除数。8为被除数。除数不能为0,否则没有意义。
7、商:在一个除法算式里,被除数÷除数=商+余数,进而推导得出:商×除数+余数=被除数。
8、完全商
当数a除以数b(非0)能除得尽时,这时的商叫完全商。如:9÷3=3,3就是完全商。
9、不完全商
如果数a除以数b(非零)除不尽,得到的商就是不完全商。如:10÷3=3……1,这里的3就是不完全商。
10、被除数和商的关系
被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍。
除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。
篇2:高二数学知识点下册笔记
高二数学重点知识点总结
一、映射与函数:
(1)映射的概念:
(2)一一映射:
(3)函数的概念:
二、函数的三要素:
相同函数的判断方法:
①对应法则;
②定义域(两点必须同时具备)
(1)函数解析式的求法:
①定义法(拼凑):
②换元法:
③待定系数法:
④赋值法:
(2)函数定义域的求法:
①含参问题的定义域要分类讨论;
②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
(3)函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;
②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
高二数学重要知识点整理
不等式的证明
(1)不等式证明的依据
(2)不等式的性质
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)
2.不等式的证明方法
(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.
用比较法证明不等式的步骤是:作差——变形——判断符号.
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.
(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.
证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.
高二年级数学必修二知识点总结
导数是微积分中的`重要基础概念。当函数=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δ与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
设函数=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δ=f(x0+Δx)-f(x0);如果Δ与Δx之比当Δx→0时极限存在,则称函数=f(x)在点x0处可导,并称这个极限为函数=f(x)在点x0处的导数记为f'(x0),也记作'│x=x0或d/dx│x=x0
篇3:二年级数学下册知识点
观察物体知识点[从正面、侧面、上面看。]
1、从正面看一个立体图形,看到的是长方形,这个立体图形可能是长方体,还可能是圆柱。
2、看到的立体图形的一个面是正方形,这个立体图形可能是正方体,还可能是长方体。
3、看到的立体图形的一个面圆形,这个立体图形可能是球,还可能是圆柱,圆锥。
4、面对面看到的物体形状一样,但方向相反。
5、观察组合物体的表面时,与物体的高矮和是否对齐无关。
6、练习
(1)在不同的位置观察同一个物体,看到的形状一定不同。(×)(球)
(2)在同一位置观察同一个物体,最多只能看到3个面。(√)
(3)从正面看一个正方体,看到一个长方形。(×)
(4)小明从一个物体的上面看到一个正方形,那么这个物体一定是正方形。(×)
(5)从一个长方体的任何一面观察,都不可能看到正方形。(×)
(6)从不同的位置看同一个物体,看到的形状(不一定)相同。
(7)从正面看一个正方体,只能看到一个(正方)形。
(8)从一个物体的上面看到一个正方形,它是一个(长方体或正方体)。
(9)从一个长方体的任何一个面看,不可能看到(圆)。
篇4:二年级数学下册知识点
知识要点归纳:
1、常用的长度单位:米、厘米。
2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。
3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几, 这 个物体的长度就是几厘米。
4、米和厘米的关系:1米=100厘米 100厘米=1米
5、线段
⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。
⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来。
⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。
6、填上合适的长度单位。
小明身高1(米)30(厘米) 练习本宽13(厘米) 铅笔长17(厘米)
黑板长2(米) 图钉长1(厘米) 一张床长2(米)
一口井深3(米) 学校进行100(米)赛跑 教学楼高25(米)
宝宝身高80(厘米) 跳绳长2(米) 一棵树高3(米)
一把钥匙长5(厘米) 一个文具盒长24(厘米) 讲台高90(厘米)
门高2(米) 教室长12(米) 筷子长20(厘米)
数学学习方法技巧
复习的方法
复习就是把学过的数学知识再进行学习,以达到深入理解、融会贯通、精炼概括、牢固掌握的目的。复习应与听课紧密衔接、边阅读教材边回忆听课内容或查看课堂笔记,及时解决存在的知识缺陷与疑问。对学习的内容务求弄懂,切实理解掌握。如果有的问题经过较长时间的思索,还得不到解决,则可与同学商讨或请老师解决。
复习还要在理解教材的基础上,沟通知识间的内在联系,找出其重点、关键,然后提炼概括,组成一个知识系统,从而形成或发展扩大数学认知结构。
复习是对知识进行深化、精炼和概括的过程,它需要通过手和脑积极主动地开展活动才能达到,因此,在这个过程中,提供了发展和提高能力的极好机会。数学的复习,不能仅停留在把已学的知识温习记忆一遍的要求上,而要去努力思考新知识是怎样产生的,是如何展开或得到证明的,其实质是什么,怎样应用它等。
作业的方法
数学学习往往是通过做作业,以达到对知识的巩固、加深理解和学会运用,从而形成技能技巧,以及发展智力与数学能力。由于作业是在复习的基础上独立完成的,能检查出对所学数学知识的掌握程度,能考查出能力的水平,所以它对于发现存在的问题,困难,或做错的题目较多时,往往标志着知识的理解与掌握上存在缺陷或问题,应引起警觉,需及早查明原因,予以解决。
通常,数学作业表现为解题,解题要运用所学的知识和方法。因此,在做作业前需要先复习,在基本理解与掌握所学教材的基础上进行,否则事倍功半,花费了时间,得不到应有的效果。
解题,要按一定的程序、步骤进行。首先,要弄清题意,认真读题,仔细理解题意。如哪些是已知的数据、条件,哪些是未知数、结论,题中涉及到哪些运算,它们相互之间是怎样联系着的,能否用图表示出来,等等,要详加推敲,彻底弄清。
其次,在弄清题意的基础上,探索解题的途径,找出已知与未知,条件与结论之间的联系。回忆与之有关的知识方法,学过的例题、解过的题目等,并从形式到内容,从已知数、条件到未知数、结论,考虑能否利用它们的结果或方法,可否引进适当辅助元素后加以利用是否能找出与该题有关的一个特殊问题或一个类似问题,考察解决它们对当前问题有什么启发;能否把分开,一部分一部分加以考察或变更,再重新组合,以达到所求结果,等等。这就是说,在探索解题过程中,需要运用联想、比较、引入辅助元素、类比、特殊化、一般化、分析、综合等一系列方法,并从解题中学会这一系列探索的方法。
第三,根据探索得到的解题方案,按照所要求的书写格式和规范,把解的过程叙述出来,并力求简单、明白、完整。最后还要对解题进行回顾,检查解答是否正确无误,每步推理或运算是否立论有据,答案是否说尽无遗;思考一下解题方法可否改进或有否新的解法,该题结果能否推广(事实上中学课本中不少题目是可以推广的)等,并小结一下解题的经验,进而发展与完善解题的思想方法,总结出带有规律性的东西来。
篇5:二年级数学知识点下册
二年级下册知识点(数学)
1、用画正字的方法收集数据。
2、用统计图表来表示数据的情况。
3、根据统计图表可以做出一些判断。
4、数据收集——-整理——-分析表格。
第二单元表内除法(一)
一、平均分
1、平均分的含义:把一些物品分成几份,每份分得同样多,叫平均分。
2、平均分的方法:
(1)把一些物品按指定的份数进行平均分时,可以一个一个的分,也可以几个几个的分,直到分完为止。
(2)把一些物品按每几个一份平均分,分时可以想:这个数可以分成几个这样的一份。
二、除法
1、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。
2、除法算式的读法:通常按照从前往后顺序读,读作除以,=读作等于,其他读法不变。
3、除法算式各部分的名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。
三、用2~6的乘法口诀求商
1、求商的方法:
(1)用平均分的方法求商。
(2)用乘法算式求商。
(3)用乘法口诀求商。
2、用乘法口诀求商时,想除数和几相乘的被除数。
四、解决问题
1、解决有关平均分问题的方法:
总数每份数=份数、总数份数=每份数、被除数=商除数、
被除数=商除数+余数、除数=被除数商、因数因数=积、
一个因数=积另一个因数
2、用乘法和除法两步计算解决实际问题的'方法:
(1)所求问题要求求出总数,用乘法计算;
(2)所求问题要求求出份数或每份数,用除法计算。
二年级数学《万以内数的认识》知识点
一、1000以内数的认识
1、10个一百就是一千。
2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。
3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。
4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。
二、10000以内数的认识
1、10个一千是一万。
2、万以内数的读法和写法与1000以内的数读法和写法相同。
3、最小两位数是10,的两位数是99;最小三位数是100,的三位数是999;最小四位数是1000,的四位数是9999;最小的五位数是10000,的五位数是99999。
三、整百、整千数加减法
1、整百、整千加减法的计算方法。
(1)把整百、整千数看成几个百,几个千,然后相加减。
(2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。
2、估算
把数看做它的近似数再计算。
二年级的数学学习方法
一、正确的小学数学学习方法——抓住课堂
理科学习重在平日功夫,不适于突击复习。平日学习最重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。
二、高质量完成作业
所谓高质量是指高正确率和高速度。写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。另外对于老师布置的思考题,也要认真完成。如果不会决不能轻易放弃,要发扬“钉子”精神,一有空就静心思考,灵感总是突然来到你身边的。最重要的是,这是一次挑战自我的机会小学数学学习方法有哪些小学数学学习方法有哪些。成功会带来自信,而自信对于学习理科十分重要;即使失败,这道题也会给你留下深刻的印象。
三、勤思考,多提问
首先对于老师给出的规律、定理,不仅要知“其然”还要“知其所以然”,正确的小学数学学习方法还有对不懂的内容,做到刨根问底,这便是理解的途径。其次,学习任何学科都应抱着怀疑的态度,尤其是理科。对于老师的讲解,课本的内容,有疑问应尽管提出,与老师讨论。总之,思考、提问是清除学习隐患的途径
四、总结比较,理清思绪
(1)知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。
(2)题目的总结比较。同学们可以建立自己的题库。我就有两本题集。一本是错题,一本是精题。对于平时作业,考试出现的错题,有选择地记下来,并用红笔在一侧批注注意事项,考试前只需翻看红笔写的内容即可。我还把见到的一些极其巧妙或难度高的题记下来,也用红笔批注此题所用方法和思想小学数学学习方法有哪些小学辅导。时间长了,自己就可总结出一些类型的解题规律,也用红笔记下这些规律。最终它们会成为你宝贵的财富,对你的数学学习有极大的帮助。
五、有选择地做课外练习
课余时间对我们中学生来说是十分珍贵的,所以在做课外练习时要少而精,只要每天做两三道题,天长日久,你的思路就会开阔许多。
正确的小学数学学习方法固然重要,但坚持不懈,精益求精的精神更为重要。只要你刻苦努力努力,就一定可以学好数学。相信自己,数学会使你智慧的光芒更加耀眼夺目!
二年级数学知识点下册笔记(推荐5篇)




