相遇问题小学五年级数学教学方案

时间:2023-08-25 03:35:50 作者:Beatrixxxx 综合材料 收藏本文 下载本文

【导语】“Beatrixxxx”通过精心收集,向本站投稿了14篇相遇问题小学五年级数学教学方案,下面是小编为大家整理后的相遇问题小学五年级数学教学方案,如果喜欢可以分享给身边的朋友喔!

篇1:小学数学针对相遇问题教学方案

小学数学针对相遇问题教学方案

一、教材分析:

相遇问题是和人们生活、生产息息相关的数学知识。学生在前几册教材中已经学习了有关速度、时间、路程之间数量关系的应用题,以前研究的是关于一个物体运动的情况,而本节课要研究的是两个物体的运动情况,要学好两物体相向运动的相遇问题,关键是弄清每经过一个单位时间,两物体之间的距离变化。从教材的编排来看,首先出现了一道准备题,接着列表分析每经过1分钟、2分钟、3分钟后,两个物体之间的距离变化,然后再出示例题解答。针对教材内容和学情,应把本节课的教学突破点放在学生对应用题中关键词语的理解上,对行动的体验上。

二、设计理念:

本着以学生的发展为本教育理念,在设计本课教学时,注重了学生的参与,注重了学生思维的开放,注重了学生个性的发展,使教学跟随学生的.学习过程,紧贴学生的学习需求,让学生学有所得,学有所获。

本节课的教学目标:

1、学会分析相遇问题的数量关系。

2、掌握相遇问题应用题解题思路和解答方法,提高解题能力。

3、培养学生积极动脑,刻苦钻研的学习精神。

三、教法学法:

为了更好地突出重点,突破难点,本节课我准备采用如下教法:1、复习铺垫法。2、直观演示法。3、分组讨论法。4、启发讲解法。5、练习巩固法。这样通过多种教法的交叉进行,相信一定会取得理想的教学效果。

在学法上引导学生通过观察、思考、讨论的方法掌握知识,学会知识的迁移、类推。

四、重点难点:

教学重点:理解相遇求路程应用题的数量关系。

教学难点:掌握相遇求路程应用题的结构特征。

五、教具学具:实物投影

六、教学流程:

(师: 同学们,在未学新课之前,老师先出一道题考考大家,比一比看谁的基础知识掌握的最好。)

(一)、复习导入

1、复习

张华每分钟走60米,走了3分钟,一共走了多少米?(投影出示)

(1)、口头列式解答。

(2)、这道题的数量关系式是什么?

(师:这道题是我们以前研究的关于一个人或一个物体运动时,它的速度、时间和路程之间的关系。假如是两个人或两个物体在运动,那么它们的速度、时间和路程之间又是怎样的关系呢?我们看准备题。)

【设计意图:在原有的数学知识的基础上展示教学,通过简单的生活中的数学问题,再次理解速度、时间、路程之间的关系,使学生再次感悟行程问题。】

2、准备

张华家距李诚家390米,两人同时从家里出发,向对方走去,张华每分走60米,李诚每分走70米。(投影出示)

(1)、读后回答 a:这里讲的是几个人在运动?

b:他们是怎样运动的?

c:做手势理解同时出发,相对或相向而行。

(师:请大家伸出两只手,把两个食指比作两个人,让他们同时出发,向对方走去,准备好,听老师口令出发。看图,两人一起出发叫同时,不能一先一后。对面往一起走,叫相向而行或相对而行。那么两人走的时间和路程变化情况怎样呢?我们先填表,再理解。)

(2)、填表并汇报填表结果。

(3)、观察表后思考回答:

a、每经过1分钟,两人所走路程和有什么变化?与此相反,两人之间的距离又有什么变化?

b、当出发3分钟后,两人之间的距离变成了多少?这说明了什么?

c、相遇时,两人所走的路程和与两家的距离有什么关系?

(师:出发3分钟后,两人之间的距离变成了0,这表示两人相遇了,相遇时,两人所走的路程和就是两家的距离。像准备题这样的应用题,我们就叫它相遇问题,相遇问题如何解答呢?今天我们就学习其中的一种相遇求路程的应用题。)

板书课题

【设计意图:这个环节的设计,学生通过手势模拟表演,理解同时出发,相对或相向而行的含义,为学习新知打下了基础,不仅使学生对数学知识和概念有了更深刻的理解,更重要的是使学生学会了思考,促进了学生情感态度的发展。】

(二)、探究新知

1、学习例题

小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米,经过4分,两人在校门口相遇,他们两家相距多少米?

(1)、读题。

(2)、分析已知条件和所求问题,完成线段图。

(师:小强经过几分钟到校门口?这段距离应平均分成几份?其中的一份表示什么?小丽经过几分钟到校门口?这段距离应平均分成几份?其中的一份表示什么?求什么?这道题如何解答呢?老师准备让同学们发挥自己的聪明才智,根据思考题,通过分组讨论的形式找出解决办法。)

(3)、出示思考题,分组讨论学习。

思考题

A、小强走的路程和小丽走的路程与所求的两家距离有什么关系?为什么?

B、小强走了多少米?小丽走了多少米?

C、怎样列综合算式求出两家距离?

D、这道题还有其它解法吗?

(4)、汇报讨论结果

学生汇报,教师板书。

654+704 (65+70)4

(5)、比较:两种解法哪种方法简便?为什么?

(6)、小结:今后我们在解答这类应用题时,可以采用第二种方法,这样计算比较简便。

2、看书质疑

【设计意图:重点突出了学生的主体地位,给学生创造了一个充分展示自我的空间,让学生通过独立思考、分组讨论、分析比较、质疑问难找出解决问题的不同方法,满足了不同学生的学习需要,在这一过程中也促进了学生各方面能力的发展。】

(三)、巩固练习

第一组

1、根据线段图口答。

2、动笔做一做。

志明和小龙同时从两地对面走来,志明每分走54米,小龙每分走46米,经过5分两人相遇,两地相距多少米?

第二组

1、看图列算式。

2、根据题意选择正确算式。

3、根据算式补充条件和问题。

4、看图编一道相遇求路程的问题。

验收题

两只轮船同时从上海和武汉相对开出。从武汉开出的轮船每小时行23千米,从上海开出的轮船每小时行17千米,经过20小时两轮船相遇。上海到武汉的航路长多少千米?

思考题

小红和小刚同时从两家出发,小红每分钟走38米,小刚每分钟走45米,经过3分钟两人相距100米,小红和小刚家相距多少米?

【设计意图: 练习的设计由浅入深,有坡度多层次,先表述相遇问题的解题思路,强化学生口头表达能力,促使知识内化,然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移,最后解决已知条件有变化的相遇问题,突破固定的思维框架,形成自己的认知结构。】

篇2:小学五年级数学《相遇问题》教案

教学内容:人教版小学数学第九册《相遇问题》第58准备题、例5及做一做,并完成练习十三1-3题。

教学目的:

1、使学生理解相遇问题的意义及特点。

2、学会分析相遇问题的数量关系,掌握相遇求路程的应用题的解答方法。

3、明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。

教学重点:理解相遇问题的数量关系,建立解题思路,掌握解题方法。

教学难点:理解相遇问题中速度和、相遇时间和总路程之间的关系。

教学准备:计算机辅助教学软件一套。

教学过程:

一、动画引入,揭示课题1、通过电脑演示了解相遇问题中两个物体的运动情况。

电脑演示一声枪响后,两人相向而行,相遇前停下来。提问:一声枪响后,你看到了什么?注意他们的出发时间和运动方向是怎样的?(板书:同时出发、相向而行)如果他们继续走下去,结果可能会怎样?(相遇、不相遇就停下来、相遇以后相交而过)结果究竟怎么样呢?请同学们继续观察。电脑演示两人相遇。(板书:结果相遇)谁能完整的说说他们是怎样运动的?[评析:运用多媒体所具有的声、光、色、形的特点,创设动态情境,抓住“相遇问题”的关键,让学生形象地理解“同时出发”、“相向而行” 、“结果相遇”这几个相遇问题的几个基本要素,为例题教学扫除了文字障碍。并且通过生动形象卡通画导入新课,大大激发了学生学习的兴趣。]

2、揭示课题:

像这样,两人或两个物体同时从两地出发,相向而行,最后相遇,我们称这样的问题为相遇问题。(板书课题:相遇问题)

过去我们学过一个物体运动的行程问题。你们还记得一个物体运动时,速度、时间、路程三者之间有什么样的关系?(板书:速度×时间=路程)

今天研究的相遇问题中,运动物体变成了两个,他们的速度、时间和路程三者之间又有什么样的关系呢?今天咱们就一块儿来研究这个问题。二、引导探究,教学新知

(一)教学准备题。

1、电脑配音显示准备题。我是张华,我的速度是每分60米。我是李诚,我的速度是每分70米。张华家距李诚家390米,他俩同时从家里出发,向对方走去。下面是他们两人走的时间和路程的变化情况表。请同学们先看动画,再完成下表,然后讨论以下两个问题。走的时间张华走的路程李诚走的路程两人所走的路程和现在两人的距离 1分60米79米 2分 3分讨论:①出发3分后,两人之间的距离变成了多少?说明了什么?

②相遇时,两人所走路程的和与两家的距离有什么关系?

2、观察填表,讨论分析。

(1)学生填写表格,并讨论屏幕上的两个问题。

(2)全班校对答案。提问:2分时两人所走路程的和260米你是怎样计算的?(①120+140=260米②30×2=260米)

(3)学生回答讨论的两个问题。 小结:刚才我们通过自己观察、填写、讨论,发现了两个物体同时出发、相向而行,相遇时,两人所走路程的和恰好就是两家的距离。下面我们就利用这个规律自己来解决一些实际问题。

[评析:在准备题教学中,教师放手让学生自己观察、填写、讨论,不但使学生深刻理解了两人所走的路程与两家距离的关系,为研究解题方法作了充分的准备,而且充分体现了学生的自主学习精神。]

(二)教学例5。

1、电脑出示例5及线段图:小强和小丽同时从自己家里走向学校。小强每分走65米,小丽每分走70米,经过4分。两人在校门口相遇。他们两家相距多少米?

2、学生尝试解答,两生上台板书。 65×4 + 70×4(65 + 70)×4=260 + 280 =135×4 =540(米)=540(米)3、学生自己分析解题思路:

篇3:小学五年级数学说课稿《相遇问题》

人教版小学五年级数学说课稿《相遇问题》

一、说教材

1、教学内容:

本课题是“九年义务教育(人教版)”六年制小学数学第九册第二单元“相遇问题”第一课时的内容,

2、教材简析:

相遇问题是行程应用题的一部分。这部分内容是在学生掌握一个物体运动的有关速度、时间 和路程之间数量关系的基础上进行的。主要是研究两个物体在运动中速度、时间和路程之间的数量关系。这部分内容又是今后学习较复杂的行程问题及工程问题的基础。例如数学书58页-8题(长沙到广州的铁路长699千米,一列货车从长沙开往广州,每小实行69千米。这列货车开除后1小时,一列客车从广州开往长沙,每小时行71千米,再经过几小时两车相遇?)、58页-11题。同时,由于相遇问题中术语较多,如相向、相背、同时、相距,并且速度和的概念学生不易理解,此类题目的发展变化也比较多,因此也是应用题教学的难点。

3、教学目标:

(1)通过创设情境帮助学生理解有关相遇问题的术语:同时、两地、相向、速度和等,形成两个物体运动的空间观念。

(2)经历解决实际问题的过程,引导学生学会分析相遇问题中速度、时间、路程这三种量之间的关系,掌握相遇问题求路程的解题方法。

(3)经历比较、优化等学习过程,发展数学思维能力。感受数学问题的探索性,体验数学与生活的紧密联系。

(4)培养学生细致的审题习惯,提高学生分析问题和解决问题的能力。

二、学生分析:

这个年龄段的学生对空间感缺乏认知能力,所以首要解决的就是一些术语的理解,行程问题在生活中我们常遇到,却很少用专业的词语去表述所以我特意设置了真实场景、电脑演示、文具模拟帮助学生建立对于物体位置移动的空间想象感。

我班的大部分学生都属于龙洞本村的孩子,平时的家庭辅导仅仅限于检查作业是否完成。虽然三、四年级就开始对应用题的数量关系进行训练,不过一小半的学生仍然感到吃力,对于三步应用题经常会做却不会写数量关系,讲不清楚道理,学生的语言表达能力是比较差的,比较习惯寻找题目特点,套用相对应的方法。一部分学生能够利用分析法从具体问题出发,找到解题的方法,对于一部分学困生,抽象概括出性 速度和Χ时间=路程 这个公式是比较困难的,所以从复习、探讨问题到解决问题我的步子都比较小,多让学生讲解算式的含义,帮助学困生记忆、理解方法。

基于学生情况,我选择了例2“两个工程队合开一段地铁。同时各从一端开凿。甲队的进度12米/天,乙队的进度14米/天,经15天打通。这段地铁长多少米?”对“进度”是多角度的,理解差的可以看作是前进的速度,也可以看作工作效率。

练习的.设置从基础题到提高题有一定的梯度,尽量照顾每一层次的学生。

三、说教法

教法:通过情景教学,创设最佳学习情景,充分发挥多媒体计算机辅助教学的优势,紧扣教学内容,科学直观地演示两个物体相对运动的情景,这样把数学问题转化成动态的数学模型展现出来,

让学生自主提出问题探究,激发学生兴趣,激活思维,逐层推进,分散难点,增强感性认识,建立表象、抽象规律。

四、教学流程:

教学重点:掌握相遇问题求路程的算理和解答方法。

教学难点:正确理解“速度和”的含义。

教具准备:课件

学具准备:两块橡皮(或两只笔)

(一)、创设情景、逐步感知

帮助学生理解相遇、相向、同时

师请两位学生从教室两头相向走—相遇—相背走到头,让学生围绕走的方向、走的结果、走的路程几个问题进行观察。两个学生走走停停,学生可以观察不同时间里的运动结果,走了的路程、还有多少路程。这段活动需要一些时间,但对整体认识行程问题有好处。

考虑学生的基础、教学目标,我对教材进行了重组。将准备题和例1合并,并为以后的工程问题做铺垫,特意设置了例2,修地铁。首先学生通过情境演示(两学生表演相遇)理解“相遇”、“相向”、“同时”,对相遇问题建立一个初步的直观的认识;再通过电脑课件的演示,加深“速度和”的理解,知道随着时间的变化,物体的位置将发生移动;最后学生可以利用简单的学具来模拟相遇过程。通过这3个过程在学生脑海中逐步建构物体移动的空间模型。

(二)、探究问题、加深理解

(大屏幕出示:小强和小丽同时从甲乙两地相对走来,小强每分钟走100米,小丽每分钟走50米,4分钟后两人相遇。)

1、根据这些信息,你想提点什么数学问题吗?

问题1小强和小丽一共走了多少米?

问题2:小强走了多少米?小丽走了多少米?

问题3:小强比小丽多走了多少米?

2、通过问题2复习: 速度×时间=路程

3、这节课重点来研究:小强和小丽一共走了多少米?理解 相距

(两地共有多少米? 甲乙两地有多少米? 甲乙两地相距多少米?)

4、生上来板书:(1)100×4+50×4 (2)(100+50)×4

5、反馈:板书算式。同学们对他们的解法有什么疑问就提出来?(每一步各表示什么?)

6、小结:(100+50)表示他们两个人1分钟走的米数,他们走了4分钟,就是4个150米。(课件演示)

速度和×时间=路程 (师板书数量关系,齐读)

7、再实践,同桌合作,用橡皮代替两人,演示相遇的过程。

学生可能会有个难点问题:为什么不列成(100+50)×(4+4),如何处理,体现突破难点?

可以用课件演示大家走路花的时间是共同的4分钟,或者可以用这个例子来解决:上数学课,你一节课多少分钟?他一节课多少分钟?他两这节课多少分钟?那我们大家这节课上了多少分钟?

根据条件学生提出几种问题,这些问题也很好的将学过的知识过渡到要学的新知识;通过电脑演示分析过程,学生很容易知道“两人每分钟共行多少米?”,“经过4分,两人相遇”的条件,形象地揭示速度和、相遇时间、总路程之间的关系,加深学生对第二种解法的理解,也验证了学生的第二种解题思路,从而顺利突破了教学难点。

篇4:小学五年级数学《相遇问题》说课稿

人教版小学五年级数学《相遇问题》说课稿

一、说教材

1、教学内容:

本课题是“九年义务教育(人教版)”六年制小学数学第九册第二单元“相遇问题”第一课时的内容。

2、教材简析:

相遇问题是行程应用题的一部分。这部分内容是在学生掌握一个物体运动的有关速度、时间 和路程之间数量关系的基础上进行的。主要是研究两个物体在运动中速度、时间和路程之间的数量关系。这部分内容又是今后学习较复杂的行程问题及工程问题的基础。例如数学书58页-8题(长沙到广州的铁路长699千米,一列货车从长沙开往广州,每小实行69千米。这列货车开除后1小时,一列客车从广州开往长沙,每小时行71千米,再经过几小时两车相遇?)、58页-11题。同时,由于相遇问题中术语较多,如相向、相背、同时、相距,并且速度和的概念学生不易理解,此类题目的发展变化也比较多,因此也是应用题教学的难点。

3、教学目标:

(1)通过创设情境帮助学生理解有关相遇问题的术语:同时、两地、相向、速度和等,形成两个物体运动的空间观念。

(2)经历解决实际问题的过程,引导学生学会分析相遇问题中速度、时间、路程这三种量之间的关系,掌握相遇问题求路程的解题方法。

(3)经历比较、优化等学习过程,发展数学思维能力。感受数学问题的探索性,体验数学与生活的紧密联系。

(4)培养学生细致的审题习惯,提高学生分析问题和解决问题的能力。

二、学生分析:

这个年龄段的学生对空间感缺乏认知能力,所以首要解决的就是一些术语的理解,行程问题在生活中我们常遇到,却很少用专业的词语去表述所以我特意设置了真实场景、电脑演示、文具模拟帮助学生建立对于物体位置移动的空间想象感。

我班的大部分学生都属于龙洞本村的孩子,平时的家庭辅导仅仅限于检查作业是否完成。虽然三、四年级就开始对应用题的数量关系进行训练,不过一小半的学生仍然感到吃力,对于三步应用题经常会做却不会写数量关系,讲不清楚道理,学生的语言表达能力是比较差的',比较习惯寻找题目特点,套用相对应的方法。一部分学生能够利用分析法从具体问题出发,找到解题的方法,对于一部分学困生,抽象概括出性 速度和Χ时间=路程 这个公式是比较困难的,所以从复习、探讨问题到解决问题我的步子都比较小,多让学生讲解算式的含义,帮助学困生记忆、理解方法。

基于学生情况,我选择了例2“两个工程队合开一段地铁。同时各从一端开凿。甲队的进度12米/天,乙队的进度14米/天,经15天打通。这段地铁长多少米?”对“进度”是多角度的,理解差的可以看作是前进的速度,也可以看作工作效率。

练习的设置从基础题到提高题有一定的梯度,尽量照顾每一层次的学生。

三、说教法

教法:通过情景教学,创设最佳学习情景,充分发挥多媒体计算机辅助教学的优势,紧扣教学内容,科学直观地演示两个物体相对运动的情景,这样把数学问题转化成动态的数学模型展现出来。让学生自主提出问题探究,激发学生兴趣,激活思维,逐层推进,分散难点,增强感性认识,建立表象、抽象规律。

四、教学流程:

教学重点:掌握相遇问题求路程的算理和解答方法。

教学难点:正确理解“速度和”的含义。

教具准备:课件

学具准备:两块橡皮(或两只笔)

(一)、创设情景、逐步感知

帮助学生理解相遇、相向、同时

师请两位学生从教室两头相向走—相遇—相背走到头,让学生围绕走的方向、走的结果、走的路程几个问题进行观察。两个学生走走停停,学生可以观察不同时间里的运动结果,走了的路程、还有多少路程。这段活动需要一些时间,但对整体认识行程问题有好处。

考虑学生的基础、教学目标,我对教材进行了重组。将准备题和例1合并,并为以后的工程问题做铺垫,特意设置了例2,修地铁。首先学生通过情境演示(两学生表演相遇)理解“相遇”、“相向”、“同时”,对相遇问题建立一个初步的直观的认识;再通过电脑课件的演示,加深“速度和”的理解,知道随着时间的变化,物体的位置将发生移动;最后学生可以利用简单的学具来模拟相遇过程。通过这3个过程在学生脑海中逐步建构物体移动的空间模型。

(二)、探究问题、加深理解

(大屏幕出示:小强和小丽同时从甲乙两地相对走来,小强每分钟走100米,小丽每分钟走50米,4分钟后两人相遇。)

1、根据这些信息,你想提点什么数学问题吗?

问题1小强和小丽一共走了多少米?

问题2:小强走了多少米?小丽走了多少米?

问题3:小强比小丽多走了多少米?

2、通过问题2复习: 速度×时间=路程

3、这节课重点来研究:小强和小丽一共走了多少米?理解 相距

(两地共有多少米? 甲乙两地有多少米? 甲乙两地相距多少米?)

4、生上来板书:(1)100×4+50×4 (2)(100+50)×4

5、反馈:板书算式。同学们对他们的解法有什么疑问就提出来?(每一步各表示什么?)

6、小结:(100+50)表示他们两个人1分钟走的米数,他们走了4分钟,就是4个150米。(课件演示)

速度和×时间=路程 (师板书数量关系,齐读)

7、再实践,同桌合作,用橡皮代替两人,演示相遇的过程。

学生可能会有个难点问题:为什么不列成(100+50)×(4+4),如何处理,体现突破难点?

可以用课件演示大家走路花的时间是共同的4分钟,或者可以用这个例子来解决:上数学课,你一节课多少分钟?他一节课多少分钟?他两这节课多少分钟?那我们大家这节课上了多少分钟?

根据条件学生提出几种问题,这些问题也很好的将学过的知识过渡到要学的新知识;通过电脑演示分析过程,学生很容易知道“两人每分钟共行多少米?”,“经过4分,两人相遇”的条件,形象地揭示速度和、相遇时间、总路程之间的关系,加深学生对第二种解法的理解,也验证了学生的第二种解题思路,从而顺利突破了教学难点。

(三)、解决问题,概括方法

(大屏幕出示:两个工程队合作修一段地铁。同时各从一端开凿。甲队的进度12米/天,乙队的进度14米/天,经15天打通。这段地铁长多少米?)

先指导学生审题:进度可以理解前进的速度,那就是行程问题,“经过15天打通是什么意思?地铁的的长与进度有什么关系?地铁的长可以通过什么去求?还可以通过什么去求?”

1、能独立解决吗?

2、说说它们相同的地方?

(大屏幕出示刚才做过的两道题目)

3、小结

这个例题的设置使得本课更具有开放性,一是为工程问题打下了基础,也放开了学生的思维,避免应用题中经常出现的对号入座的现象,

五、阶梯练习,扩展思维

1、学生汇报生活中类似问题。

2、基础练习(只列式,不计算)

(1)两列火车同时从甲乙两站相对开出,客车每小时行60千米,货车每小时行40千米,经过4小时两车相遇,甲乙两站相距多少千米?

(2)四(1)班为准备联欢会折纸花,男同学每小时折136朵纸花,女同学每小时折164朵纸花,他们共同折了2小时,一共折了多少多纸花?

(3)甲乙两个打字员合打一份文稿,甲每分钟打35个,乙 每分钟打40个,两人同时打15分钟完成任务。这份文稿一共有多少个字?

生独立解答,并说出算式的含义。

3、扩展练习

最后,我们来表演一下相遇问题怎样?

(请两生上来,分别给他们一个速度70和80,老师手中拿时间4分钟)

第一种情况:同时出发,4分钟后相遇。求路程?

第二种情况:同时出发,4分钟后两人还相距200米。求路程?

第三种情况:同时出发,相遇后,两人擦肩而过,4分钟后两人还是相距200米。求路程?

4、提高练习

(大屏幕出示题目:小张和小李在环行操场跑步,两人同时从A点出发,反向而行。小张每秒跑4米,小李每秒跑6米,经过20秒在B点相遇。操场的跑道长多少米?)

如果时间不够,留带课后完成。

练习是课堂教学的重要组成部分,设计练习时,我对教材作了处理,力求形式多样,条件问题开放,满足不同层次的需求,引导学生从不同角度思考问题,留给学生思维的空间,启迪了学生的创新思维。本课基本练习,要求列式不计算,是希望将更多的时间放在对算式的理解上,将时间留给学生说算式的含义,列式的理由,说的形式由点带动面,即由好生带动差生,(差生可以仿造说)到同桌互说,借此进一步突破本课的重难点—— 求路程的算理和解题方法,逐步提高语言表达能力。

篇5:《相遇问题》教学方案

《相遇问题》教学方案

本节课的教学目标:

1、知识目标:明确相遇问题的特点;理解基本数量关系;正确分析解答相遇问题。

2、能力目标:通过本节课的教学,培养学生动手操作、分析、推理能力及探索创新、合作学习的意识。

3、情感目标:通过本内容和实际相结合的教学,激发学生的学习兴趣,让学生体验到成功的喜悦。

在实施知识目标过程中,重点是让学生在做中发现规律,从而理解相遇问题的数量关系,掌握解答方法。

一、优选教法,注重学法

学生学习知识是接受的过程,更是发现、创造的过程,好的.教法是引导学生自己去发现,主动去探索。课上我为学生创设一系列活动,让学生做中学,学中做;做中悟,悟中创。教师则是一个组织者、指导者、帮助者及促进者。除此之外,我还有针对性地引导学生选择学习方法,使不同层次的孩子学到不同的数学,使每个孩子都体验到成功的喜悦。

二、优化程序,突出主体

本节课的教学流程是:创设情境、实践探究、巩固深化、课后小节。

(一) 创设情境

1. 引发思考:每天早晨背着书包来上学,马路上是一番怎样的景象?(学生们会很快地说出:车多、人多)

2. 播放录像:注意观察马路上的车辆在行驶的方向上有哪些情况?(在现实的情境中,学生发现了车辆在行驶的方向上有以下情况:相对、相反、同向)

[建构主义的教学观强调用真实的情境呈现问题,营造问题解决的环境,以帮助学生在解决问题的过程中活化知识,变事实性知识为解决问题的工具,从而完成对新经验意义的建构以及对原有经验的改造和重组。基于此,课始创设了一个与现实生活紧密联系的情境,使学生能主动地在与情境的交互作用中学习。]

(二)实践探究

1、理解意义

(1)揭示课题相遇问题

(2)制定目标看到这个课题,你想研究哪些内容?

(教师依学生所说归纳出学习目标并板书:意义、规律、应用)

(3) 联系生活提问:在实际生活中还有哪些情况属于相遇问题?

(4) 归纳小结要想出现相遇的情况应具备哪些条件?

(板书:两个物体、同时、两地、相对、相遇)

(5) 教师指出本节课侧重研究两个物体同时行进的规律。

[数学源于生活,生活中充满数学,让学生说说生活中相遇问题的实例,使学生感受到数学与现实生活的紧密联系,增强学习和应用数学的信心,调动学生学习数学的积极性,在这一良好状态下去发现数学知识。]

2、实践操作(小组合作)

(1)利用相遇卡,两位同学同时从两端行进,一位每次行3厘米,另一位每次行进2厘米。

(2)每行进一次把数据填入表中。

行的次数 红色线段长 兰色线段长 两色线段长度和 两色线段距离

1 3 2 5 10

2 6 4 10 5

3 9 6 15 0

(3)观察表中的数据,研讨发现了什么?

[设计这一实践活动的目的,是让学生在做中感受两物体同时从两地相向而行的运动规律:①两者之间的距离越来越小,直至为0,即相遇了;②相遇时,两者所用的时间是一样的,各自所行路程之和等于总路程;③因为速度有快有慢,所以,在相遇时,各自所行路程有多有少。学生在活动中把直接经验内化为知识能力,更好地去理解相遇问题的解题规律。]

3、应用规律

例:(媒体出示)90页,例3

(1) 自己选择学习方式

A 独立完成(鼓励用多种解法)

B 借助教材(依据小标题列式解答)

C 请教同学

(2) 指名板演,讲解思路

[在例题的教学中,突出让学生借助实践经验解决问题。屏弃了过去的整齐划一的教法,对在实践活动中体验好的学生,让他们独立完成;对善于与人交往的学生,让他们向同学请教;对乐于借助教材的学生,让他们看书,依提示解决问题,最大限度地发挥了学生的主动性。]

(三) 巩固深化

1、口答:

先说说解答思路,再列式计算目的是巩固新知。

小明和小芳同时从自己家出发相向而行。小明每分走42米,小芳每分走48米。经过4.5分钟两人在学校相遇(学校在两家位置之间)两家相距多少米?(用两种方法解答)

2、自选让学生依个人掌握知识情况,选择练习题。

(1)练习十八 1、2

(2)两辆汽车同时从一个地方向相反的方向开出,甲车平均 每小时行44.5千米,乙车平均每小时行38.5千米。经过3小时,两车相距多少千米?

3、编题:

小红每分跑300米,小明每分跑320米,自己设计运动情况并编题。

[设计开放性的练习,使学生在发散性、多维度的思维活动中提高解决实际问题的能力。]

(四) 课后小结

谈一谈本节课有什么收获?

篇6:五年级数学上册《相遇问题》教学反思

北师大版五年级数学上册《相遇问题》教学反思

数学课程标准指出“学生的数学内容应当是现实的、有意义的、富有挑战性的,这些内容有利于学生主动地进行观察、实验、猜测、验证、推理与交流数学活动”。基于这样的要求,在组织课堂教学时,如何创设教学情境,激发学生的求知欲望,提高教学质量此文来自优秀斐斐,课件园已越来越受到广大教师的重视。我认为数学课上的情境创设不仅仅是为了活跃课堂气氛而设置的,更不是为所谓的“体现课程标准”而设置,其根本目的是为学生学习数学服务,要让学生用数学的眼光去关注情境,由此发现数学问题,解决数学问题,提高数学能力。

行程问题是数学教学中的'一个典型问题,“相向而行”、“反向而行”、“同向而行”、“同时出发”、“相遇”等数学术语,以及两地的路程与物体的关系,对于初学的学生来说在理解上有一定的困难。为此,在教学时,我设计这样的教学情境,首先,请两名学生分别在A、B两端,同时出发,迎面走来,在表演时,叫他们站在相遇点,并组织学生讨论在刚才的情境中,蕴含了那些数学问题,怎样求AB两地间的路程,使学生明白了运动方向(相向而行),两人同时出发(在相遇时两人用的时间相等),求AB间的路程实际上就是求两人行走路程和其次,让相遇的学生继续往前走分别到A、B两地,帮助学生理解现在的运动方向是反向而行,而求AB两地的路程还是两人行走的路程和。有了这样的认识,学生在解决这类基本题时,已不觉得有任何难度。同样,在数学变式题时,我也充分利用教学情境,让学生明白不同速度的两个物体同向而行后,会发生的数学问题,即经过一段时间,两物相距的路程就是它们所行的路程差。当两个物体沿封闭图形周长。通过教学。让学生在生活情境中理解数学、应用数学,使学生知道了数学知识的来龙去脉,把“生活化”与“数学化”较好地结合起来,提高了学习效率。

当然,在创设教学情境时,我们要力求避免“生活味”过浓,不能把“生活化”作为数学课的单一求甚至是唯一求,因为数学问题并不完全等同于生活问题,数学来源于生活,又高于生活,有其独特的抽象性和逻辑性。只有把“生活化”与“数学化”有机地结合起来,合理地选择数学素材,创设现实的、有意义的和富有挑战性的教学情境,才能真正提高教学效率,培养学生的创新精神的实践能力。

篇7:小学五年级下册数学《相遇问题》教案

教学目标:

1、结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。

2、能根据相遇问题中的.等量关系列方程并解答,感受解题方法的多样化。

3、体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。

教学重点:正确地寻找数量之间的相等关系。

教学难点:掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。

教学过程:

一、激发

1.在相遇问题中有哪些等量关系?

板书:甲速×相遇时间+乙速×相遇时间=路程

(甲速+乙速)×相遇时间=路程

2.出示复习题:甲乙两列火车分别同时从北京和上海开出,相向而行。甲车每小时行122千米,乙车每小时行87千米,经过7小时相遇。北京到上海的路程是多少千米?

生做完后,指名说一说自己是怎样解答的,师画出线段图,并板书出两种解法。

甲车 相遇 乙车

每小时122千米 每小时87千米

北京 上海

第一种解法:用两车的速度和×相遇时间:(122+87)×7

第二种解法:把两车相遇时各自走的路程加起来:122×7+87×7

3.揭示课题:如果我们把复习准备中的第2题改成“已知两地之间的路程、相遇时间及其中一辆车的速度,求另一辆车的速度”,要求用方程解,又该怎样解答呢?这节课我们就来学习列方程解相遇问题的应用题。 (板书课题)

二、尝试

1.出示例题:北京到上海的路程是1463千米,甲乙两列火车分别同时从北京和上海开出,相向而行。乙车每小时行87千米,经过7小时相遇。甲车每小时行多少千米?

2.指名读题,找出已知所求,引导学生根据复习题的线段图画出线段图。

3.根据线段图学生找出数量间的相等关系:

甲车7小时行的路程+乙车7小时行的路程=1463千米

4.设未知数列方程并解答。

解:设甲车平均每小时行x千米。

87×7+7x=1463

609+7x=1463

7x=1463-609

7x= 856

x=856÷7

x=122

答:甲车平均每小时行40千米。

4.启发学生用不同方法列方程,并说说方程所表示的数量关系。表示相遇时,两车的速度和与时间的积等于两地间铁路的长度。

三、应用

试一试,试着让学生列出两种方程,如:

32x+32×7=480,480-32x=32×7

四、体验

相遇问题中求速度的应用题,列方程解比较简便。列方程解求速度、时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。

五、作业

练一练

教学后记:

这节课的最大特点是演示取代了教师的讲解和灌输,激发了学生浓厚的学习兴趣和求知欲望,学生学得比较轻松、愉快。不仅掌握了应用题的两种解答方法,而且明白了知识的形成过程,也培养学生自主探究、合作交流的意识和提出问题、分析问题、解决问题的能力。通过这节课,我体会到学生学习需要经历亲身的体验,才能获得切实的感受,感受越深,理解数学知识。

篇8:小学五年级下册数学《相遇问题》教案

教学目的:

1.通过学习,帮助学生理解“相遇问题”的意义及特点,培养学生初步的空间观念。

2.学会分析“相遇问题”的数量关系,掌握其两种解答方法。

教学重点:掌握相遇问题的结构特点及两种解答方法

教学难点:理解相遇问题的解题思路。

教学准备:

1.计算机辅助教学软件一套。

2.每个学生两个剪贴人。

教学过程:

一、复习

口答:张华从家向学校走去,每分60米,3分走多少米?

学生列式解答。说出数量关系。

二、新课教学

1.导入新课。

(1)通过电脑演示了解两个物体的运动方向。

多媒体演示三种运动方向,学生依次答问。

说明:面对面的走就是相向而行,或者称相对而行;背对背的走就是背向;一起向同一个方向走就是同向。(屏幕显示“相向”“背向”“同向”)

(2)通过电脑演示探究两个物体在相向运动中出发的地点、时间和运动结果。

出发的地点:两地

出发时间:同时或不同时

运动结果:相遇、相距或相遇后相距

(3)揭示课题:两个物体在运动的过程中会出现一些情况,其中也包括相遇的情况。下面,我们就来研究相遇问题(板书:相遇问题)

2.学习准备题。

(1)出示准备题。

(2)学生填表,全班检查。

(3)全班讨论:

①出发3分后,两人之间的距离变成了多少?

②相遇时,两人所走路程的和与两家距离有什么关系?

③1分两人所走路程的和130米是怎样来的?我们可以用哪些方法求出2分两人所走路的和260米呢?390米呢?

师:通过讨论,我们知道了用不同的方法可以求出260米和390米,还知道了两个物体从两地同时出发,相向而行,相遇时,两人所走路程的和等于两地之间的距离。

3.教学例5。

(1)出示例5:

小强和小丽同时从自己家里走向学校(如下图)。小强每分走65米,小丽每分走70米。经过4分,两人在校门口相遇。他们两家相距多少米?

提问:这题的已知条件和问题是什么?

这道应用题讲了两个物体的运动,当两个物体运动时,我们还要注意哪些问题?

(2)启发学生利用已学知识尝试解答例5。

(3)指名回答,教师板书在黑板上。

65×4+70×4 还有不同的解法吗?(65+70)×4

=260+280 =135×4

=540(米) =540(米)

(4)分析解题思路。

①通过线段图来分析“解法一”的解题思路。

提问:65×4表示什么?70×4呢?把两人各自走的路程加起来,又是什么?

谁能说说这种解法的思路?

②通过多媒体演示分析“解法二”的解题思路。

提问:65+70求什么?为什么要这样列式?能说说你的想法吗?

学生讲想法,教师以电脑演示引导学生观察,使学生认识“每分两人所走路程的和”。然后提出:4个每分两人所走路程的和与两家的距离有什么关系?(电脑演示)

(5)检验作答。

(6)比较两种解法。

(7)小结:今天这节课,我们学习了什么内容?(相遇问题)在解答这种应用题时,首先,我们耍弄清两个物体运动的哪些问题(方向、地点、时间、结果),再灵活运用我们刚才学的这两种方法解答。

三、巩固练习

1.基本练习。

①用两种方法列式解答。

小东和小英同时从自己家里出发,相向而行,到“迎澳门回?”展览馆去参观,小东每分走50米,小英每分走40米,经过3分两人在展览馆相遇,他们两家的距离是多少米?

②用第二种解法只列式,不计算。

两列火车从两个车站同时相向开出,甲车每小时行80千米,乙车每小时行70千米,经过5小时两车相遇,两个车站之间的铁路长多少千米?

2.综合练习。(抢答)

①甲乙两人同时从两地相向而行,甲骑摩托车每小时行36千米,乙骑自行车每小时行12千米,求两人每小时行的路程和?

②根据算式补充条件。

一列货车和一列客车同时从两站相对开出,货车每小时行48千米,客车每小时行52千米,___两车相遇,两地相距多少千米?

(48+52)×3

③根据算式补充问题。

甲乙两人从两地同时相对走来,甲每分走45米,乙每分走54米,经6分后两人相遇,?

(45+54)×6

④只列式不计算。

两辆汽车同时从一个地方向相反的方向开出。甲车平均每小时行42千米,乙车平均每小时行38千米,经过3小时,两车相距多少千米?

3.思考题:甲乙两人同时从两地相对出发,甲每分行50米,乙每分行40米,行了5分两地相距多少米?

下面哪个答案正确?

1.50+40×5 2.(50+40)×5 3.无法解答

四、课堂总结。

篇9:小学五年级下册数学《相遇问题》教案

各位领导,老师:

大家好!

今天,我说课的内容是现代小学数学四年级上册第三单元《三步计算和应用》中的相遇问题。从以下三方面进行我的说课:分析教材,理清思路;优选教法,注重学法;优化程序,突出主体。

一、分析教材,理清思路

本节知识是在学生初步掌握了速度、时间、路程的关系之后进行的教学。本内容和实际生活有一定的联系,借助生活原型,可更好地解决数学问题。学好此内容,也为后继学习做好铺垫。

本节课的教学目标是:

1、知识技能目标:明确相遇问题的特点;理解基本数量关系;正确分析解答相遇问题。

2、发展性目标:经历比较、优化的学习过程,发展求异思维、逆向思维的能力。

3、情感性目标:感受数学问题的探索性,激发学生兴趣,体验数学与生活的密切联系。

在实施知识目标过程中,重点是让学生在做中发现规律,从而理解相遇问题的数量关系,掌握解答方法。

二、优选教法,注重学法

学生学习知识是接受的过程,更是发现、创造的过程,好的教法是引导学生自己去发现,主动去探索。课上我为学生创设一系列活动,让学生做中学,学中做;做中悟,悟中创。教师则是一个组织者、指导者、帮助者及促进者。除此之外,我还有针对性地引导学生选择学习方法,使不同层次的孩子学到不同的数学,使每个孩子都体验到成功的喜悦。

三、优化程序,突出主体

本节课的教学流程分为四个部分:

(一)在情境中感知

引发思考:每天早晨背着书包来上学,马路上是一番怎样的景象?马路上的车辆在行驶的方向上有哪些情况?(在现实的情境中,学生发现了车辆在行驶的方向上有以下情况:相对、相反、同向)

[建构主义的教学观强调用真实的情境呈现问题,营造问题解决的环境,以帮助学生在解决问题的过程中活化知识,变事实性知识为解决问题的工具,从而完成对新经验意义的建构以及对原有经验的改造和重组。基于此,课始创设了一个与现实生活紧密联系的情境,使学生能主动地在与情境的交互作用中学习。]

(二)在游戏中引入

1、理解意义:新授课时,我以学生经常在做的两个游戏为主线,激发学生的学习兴趣,使学生初步感受数学与日常生活的密切联系,并揭示课题相遇问题

游戏1:红绿灯相向 游戏2:跨步子相对

思考:两个游戏,有什么相同点和不同点

教师画出线段图,帮助学生理解

2、联系生活提问:在实际生活中还有哪些情况属于相遇问题?

3、归纳小结要想出现相遇的情况应具备哪些条件?

(板书:两个物体、同时、两地、相对、相遇)

教师指出本节课侧重研究两个物体同时行进的规律。

(三)在操作中发现

这是本节课的中心环节。在充分认识两种运动方式后,问你想研究哪种运动方式,认识了这两种运动方式,你想通过这两种运动方式知道什么。现在小组合作,我们来研究相遇问题,请你利用相遇卡摆一摆,并完成表格

小组合作:

(1)利用相遇卡,两位同学同时行进,一位每次行3厘米,另一位每次行进2厘米。

(2)每行进一次把数据填入表中。

(四)在巩固中深化

练习是课堂教学的重要组成部分,设计练习题时,我对教材做了处理,设计了一个智力大冲浪,智夺小红旗的环节,力求形式多样,条件问题开放,引导学生从不同的角度思考问题,留给学生思维的空间。

第一环节:起跑线,是只列式不计算的基本练习

1、两个工程队合开一条隧道。同时各从一端开凿。甲队的进度是12米/天,乙队的进度是14米/天。经15天打通。这条隧道长多少米?(用两种方法解答)

2、小名和小化从相距180米的跑道上同时相对而行,小名每分钟42米,小化每分钟48米,两人几分钟后相遇?

第二环节:加油站:自选超市:让学生依个人掌握知识情况,选择练习题。

1、比一比三道题的联系与区别;

A、两辆汽车同时从两地相对开出,甲车每小时行55千米,乙车每小时行75千米,3小时相遇。两地相距多少千米?

B、两辆汽车同时从相距390米的两地相对开出,甲车每小时行55千米,乙车每小时行75千米。几小时相遇?

C、两辆汽车同时从相距390米的两地相对开出,经3小时相遇,甲车每小时行55千米,乙车每小时行多少千米?

2、两辆汽车同时从一个地方相反的方向开出,甲车每小时行44.5千米,乙车每小时行3805千米。经过3小时,两车相距几千米?

3、客车和货车同时从A、B两地相对开出。客车每小时80千米,货车每小时70千米,经过4小时,两车相距10千米。A、B两城相距多少千米?

第三环节:凯旋门:

小红每分跑300米,小明每分跑320米,自己设计运动情况并编题。

[设计开放性的练习,我考虑到满足不同层次学生的求知欲,因材施教,使每个学生在发散性、多维度的思维活动中提高解决实际问题的能力。]

你真棒祝贺你随着一声声赞扬,同学们肯定会一路过关斩将,站到领奖台上。

(四)在总结中提高

谈一谈本节课有什么收获?

篇10:小学五年级数学《相遇》教学反思

本节课是小学数学北师大版五年级上册“数学与交通”中的第一课。课后我进行了反思,从中也总结了一些成功的经验和失败的教训,具体分析如下。

相遇问题这节课的教学是学生在掌握行程问题基本数量关系的基础上,理解相遇问题的运动特点、数量关系和解题思路,并能解答简单的相关问题。原来人教版的教材在学生理解了相遇问题的基本特征之后,分了两个步骤:①已知两物体的运动速度和项与实践,求路程。②已知两物体的运动速度和路程,求想与时间。而新课程改革理念下的北师大版教材直接进入第二步骤的学习,在这内容上有了一定的跨度,对学生的学习能力有了更高的要求。本课教材给学生提供了“送材料”的情境,通过简单的路线图等方式呈现了速度路程等信息。然后要求学生根据这些信息去解决3个问题。

①让学生根据两辆车的速度信息进行估计,在哪个地方相遇。

②用方程解决相遇问题中求相遇时间的问题。

③解决“相遇地点离遗址公园有多远”实际上就是求面包车行驶的路程。

我一改教学情境,将本班的学生设为本堂课的主人公,利用学生常见的上学、放学的相遇情境,进行了一系列的教学活动,从而让学生在熟悉的情境中,宽松愉悦的氛围中完成了本课的学习任务。

对于五年级的学生来说,随着年龄的增长与思维水平的发展,他们的学习途径是多种多样的,除去课堂学习这一重要途径外,几乎每个学生都有通过其它途径接受信息、积累知识的能力。同时,他们已经在三年级接触了简单的行程问题,四年级上册,学生就真正的开始学习速度、时间、路程之间的关系,并用三者的数量关系来解决行程问题。而本节课正是运用这些学生已有的知识基础和生活经验进行相遇问题的探究。而且本节课学生对相遇问题的理解也有难度,所以我想只有站在学生学习的起点上,尊重学生发展的基础上多设计一些活动,引导学生积极参与到操作过程中,使所有学生通过本堂课都能有所收获。

根据课程标准的要求以及教材编写的特点,我从知识与技能、过程与方法、情感态度价值观的三维目标出发,制定了一体化的目标:1、会分析简单实际问题中的数量关系,提高用方程解决简单的实际问题的能力。2、经历解决问题的过程,提高收集信息、处理信息和建立模型的能力。3、进一步体验数学与日常生活的密切联系。

我将本课重点制定为:会分析简单实际问题中的数量关系,提高用方程解决简单的实际问题的能力。难点制定为:对相遇问题中速度不同、时间相同的数量关系的分析。

如下是我对这节课的教法学法体现。

1.突出主体与注重体验

学习不是由教师把知识简单地传递给学生,而是同学生自己建构知识的过程。基于这一观点,在本节课的教学中,在学生体验相遇问题中两人或两物体运动的速度不一样,但所用的时间相同这一难点,让学生模仿相遇过程和用手势表示相遇过程,使学生体验并理解。有助于学生对难点的突破。再如:学生对相遇问题中路程、时间的变化有了初步的认识之后,从线段图入手帮助学生理解。这里并没有把线段图直接呈现给学生,而是把“指挥棒”交给学生,“如果我们用线段图来将相遇问题的过程表示出来,你们说应该先画什么?后画什么?”这样一个问题就把主动权交给学生,充分体现出学生的主体作用。

2.鼓励探究,自主探索

《课程标准》中指出“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索的过程中真正理解和掌握数学知识。”基于这一观点,在本节课的教学中,学生经历画线段图之后,提出“你现在最想知道什么?”这一问题鼓励学生自主地从线段图上寻找自己想要知道的问题,从而引出出发后几分相遇。所以学生可以在小组内自主探索,寻求解题的方法。

我将本节课的教学过程设计为以下三个环节。

(一)复习旧知—引出事例—导入新课

(二)模拟情景—发现问题—探究新知

(三)巩固新知—课外延伸—总结深化

在第一个环节中,首先我问学生:“在班里,谁是你的好朋友?”一句简短的话释放了学生上课前的紧张,拉近了师生的距离,从而引出班里一对好朋友也是这节课的主人公是中心小学五(3)班的“田晓斌和陈嘉彦”。课件出示“田晓斌从家里坐车出发,每时走40千米,走了0.5小时,到达陈嘉彦家,通过这些条件谁能提出一个问题?学生会说:“共走了多少千米?”实际上求的是什么?是路程,从而引出已学过的数量关系:速度×时间=路程。利用学生们所熟悉的同学引出旧知,不仅激起了学生学习的兴趣,而且达到了复习旧知的目的。然后出示“有一天,陈嘉彦放学回家打开书包发现不小心将同桌田晓斌的作业本带回了家,他赶紧打电话给田晓斌,两人商量了一会儿。如果步行的话,有几种方法可以让陈嘉彦将作业本还给田晓斌呢?这一情景用学生经常碰到的问题入手,体现了数学来源于生活,生活中处处都有数学。学生可能会想到:①陈嘉彦将作业本送到田晓斌家。②田晓斌到陈嘉彦家去取。③两人同时出发,约定地点,拿到作业本。经过商量,认为第三种方法最省时间。这时教师小结:陈嘉彦到田晓斌家的这一段路,可以一个人走完,也可以有两个人一起走完,今天我们就来研究两个人或物体运动的行程问题,引出新课。(板书:相遇)

第二个环节,我设计让陈嘉彦和田晓斌模仿相遇过程和学生用手势表示相遇过程两个活动,让学生通过观察、实践加深对相遇问题的理解,感受到所谓“相遇”就是两人或两个物体同时从两地出发,相对而行,在途中相遇这样一个过程,在学生脑袋里建立一个清晰的相遇问题的模型,然后接着问:“刚才在陈嘉彦和田晓斌走的过程中,你还有什么发现?”这时学生发现陈嘉彦的速度快,田晓斌的速度慢;他们俩所走的路程就是两家之间的距离。或者学生还能发现“从出发到相遇两人用的时间一样”,这时课件出示路线图让学生根据两人的速度信息估计在哪里相遇。因为陈嘉彦的速度快所以相遇地点应该在离田晓斌家近的地方。理解“两人所用时间一样“是本节课的难点,班里大部分学生对这一问题还不理解。所以,通过课件播放路线图,让学生直观地感受。

在学生观看路线图的过程中,分了三个小步骤。首先,播放一分钟陈嘉彦和田晓斌所走的路程,提问:陈嘉彦走了多少千米?田晓斌走了多少千米?用了多少时间?其次,继续行走了1时,用了多少时间?在解决这些问题的过程中,学生会发现两人所用的时间是相同的,但为什么相同呢?这又引起了学生思维上的冲突,这时再将课件重放一遍,学生就会发现她们是同时走同时停的,从出发到相遇他们所用的时间是相同的,这一难点在学生观看中,探索中自然而然的突破了。

紧接着,我设计结合线段图讨论分析“如果老师用线段图来表示他们相遇的过程,你们想怎么画?”数学教学中,运用线段图的目的,不仅仅是帮助学生解决某些具体问题,提高解决问题的能力,更重要的是使学生学会“数学的思考”并放手让学生从自己的知识经验出发,自主构造线段图,增强学生运用线段图的自觉性。通过学生的思考和老师的操作,完成线段图。“看见这个线段图你知道了那些数学信息?根据数学信息说一说你最想知道什么?” 根据学生思维方式的不同,学生的回答会出现两种情况。方案A:如果学生提出田晓斌走了多少千米?陈嘉彦走了多少千米?我还继续追问要知道他们所走的路程还要知道什么?引出要知道两人所走的时间。方案B:如果学生直接提出“两人走了几时”这时教师就要对学生进行及时地肯定和表扬鼓励学生主动参与此问题的探讨。这也正是本节课重点解决的问题。要帮助学生理解知道两人所走的路程和速度,还应知道走这段路所要用的时间,通过小组讨论分析来解决。因为,行程问题的基本数量关系是:速度×时间=路程。求时间要逆向思考,所以要引导学生体会用方程解决问题,所以老师带领学生探索如何用方程来解决,首先寻找等量关系,陈嘉彦走的路程+田晓斌走的路程=50千米。基于学生在前面的环节已充分理解两人所用时间相同,设所走时间为“x”,列方程60x+40x=50从而求出时间。在学生发现用方程解决比较简便之后追问:“你还有其他的方法吗?”这时,学生有可能出现用方程(60+40)x=50来解决,或者用算术方法解决用算术方法解决要引导学生理解在两人相对行走的过程中,他们每时共行走60+40千米,两人相遇时所走的路程的和是50千米。 求出几时走50千米,就是几时相遇,列式为:50÷(60+40)。对于这两种不同的解题思路教师应给予充分的肯定和较高的评价,从而调动其他学生解题的积极性,体现方法的多样化。

本环节我注重营造一个认知、生活、情感等协调互动、共同融洽的多层次的大课堂,使学生在具体的数学活动中理解相遇问题。

在第三个环节中,我从学生出发,由浅入深设计了两个题目。

题目一:在十一月份我们学校举行的田径运动会咱们五(3)班里跑步最快的曾文康每秒跑6米,曾菲菲每秒跑4米,两人从50米跑道两端迎面同时起跑,几秒后相遇?这道题有意让学生通过对相遇问题的理解来独立解决,达到巩固的目的(效果已达)。

题目二:曾文康3秒跑18米,曾菲菲2秒跑8米,两人从50米跑道两端迎面同时起跑,几秒后相遇?本题在上一道习题的基础上讲速度作为隐含条件呈现给学生,让学生通过所给条件先求出两人的速度,再求几秒后相遇。

两道习题在学生感知理解的基础上,通过巩固训练提高学生解决问题的能力,开拓思路,发展学生的应用意识。

在全课总结时我让不同层次的学生谈学习收获,这样可让每个学生都体验到成功的喜悦。学生的收获不仅只有知识,还包括能力、方法、情感等,学生体验到学习的乐趣增强学好数学的信心。

总的来说,本节课我联系了学生的生活实际,接近了学生的心理距离,学生接受起来比较主动,消除了以往应用题给他们带来了“恐惧感”。学习气氛是轻松的、愉悦的、课堂是开放的、生成的,真正实现让学生成为主人。课后之余,我把“相遇”问题的解题思路和方法不仅体现在行程问题上,而且在诸多如:两人同时打一篇稿件,几分后打完;两个工程队共修一条路,几天修完?等等,这些问题也可用“相遇”问题的解题方法来解决。针对这一点,我在下一节课设计了让学生解决这类问题,培养学生举一反三的能力,以达到触类旁通的效果。

篇11:小学五年级数学《相遇》教学反思

本节课通过录音把课本的例题生动地呈现出来,在学生理解情境的基础上,设计了一个学生动手演示的过程,学生运用已有的生活经验,在同学演示的过程中,体会相遇问题的特点,从感性认识,抽象出相遇问题的特征:同时出发、相向而行、相遇。经过师生共同对知识的梳理,进一步深化对相遇问题的理解。教学中较为充分地发挥学生的自主性,让学生在观察、思考中明确问题的产生,经历尝试解决问题的探究过程,从而获得到成功的体验。

本节课也存在不足。

1、本节课在引导学生发现相遇的数量关系时,学生回答有困难,我就应该适时出现线段图,引导学生直观地发现数量关系。

2、教学到后面漏了一个环节,在求出面包车行驶了20千米,小轿车行驶了30千米后,应让学生验证一下同学们估计的相遇点是否正确。

3、环节之间的过渡语及课堂用语不够严密。

篇12:小学五年级数学《相遇》教学反思

这节课的主要内容是北师大版小学数学第九册第66-67页相遇问题,要求会用线段图分析简单实际问题的数量关系,提高用方程解决简单实际问题的能力,重点是会列方程解决相遇问题中求相遇时间的问题,难点是相遇问题相等关系的抽象,对同时相遇的理解。我个人认为本节课教学设计和组织上很好的体现了新课程标准理念。

具体体现在。

1.情境的创设贴近生活,一开始我就从与张老师的握手中引入“相遇”,从生活实际入手,引导学生将生活问题转化成数学问题,学生比较容易理解“相遇”,并能自主地分析并尝试解决问题,本着“从生活入手—抽象成数学问题---尝试解决方案—应用生成的知识解决更多问题“的思路展开教学。有利于培养学生从生活中发现数学问题并尝试分析解决实际问题的能力。

2.教学中较为充分地发挥学生的自主性,教师创设问题情景,让学生在观察、思考中明确问题的产生,经历尝试解决问题的探究过程,从而获得到成功的体验。尤其是在得到用列方程方法解决相遇问题的最初步骤,我较大地利用了多媒体的演示作用,学生容易理解“相遇”的数量关系,整个过程在教师的“主导”,充分发挥了学生自我思考、探索、思辩的作用。

3.在教学过程中,还能注意实施差异教学。学生的水平参差不一,有的解题速度比较快,有的比较慢,甚至有的对所学的内容存在困难,因此我通过在完成练习时,要求早完成的学生要与旁边的同学实行一帮一的互相检查以及辅导,让学生在互助合作的良好氛围中学习,同时在实施评价、反馈时,教师注意捕捉、发现学生的思维火花,及时鼓励、肯定,极大的调动学生学习积极性,形成平等和谐的学习氛围。

但是,由于本人的教学水平不高,本课时的教学也存在一些遗憾。

1.比如在如何引导学生发现解决相遇时间的方案中,学生能很好地利用等量关系式列方程,但在列方程时,部分学生没有很好地将方程的格式写好,特别是“解和设”,我在评比时虽然注意到这个问题,但没有重点进行评讲,结果导致后边的练习也出现了这种现象,学生由于模仿性强,所以教师更应该小心谨慎,画线段图也是一样。

2.另外本节课的教学,由于时间掌握得不够好,在学生板书例题的解法后,我没有再展开来讲,介绍别的解法,(40+60)X=40,例如算术法,40÷(40+60)等,没有让学生更好地发散思维,没有让学生更好地理解顺思维与逆思维解法的区别。

3.在学生板演正确的解法时,我在堂上巡视时发现学生中出现了“4X=40”这样的错题,我也把这种错题板书在黑板上了,但是我没有放手让学生自己去想为什么错,应该怎么去改正,而是通过我的问题让学生明白错在哪里,我想这两种做法的后果应该是非常不同的。

4.语言的表述还需要多练习,我在出示练习二时说:“这属于相遇的问题吗?”好象要暗示学生说是的样子,评课的教师给我的建议是这样问的:“能用解相遇问题的方法去解这道题吗?”我感觉就比较好。

我想我这一节课,起了抛砖引玉的作用,为我们的应用题教学如何实施和谐发展提供了一个思考的空间:如何改变传统应用题教学?怎样才能让我们的应用题教学充分与学生生活实践相联系,达到引导学生自主探索解决生活问题,进而培养学生学习解决实际问题的能力。例如我们通过评课,大家讨论了如何才能让这节课上得更好,张老师就提议说,引入时要不就先让学生理解两车的速度和给出一定的时间,让学生先学会求相遇路程,再把时间去掉,让学生学会当相遇时间不知道时,可以用方程的方法去求,这样的引入看能不能降低学生的学习难度,我们听了都说要试一试,只有试过才知道好不好呀。

总而言之,这次的青年教师教学研讨活动使我受益匪浅,给我在数学的教与学方面很多启发和帮助。

篇13:小学数学相遇问题复习资料

小学数学相遇问题复习资料

小学数学相遇问题是研究两个运动的物体,从两个不同的地方,沿同一条路线同时(或者不同时)出发,作相向运动。因此,它有三种基本形式:

第一是已知甲、乙的速度和相遇的时间,求距离;

第二是已知甲、乙的速度和距离,求相遇的时间;

第三是已知距离,相遇时间和甲(或者乙)速度,求乙(或者甲)速度。

例1一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。3.5小时两车相遇。甲、乙两个城市的路程是多少千米?

[解]46×3.5+48×3.5

=161+168

=329(千米)。

或(46+48)×3.5

=94×3.5

=329(千米)。

答:甲、乙两个城市的路程有329千米。

[常见错误]

46×3.5+48

=161+48

=209(千米)。

答:甲、乙两个城市的路程有209千米。

[分析]

这是一道相遇问题的基本题,错解中由于审题不严密,误认为只有客车行了3.5小时,货车行了48千米,两车就相遇了,因而产生了错误。如果首先理解甲、乙两城的路程就是客车与货车所行路程的和,然后分别求各自的速度与行驶的时间,就不会出现错误了。

例2两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。甲、乙两车相遇时,各行了多少千米?

[解]255&pide;(45+40)

=255&pide;85

=3(小时)。

45×3=135(千米)。

40×3=120(千米)。

答:相遇时甲车行了135千米,乙车行了120千米。

[常见错误]

(1)255&pide;(45+40)

=255&pide;85

=3(小时)。

45×3=135(千米)。

答:相遇时各行了135千米。

(2)255&pide;(45+40)

=255&pide;85

=3(小时)。

40×3=120(千米)。

45×3=135(千米)。

答:相遇时甲车行了120千米,乙车行了135千米。

[分析]

解题不完整,答非所问,这是应用题解答经常出现的一种错误,特别是对于粗心大意的.学生来说,更是如此。防止粗心大意的办法是要养成检验的良好习惯。

例3 两地相距3300米,甲、乙二人同时从两地相对而行,甲每分钟行82米,乙每分钟行83米,已经行了15分钟,还要行多少分钟两人可以相遇?

[解][3300-(82+83)×15]&pide;(82+83)

=[3300-165×15]&pide;165

=[3300-2475]&pide;165

=825&pide;165

=5(分钟)。

答:还要5分钟两人可以相遇。

[常见错误]

(1)(82+83)×15&pide;(82+83)

=165×15&pide;165

=2475&pide;165

=15(分钟)。

答:还要15分钟两人可以相遇。

(2)[3300-(82+85)×15]&pide;82

=[3300-165×15]&pide;82

=[3300-2475]&pide;82

=825&pide;82

≈10.1(分钟)。

答:还要行10.1分钟两人可以相遇。

[分析]

这是一道较复杂的相遇问题,错解(1)没有求出还剩下的路程,错解(2)将剩下的路程由甲一人行走,所以两种解法都错了。防止错误的主要办法是需认真审题,理解题中已经行了多少米,还剩下多少米,剩下的路程由甲、乙两人相对行走,还要多少分钟等等。这样,用剩下的路程除以甲、乙两人的速度和,就得出还要多少分钟两人相遇。

例4 甲、乙两港的航程有480千米,上午10点一艘货船从甲港开往乙港,下午2点一艘客船从乙港开往甲港。客船开出12小时与货船相遇。已知货船每小时行15千米,客船每小时行多少千米?

[解](480-15×4)&pide;12-15

=(480-60)&pide;12-15

=420&pide;12-15

=35-15

=20(千米)。

答:客船每小时行20千米。

[常见错误]

(1)480&pide;12-15

=40-15

=25(千米)。

答:客船每小时行25千米。

(2)(480-15×4)&pide;12

=(480-60)&pide;12

=420&pide;12

=35(千米)。

答:客船每小时行35千米。

[分析]

这道题中的数量关系较为复杂,解题时稍不留意就出错。错解(1)是套用公式,没有注意到“货船先行了4小时客船才开出”这个条件。错解(2)求出的是客、货两船的速度和。解答较复杂的应用题一定要养成认真审题的习惯,行程问题给出线段图将有助于理解题意与选择解法。

篇14:小学数学《相遇问题》教案设计

精选小学数学《相遇问题》教案设计

一、教材分析:

青岛版小学四年级上册数学第46―48页的“相遇问题”,是在学习简单行程问题基础上继续学习的内容,情节、数量关系比以前学的内容复杂。教学时,要启发学生抓住题目中主要的数量关系,联系学过的知识,解决新问题。在教学中要紧紧地抓住对“速度”、“相遇时间”、“路程”这三个量之间的相依关系的理解。通过可逆性改编、变化题目中情节,进一步培养学生认真分析数量关系的能力;逆向思维的能力;及综合分析应用题的能力。

在教学中还要帮助学生突破对一些概念的理解。如“速度和”、“相向”、“相遇”、“同时”等。可以通过学生生活实际,通过演示,帮助学生理解这些概念。学生对这些概念理解了,有利于进一步理解题目的情节,并掌握数量之间的关系。 在教学中还要充分发挥准备题的作用,运用旧知识迁移,学会新知识。过去学习过一个物体走完一段路的行程问题,相遇问题是在这个基础上发展的,它的特点是由两个物体同走一段路,抓住新旧知识的联系与区别进行教学,有利于学生对“相遇问题”的理解和掌握。

二、设计理念:

本着以“学生的发展为本”的教育理念,在设计本课教学时,注重了学生的参与,注重了学生思维的开放,注重了学生个性的发展,使教学跟随学生的学习过程,紧贴学生的学习需求,让学生学有所得,学有所获。

三、教学目标:

1.学会分析“相遇问题”的数量关系。

2.掌握“相遇问题”应用题解题思路和解答方法,提高解题能力。 3.培养学生积极动脑,刻苦钻研的学习精神。

教学重点:

理解相遇问题的数量关系,建立解题思路,掌握解题方法。

教学难点:

理解相遇问题中速度和、相遇时间和总路程之间的关系。

教学关键:

使学生弄清每经过一个单位时间,两物体之间的距离变化。

四、教法学法:

为了更好地突出重点,突破难点,本节课我准备采用如下教法:

复习铺垫法 直观演示法分组讨论法启发讲解法练习巩固法 这样通过多种教法的交叉进行,相信一定会取得理想的教学效果。

在学法上引导学生通过观察、思考、讨论的方法掌握知识,学会知识的迁移、类推。

教具准备:计算机及辅助软件

教学过程:

一、展示设疑

1.口答:一架飞机平均每小时飞行600千米,从甲地飞往乙地用了4小时,甲乙两地相距多少千米?

师:谁会用一个数量关系式来回答?能把其它几个关系式也说出来吗?

看来大家对过去的`行程问题学得很不错,为自己鼓鼓掌,也对各位和我们一起学习讨论的老师表示欢迎!

这一道题用几个速度和走完全程?

小结:相遇应用题通常有两种解法,第一种先求什么?再求什么?第二种是又先求什么?再求什么?

(板书:速度和×相遇时间=总路程)

四、拓思创新

1.两个邮递员同时从相距3000米的两地相对而行,骑摩托车的速度是800米/分,骑自行车的速度是200米/分。经过几分钟两个邮递员相遇?

这道题与刚才研究过的有什么不一样吗?

2.甲乙两人同时从相距600米的两地相对而行,5分后相遇.甲每分行70米,乙每分行多少米?

3.甲乙两人同时从相距600米的两地相对而行,5分后相遇.乙每分行50米,甲每分行多少米?

这两道题是怎样求一方速度的呢?

根据 路程÷时间=速度和

速度和一方速度=另一方速度

4.小红和小刚同时从两家出发,小红每分钟走38米,小刚每分钟走45米,经过3分钟两人相距100米,小红和小刚家相距多少米?

这道题中的两人相遇了吗?

5.甲乙两人同时从M地相背而行,甲每分行70米,乙每分行50米,5分后他们相距多少米?”

这道题什么发生了变化?你觉得还可以用今天学的方法做吗?

(这是运动的双方方向上发生了变化,可数量关系并没有改变,因此,解题方法完全相同。像这样运动双方某一方面发生变化的譬如时间有先后的变化等等以后我们在研究。)

五、小结:谈谈这节课你又获得了哪些知识?

师:这节课我们研究的都是两个人走路呀、骑车呀这类问题,它还能不能研究其他问题呢?还可能研究哪些问题呢?这些都是值得我们思考的,老师想在下一节课中得到你们的答案。

小学五年级数学教学方案

数学教案-相遇问题

相遇问题课件

小学五年级数学教学经验交流

小学五年级数学教学工作总结

小学数学五年级数学教学工作总结

小学五年级数学教学总结

小学数学五年级教学总结

小学五年级数学位置教学反思

人教版小学五年级数学教学总结

相遇问题小学五年级数学教学方案(精选14篇)

欢迎下载DOC格式的相遇问题小学五年级数学教学方案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档