初二上册数学知识点总结

时间:2024-04-12 03:37:51 作者:fzlyzx 其他工作总结 收藏本文 下载本文

【导语】“fzlyzx”通过精心收集,向本站投稿了16篇初二上册数学知识点总结,以下是小编为大家准备的初二上册数学知识点总结,仅供参考,大家一起来看看吧。

篇1:初二上册数学知识点总结

一次函数

(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;

(2)正比例函数图像特征:一些过原点的直线;

(3)图像性质:

①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;

(4)求正比例函数的解析式:已知一个非原点即可;

(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)

(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;

(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)

(8)一次函数图像特征:一些直线;

(9)性质:

①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b<0,向下平移)

②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;

③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;

④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);

⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);

(10)求一次函数的解析式:即要求k与b的值;

(11)画一次函数的图像:已知两点;

用函数观点看方程(组)与不等式

(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;

(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;

(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;

(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;

篇2:初二上册数学知识点总结

第十一章全等三角形

一.知识框架

二.知识概念

1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:

(1)“边角边”简称“SAS”

(2)“角边角”简称“ASA”

(3)“边边边”简称“SSS”

(4)“角角边”简称“AAS”

(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第十二章轴对称

一.知识框架

二.知识概念

1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,

7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形

有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

第十三章实数

一.知识框架

二.知识概念

1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。

5.数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。

第十四章一次函数

一.知识框架

二.知识概念

1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

4.已知两点坐标求函数解析式:待定系数法

一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。

第十五章整式的乘除与分解因式

一.知识概念

1.同底数幂的乘法法则:(m,n都是正数)

2..幂的乘方法则:(m,n都是正数)

3.整式的乘法

(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3).多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4.平方差公式:

5.完全平方公式:

6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).

在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的.值可能是正也可能是负的,如,

④运算要注意运算顺序.

7.整式的除法

单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.

8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法

分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。

篇3:初二上册数学知识点总结

1全等三角形的对应边、对应角相等

2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

5边边边公理(SSS)有三边对应相等的两个三角形全等

6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

7定理1在角的平分线上的点到这个角的两边的距离相等

8定理2到一个角的两边的距离相同的点,在这个角的平分线上

9角的平分线是到角的两边距离相等的所有点的集合

10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

21推论1等腰三角形顶角的平分线平分底边并且垂直于底边

22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

23推论3等边三角形的各角都相等,并且每一个角都等于60°

24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

25推论1三个角都相等的三角形是等边三角形

26推论2有一个角等于60°的等腰三角形是等边三角形

27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

28直角三角形斜边上的中线等于斜边上的一半

29定理线段垂直平分线上的点和这条线段两个端点的距离相等

30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

篇4:初二上册数学知识点总结

初二上册数学知识点

轴对称

一、定义

1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。我们也说这个图形关于这条直线[成轴]对称。

2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。

3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

4、有两边相等的三角形叫做等腰三角形。

5、三条边都相等的三角形叫做等边三角形。

二、重点

1、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。

2、把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。

3、垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。

4、垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

5、如何做对称轴:如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线。因此,我们只要找到一对再对应点,作出连接它们的线段的垂直平分线就可以得到这个图形的对称轴。同样,对于轴对称图形,只要找到任意一组对应点所连线段的垂直平分线,就得到此图形的对称轴。

6、轴对称图形的性质:对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化。由个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状,大小完全相等。新图形上的每一点,都是原图形上的某一点关于直线的对称点。连接任意一对对应点的线段被对称轴垂直平分。

7、等腰三角形的性质:等腰三角形的两个底角相等[等边对等角]等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合[三线合一][等腰三角形是轴对称图形,底边上的中线(,底边上的高,顶角平分线)所在直线就是它的对称轴。

等腰三角形两腰上的高或中线相等。

等腰三角形两底角平分线相等。

等腰三角形底边上高的点到两腰的距离之和等于底角到一腰的距离。

等腰三角形顶角平分线,底边上的高,底边上的中线到两腰的距离相等。

8、等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等[等角对等边]。

[如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。]

9、等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°。

10、等边三角形的判定:等边三角形的三个内角都相等,并且每一个角都等于60°。三个角都相等的三角形是等边三角形。有一个角是60°的等腰三角形是等边三角形。

11、直角三角形的性质之一:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

12、在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。

三、注意

1、(x,y)关于原点对称(-x。-y)。关于x轴对称(x,-y)。关于y轴对称(-x,y)

2、用坐标表示轴对称。

初二上册数学学习方法

1、积极培养自己对新添学科的学习兴趣。

平面几何是逻辑推理、形象思维、抽象思维的训练,平面几何学习的好坏,直接影响你的思维发展,影响你顺利地完成第五个思维发展飞跃。理化学科是你将来从事理工科的基础,语文的快速阅读和写作训练也在为你今后的发展奠定基础。切记勿偏科,初中阶段的所有学科都是你和谐完美发展的第一块基石。

2、坚持预习习惯

预习是通过阅读对将要学习的内容预知,它有几方面的益处。①可以帮助我们明确将要学习的目标,以便于我们带着问题上课,从而提高课堂效率。②预习是自主学习的一种方式,通过预习可以提高我们的阅读理解能力,阅读理解能力是一个人终身学习不可或缺的素养。

3、用好“读、听、议、练、评”五字学习法

掌握学习主动权。读:读书预习;听:听课;议:讲议讨论;练:复读练习,形成技能;评:自我评价掌握学习内容的水平。

4、在评价中学习,在评价中达标:“在评价中学习”是指给自己提出明确的学习目标

在目标的指导和鞭策下学习。“在评价中达标”是指只有进入“自我评价状态的学习”,才能有效地达到学习目标,强烈的自我追逐学习目标,才能高质量、高水平的达到目标。

5、听课要诀:

①在自学预习的基础上听;

‚手脑并用,勤于实践议练,勤于笔记,养成笔记的习惯;

勇于发言,发问,暴露自己的疑点、弱点;

④把握重点和难点。对“重点”要“练而不厌”,对“难点”要锲而不舍;

⑤形散神不散。课堂上,教师的读、讲、议、练、评活动安排从形式上可能有些“散”,你要积极参与配合,做到45分钟形散神不散;

⑥重视每节课的归纳小结,把感性认识上升为理性认识。就数学而言要学会归纳知识结构、题型、数学思想和方法。

6、重视知识、题型积累,更重视思维训练和能力发展

在听懂双基知识点的同时,着力弄清思路和方法;经常进行一题多解、一题多变的练习。只看书不做题不行,只埋头做题不总结积累也不行。大家对课本知识既要能钻进去,又要能跳出来,结合自身特点,找到最佳学习方法;有目的地提高自己的动手能力。有目的地提高自己的特异思维能力,不要只满足于教师讲的,书上写的解法和证法。

初二上册数学学习建议

1、预习的方法

预习是上课前对即将要上的数学内容进行阅读,做到心中有数,以便于掌握听课的主动权。这样有利于提高学习能力和养成自学的习惯,所以它是数学学习中的重要一环。

(1)看书要动笔。(不动笔墨不读书)

①一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或在弄不懂的地方与问题上做记号;

②预习时一旦发现旧知识掌握得不好,甚至不理解时,就要及时翻书查阅摘抄,采取措施补上,为顺利学习新内容创造条件。

③了解本节课的基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里等等。

④要把某一本练习册所对应的章节拿出来大致看一遍,看哪些题一下能看会,哪些题根本看不懂,然后带着疑问去听课。

(2)确定听课要点。把握自己要解决的主要问题,以提高听课的效率。

2、听课的方法

听课是学习数学的主要形式。在教师的指导、启发、帮助下学习,就可以少走弯路,减少困难,能在较短的时间内获得大量系统的数学知识,否则事倍功半,难以提高效率。所以听课是学好数学的关键。

(1)盯住老师。除在预习中已明确的任务,做到有针对性地解决符合自己的问题外,还要把自己思维活动紧紧跟上教师的讲课,如定理是如何发现或产生的,证明的思路是怎样想出来的,中间要攻破哪几个关键的地方。公式、定理是如何运用的。许多数学家都十分强调“应该不只看到书面上,而且还要看到书背后的东西。”

(2)敢于发言。听课时,一方面理解教师讲的内容,思考或回答教师提出的问题,另一方面还要独立思考,如有疑问或有新的问题,要勇于提出自己的看法。

(3)记笔记。听课时要把老师讲课的要点、补充的内容与方法记下。

3、复习的方法

复习就是把学过的数学知识再进行学习,以达到深入理解、融会贯通、精炼概括、牢固掌握的目的。复习应与听课紧密衔接、边阅读教材边回忆听课内容或查看课堂笔记,及时解决存在的知识缺陷与疑问。

(1)复习笔记和卷纸。对学习的内容务求弄懂,切实理解掌握。不能仅停留在把已学的知识温习记忆一遍的要求上,而要去努力思考新知识是怎样产生的,是如何展开或得到证明的,其实质是什么,应用它如何拓展加宽等。要勤于复习(知识点、典型题等),经常看,反复看---这就是心理学上讲的艾宾浩斯遗忘曲线所揭示的道理。建议学生采用放电影的方法。完成作业后,把书和笔记合上,回忆课堂上的内容,如定律、公式及例题解答思路、方法等,尽量完整的在大脑中重现。再打开课本及笔记进行对照,重点复习遗漏的知识点。这既巩固了当天上课内容,也可查漏补缺。

(2)适量做题。准备一个错题本,记载做过的错题再次演练。对于自己曾经做错的题目,回想一下为什么会错、错在什么地方。自己曾经犯错误的地方,往往是自己最薄弱的地方,仅有当时的订正是不够的,还要进行适当的强化训练。

(3)大胆质疑,增强学习的主动性。要经常与同学研究,或问老师,不要积攒过多问题。更不要把不会做的题完全寄托在课堂上等待老师去讲。

4、做作业的方法

数学学习往往是通过做作业,以达到对知识的巩固、加深理解和学会运用,从而形成技能技巧,以及发展智力与数学能力。由于作业是在复习的基础上独立完成的,能检查出对所学数学知识的掌握程度,能考查出能力的水平,发现存在的问题,困难。当做错的题目较多时,往往标志着知识的理解与掌握上存在缺陷或问题,应引起警觉,需及早查明原因,予以解决。

(1)先复习后做作业。在做作业前需要先复习,在基本理解与掌握所学教材的基础上进行,否则事倍功半,花费了时间,得不到应有的效果。

(2)必须独立完成。培养良好的习惯,在作业中要做得整齐、清洁,要注重解题格式。书写规范。作业必须独立完成。高质量的完成作业可以培养一种独立思考和解题正确的责任感。

(3)短时高效。规定一个具体时间,在此期间什么除了写作业,其他都不允许干。思维松散、精力不集中的作业习惯,对提高数学能力是有害而无益的。

(4)认真核查。准备一个红笔,正确的打对号,不一样的再做一遍,检查是自己做的对还是答案对,一些不会的题或叫不准的题问老师、问同学。

篇5: 初二上册数学知识点总结

在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.

(1)多边形的一些要素:

边:组成多边形的各条线段叫做多边形的边.

顶点:每相邻两条边的公共端点叫做多边形的顶点.

内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。

外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

(2)在定义中应注意:

①一些线段(多边形的边数是大于等于3的正整数);

②首尾顺次相连,二者缺一不可;

③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间

篇6: 初二上册数学知识点总结

一、在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念

1、平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有,分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当 时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

4、不同位置的点的坐标的特征

(1)、各象限内点的坐标的特征

点P(x,y)在第一象限:x0

点P(x,y)在第二象限:x0

点P(x,y)在第三象限:x0

点P(x,y)在第四象限:x0

(2)、坐标轴上的点的特征

点P(x,y)在x轴上,y=0 ,x为任意实数

点P(x,y)在y轴上,x=0 ,y为任意实数

点P(x,y)既在x轴上,又在y轴上, x,y同时为零,即点P坐标为(0,0)即原点

(3)、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等

点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数

(4)、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

(5)、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P(x,-y)

点P与点p关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P(-x,y)

点P与点p关于原点对称 横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P(-x,-y)

(6)、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于|y|;

(2)点P(x,y)到y轴的距离等于|x|;

(3)点P(x,y)到原点的距离等于根号x*x+y*y

三、坐标变化与图形变化的规律:

坐标(x,y)的变化

图形的变化

x a或y a

被横向或纵向拉长(压缩)为原来的a倍

x a,y a

放大(缩小)为原来的a倍

x (-1)或y (-1)

关于y轴或x轴对称

x (-1),y (-1)

关于原点成中心对称

x +a或y+ a

沿x轴或y轴平移a个单位

x +a,y+ a

沿x轴平移a个单位,再沿y轴平移a个单

篇7: 初二上册数学知识点总结

一、实数的概念及分类

1、实数的分类

一是分类是:正数、负数、0;

另一种分类是:有理数、无理数

将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数

2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如等;

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

(3)有特定结构的数,如0.1010010001…等;

(4)某些三角函数值,如sin60o等

二、实数的倒数、相反数和绝对值

1、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=―b,反之亦成立。

2、绝对值

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

4、数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

篇8:初二数学上册知识点总结

1、认识二元一次方程组

① 含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程

② 共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组

③ 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解

2、求解二元一次方程组

① 将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法

② 通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法

3、应用二元一次方程组

① 鸡兔同笼

4、应用二元一次方程组

① 增减收支

5、应用二元一次方程组

① 里程碑上的数

6、二元一次方程组与一次函数

① 一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线

② 一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标

7、用二元一次方程组确定一次函数表达式

① 先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。

8、三元一次方程组

① 在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程

② 像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组

③ 三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解.

篇9:初二数学上册知识点总结

商定变量成正比,积定变量成反比。

变化过程商一定,两个变量成正比。

变化过程积一定,两个变量成反比。

判断四数成比例

四数是否成比例,递增递减先排序。

两端积等中间积,四数一定成比例。

判断四式成比例

四式是否成比例,生或降幂先排序。

两端积等中间积,四式便可成比例。

比例中项

成比例的四项中,外项相同会遇到。

有时内项会相同,比例中项少不了。

比例中项很重要,多种场合会碰到。

成比例的四项中,外项相同有不少。

有时内项会相同,比例中项出现了。

同数平方等异积,比例中项无处逃。

根式与无理式

表示方根代数式,都可称其为根式。

根式异于无理式,被开方式无限制。

被开方式有字母,才能称为无理式。

无理式都是根式,区分它们有标志。

被开方式有字母,又可称为无理式。

求定义域

求定义域有讲究,四项原则须留意。

负数不能开平方,分母为零无意义。

指是分数底正数,数零没有零次。

限制条件不唯一,满足多个不等式。

求定义域要过关,四项原则须注意。

负数不能开平方,分母为零无意义。

分数指数底正数,数零没有零次。

限制条件不唯一,不等式组求解集。

解一元一次不等式

先去分母再括号,移项合并同类项。

系数化1有讲究,同乘除负要变向。

先去分母再括号,移项别忘要变号。

同类各项去合并,系数化1注意了。

同乘除正无防碍,同乘除负也变号。

解一元一次不等式组

大于头来小于尾,大小不一中间找。

大大小小没有解,四种情况全来了。

同向取两边,异向取中间。

中间无元素,无解便出现。

幼儿园小鬼当家,(同小相对取较小)

敬老院以老为荣,(同大就要取较大)

军营里没老没少。(大小小大就是它)

大大小小解集空。(小小大大哪有哇)

解一元二次不等式

首先化成一般式,构造函数第二站。

判别式值若非负,曲线横轴有交点。

A正开口它向上,大于零则取两边。

代数式若小于零,解集交点数之间。

方程若无实数根,口上大零解为全。

小于零将没有解,开口向下正相反。

篇10:初二数学上册知识点总结

第一章 勾股定理

1、勾股定理

2、勾股定理的逆定理

若三角形的三边长a,b,c有关系a2+b2=c2,则该三角形是直角三角形。

4、解立体图形上两点之间的最短距离问题

(1)将立体图形展成平面图形

(2)“两点之间线段最短”确定最短路线

(3)最后以上面的最短路线为边构造直角三角形,利用勾股定理解决

例:圆柱表面蚂蚁吃面包:圆柱高的平方+地面周长一半的平方=最短距离的平方

6、直角三角形斜边上的高=两直角边乘积/斜边

第二章 实数

1、实数的分类

2、无理数:

(1)无限不循环小数;

(2)开方开不尽的数,如等

(3)π或化简后含有π的数,(4)有(4)特定结构的数,如0.1010010001…

(5)某些三角函数值,如sin60o等

3、平方根性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

立方根性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

4、二次根号下有意义的条件:根号下是非负数,即≥0

7、实数大小的比较

【2、实数大小比较的几种常用方法

(1) 数轴比较:(2)求差比较:设a、b是实数,

(2) 求商比较法设a、b是两正实数,

(3)绝对值比较法:设a、b是两负实数,则

(4)平方法:设a、b是两负实数,则

8、算术平方根有关计算(二次根式)

1、含有二次根号“”;被开方数a必须是非负数。

2、性质:

位置与坐标

1、各象限内点的坐标的特征

2、和坐标轴平行的直线上点的坐标的特征

平行于x轴的直线上的各点的纵坐标相同。

平行于y轴的直线上的各点的横坐标相同。

3、关于x轴、y轴或原点对称的点的坐标的特征

关于x轴对称即点P(x,y)关于x轴的对称点为P’(x,-y)

关于y轴对称即点P(x,y)关于y轴的对称点为P’(-x,y)

总述,关于哪个轴对称哪个坐标不变,另一个坐标互为相反数

点P与点p’关于原点对称点P(x,y)关于原点的对称点为P’(-x,-y)

4、点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于

(2)点P(x,y)到y轴的距离等于

(3)点P(x,y)到原点的距离等于

篇11:初二数学上册知识点总结

一次函数

我们称数值变化的量为变量(variable)。

有些量的数值是始终不变的,我们称它们为常量(constant)。

在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们说x是自变量(independentvariable),y是x的函数(function)。

如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数。

形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linear function)。正比例函数是一种特殊的一次函数。

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

数据的描述

我们称落在不同小组中的数据个数为该组的频数(frequency),频数与数据总数的比为频率。

常见的统计图:条形图(bar graph)(复合条形图)、扇形图(pie chart)、折线图、直方图(histogram)。

条形图:描述各组数据的个数。

复合条形图:不仅可以看出数据的情况,而且还可以对它们进行比较。

扇形图:描述各组频数的大小在总数中所占的百分比。

折线图:描述数据的变化趋势。

直方图:能够显示各组频数分布的情况;易于显示各组之间频数的差别。

在频数分布(frequency distribution)表中:我们把分成组的个数称为组数,每一组两个端点的差称为组距。

求出各个小组两个端点的平均数,这些平均数称为组中值。

第十三章 全等三角形

能够完全重合的两个图形叫做全等形(congruent figures)。

能够完全重合的两个三角形叫做全等三角形(congruent triangles)。

全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等。

全等三角形全等的条件:三边对应相等的两个三角形全等。(SSS)

两边和它们的夹角对应相等的两个三角形全等。(SAS)

两角和它们的夹边对应相等的两个三角形全等。(ASA)

两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)

角平分线的性质:角平分线上的点到角的两边的距离相等。

到角两边的距离相等的点在角的平分线上。

轴对称

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicular bisector)。

轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线。

线段垂直平分线上的点与这条线段两个端点的距离相等。

由一个平面图形得到它的轴对称图形叫做轴对称变换。

等腰三角形的性质:

等腰三角形的两个底角相等。(等边对等角)

等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)(附:顶角+2底角=180°)

如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

有一个角是60°的等腰三角形是等边三角形。

在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

整式

式子是数或字母的积的式子叫做单项式(monomial)。单独的一个数或字母也是单项式。

单项式中的数字因数叫做这个单项式的系数(coefficient)。

一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree)。

几个单项式的和叫做多项式(polynomial)。每个单项式叫多项式的项(term),其中,不含字母的叫做常数项(constantterm)。

多项式里次数的项的次数,就是这个多项式的次数。

单项式和多项式统称整式(integral expression_r)。

所含字母相同,并且相同字母的指数也相同的项叫做同类项。

把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。

几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项。

同底数幂相乘,底数不变,指数相加。

幂的乘方,底数不变,指数相乘

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

(x+p)(x+q)=x^2+(p+q)x+pq

平方差公式:(a+b)(a-b)=a^2-b^2

完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2

(a+b+c)^2=a^2+2a(b+c)+(b+c)^2

同底数幂相除,底数不变,指数相减。

任何不等于0的数的0次幂都等于1。

分式

如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式(fraction)。

分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方要把分子、分母分别乘方。

a^-n=1/a^n (a≠0) 这就是说,a^-n (a≠0)是a^n的倒数。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

反比例函数

形如y=k/x(k为常数,k≠0)的函数称为反比例函数(inverse proportional function)。

反比例函数的图像属于双曲线(hyperbola)。

当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;

当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

第十八章 勾股定理

勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2

勾股定理逆定理:如果三角形三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

经过证明被确认正确的命题叫做定理(theorem)。

我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

章 四边形

有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

平行四边形的判定:

1.两组对边分别相等的四边形是平行四边形;

2.对角线互相平分的四边形是平行四边形;

3.两组对角分别相等的四边形是平行四边形;

4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

矩形判定定理:

1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

菱形的判定定理:

1.一组邻边相等的平行四边形是菱形(rhombus)。

2.对角线互相垂直的平行四边形是菱形。

3.四条边相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)

正方形的性质:四条边都相等,四个角都是直角。

正方形既是矩形,又是菱形。

正方形判定定理:

1.邻边相等的矩形是正方形。

2.有一个角是直角的菱形是正方形。

一组对边平行,另一组对边不平行的四边形叫做梯形(trapezium)。

等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

线段的重心就是线段的中点。

平行四边形的重心是它的两条对角线的交点。

三角形的三条中线交于疑点,这一点就是三角形的重心。

宽和长的比是(根号5-1)/2(约为0.618)的矩形叫做黄金矩形。

数据的分析

将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

一组数据中出现次数最多的数据就是这组数据的众数(mode)。

一组数据中的数据与最小数据的差叫做这组数据的极差(range)。

方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告

篇12:初二数学上册知识点总结

1、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

2、定理1 关于某条直线对称的两个图形是全等形

3 、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

4、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

5、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

6、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

7、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

8、定理 四边形的内角和等于360

9、四边形的外角和等于360

10、多边形内角和定理 n边形的内角的和等于(n-2)180

篇13:初二数学上册知识点总结

鸡兔问题:已知鸡兔的总头数和总腿数。求鸡和兔各多少只的一类应用题。通常称为鸡兔问题又称鸡兔同笼问题

解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是鸡或全是兔,然后根据出现的腿数差,可推算出某一种的头数。

解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数

兔子只数=(总腿数-2×总头数)÷2

如果假设全是兔子,可以有下面的式子:

鸡的只数=(4×总头数-总腿数)÷2

兔的头数=总头数-鸡的只数

例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?

兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)

鸡的只数 50-35=15 (只)

篇14:初二上册数学知识点总结

81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) ?

82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 ?

83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) ?

84 判定定理3 三边对应成比例,两三角形相似(SSS) ?

85 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 ?

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 ?

86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平?

分线的比都等于相似比 ?

87 性质定理2 相似三角形周长的比等于相似比 ?

88 性质定理3 相似三角形面积的比等于相似比的平方 ?

89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 ?

于它的余角的正弦值 ?

90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 ?

于它的余角的正切值 ?

91圆是定点的距离等于定长的点的集合 ?

92圆的内部可以看作是圆心的距离小于半径的点的集合 ?

93圆的外部可以看作是圆心的距离大于半径的点的集合 ?

94同圆或等圆的半径相等 ?

95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 ?

径的圆 ?

96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 ?

平分线 ?

97到已知角的两边距离相等的点的轨迹,是这个角的平分线 ?

98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 ?

离相等的一条直线 ?

99定理 不在同一直线上的三点确定一个圆. ?

100垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 ?

101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ?

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ?

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 ?

102推论2 圆的两条平行弦所夹的弧相等 ?

103圆是以圆心为对称中心的中心对称图形 ?

104定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 ?

相等,所对的弦的弦心距相等 ?

105推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 ?

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 ?

106定理 一条弧所对的圆周角等于它所对的圆心角的一半 ?

107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 ?

108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 ?

对的弦是直径 ?

109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 ?

110定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 ?

的内对角 ?

111①直线L和⊙O相交 d

②直线L和⊙O相切 d=r ?

③直线L和⊙O相离 d>r ?

112切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 ?

113切线的性质定理 圆的切线垂直于经过切点的半径 ?

114推论1 经过圆心且垂直于切线的直线必经过切点 ?

115推论2 经过切点且垂直于切线的直线必经过圆心 ?

116切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, ?

圆心和这一点的连线平分两条切线的夹角 ?

117圆的外切四边形的两组对边的和相等 ?

118弦切角定理 弦切角等于它所夹的弧对的圆周角 ?

119推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 ?

120相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 ?

相等 ?

121推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 ?

两条线段的比例中项 ?

122切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 ?

线与圆交点的两条线段长的比例中项 ?

123推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 ?

124如果两个圆相切,那么切点一定在连心线上 ?

125①两圆外离 d>R+r ②两圆外切 d=R+r ?

③两圆相交 R-r

篇15:初二上册数学知识点总结

41推论 任意多边的外角和等于360° ?

42平行四边形性质定理1平行四边形的对角相等 ?

43平行四边形性质定理2平行四边形的对边相等 ?

44推论 夹在两条平行线间的平行线段相等 ?

45平行四边形性质定理3平行四边形的对角线互相平分 ?

46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 ?

47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 ?

48平行四边形判定定理3 对角线互相平分的四边形是平行四边形 ?

49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 ?

50矩形性质定理1 矩形的四个角都是直角 ?

51矩形性质定理2 矩形的对角线相等 ?

52矩形判定定理1 有三个角是直角的四边形是矩形 ?

53矩形判定定理2 对角线相等的平行四边形是矩形 ?

54菱形性质定理1 菱形的四条边都相等 ?

55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 ?

56菱形面积=对角线乘积的一半,即S=(a×b)÷2 ?

57菱形判定定理1 四边都相等的四边形是菱形 ?

58菱形判定定理2 对角线互相垂直的平行四边形是菱形 ?

59正方形性质定理1 正方形的四个角都是直角,四条边都相等 ?

60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 ?

61定理1 关于中心对称的两个图形是全等的 ?

62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 ?

63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 ?

点平分,那么这两个图形关于这一点对称 ?

64等腰梯形性质定理 等腰梯形在同一底上的两个角相等 ?

65等腰梯形的两条对角线相等 ?

66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 ?

67对角线相等的梯形是等腰梯形 ?

68平行线等分线段定理 如果一组平行线在一条直线上截得的线段 ?

相等,那么在其他直线上截得的线段也相等 ?

69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 ?

70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 ?

三边 ?

71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 ?

的一半 ?

72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 ?

一半 L=(a+b)÷2 S=L×h ?

73 (1)比例的基本性质 如果a:b=c:d,那么ad=bc ?

如果ad=bc,那么a:b=c:d ?

74 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d ?

75 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 ?

(a+c+…+m)/(b+d+…+n)=a/b ?

76平行线分线段成比例定理 三条平行线截两条直线,所得的对应 ?

线段成比例 ?

77 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 ?

78 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 ?

79平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 ?

80 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 ?

篇16:初二上册数学知识点总结

第一章 勾股定理

1、探索勾股定理

① 勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2

2、一定是直角三角形吗

① 如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形

3、勾股定理的应用

第二章 实数

1、认识无理数

① 有理数:总是可以用有限小数和无限循环小数表示

② 无理数:无限不循环小数

2、平方根

① 算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根

② 特别地,我们规定:0的算数平方根是0

③平方根:一般地,如果一个数x的平方等于a,即x2=a。那么这个数x就叫做a的平方根,也叫做二次方根

④ 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根

⑤ 正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±

⑥ 开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数

3、立方根

① 立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根

② 每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

③ 开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数

4、估算

① 估算,一般结果是相对复杂的小数,估算有精确位数

5、用计算机开平方

6、实数

① 实数:有理数和无理数的统称

② 实数也可以分为正实数、0、负实数

③ 每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大

7、二次根式

① 含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数

② =(a≥0,b≥0),=(a≥0,b>0)

③ 最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式

④ 化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式

第三章 位置与坐标

1、确定位置

① 在平面内,确定一个物体的位置一般需要两个数据

2、平面直角坐标系

① 含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系

② 通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点

③ 建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示

④ 在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限

⑤ 在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应

3、轴对称与坐标变化

① 关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数

第四章 一次函数

1、函数

① 一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数其中x是自变量

② 表示函数的方法一般有:列表法、关系式法和图象法

③ 对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值

2、一次函数与正比例函数

① 若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,特别的,当b=0时,称y是x的正比例函数

3、一次函数的图像

① 正比例函数y=kx的图像是一条经过原点(0,0)的直线。因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可以了

② 在正比例函数y=kx中,当k>0时,y的值随着x值的增大而减小;当k<0时,y的值随着x的值增大而减小

③ 一次函数y=kx+b的图像是一条直线,因此画一次函数图像时,只要确定两个点,再过这两点画直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b

④ 一次函数y=kx+b的图像经过点(0,b)。当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小

4、一次函数的应用

① 一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0

第五章 二元一次方程组

1、认识二元一次方程组

① 含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程

② 共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组

③ 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解

2、求解二元一次方程组

① 将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法

② 通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法

3、应用二元一次方程组

① 鸡兔同笼

4、应用二元一次方程组

① 增减收支

5、应用二元一次方程组

① 里程碑上的数

6、二元一次方程组与一次函数

① 一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线

② 一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标

7、用二元一次方程组确定一次函数表达式

① 先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。

8、三元一次方程组

① 在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程

② 像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组

③ 三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解.

第六章 数据的分析

1、平均数

① 一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。

② 在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数

2、中位数与众数

① 中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数

② 一组数据中出现次数最多的那个数据叫做这组数据的众数

③平均数、中位数和众数都是描述数据集中趋势的统计量

④ 计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

⑤ 中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息

⑥ 各个数据重复次数大致相等时,众数往往没有特别意义

3、从统计图分析数据的集中趋势

4、数据的离散程度

① 实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量

② 数学上,数据的离散程度还可以用方差或标准差刻画

③ 方差是各个数据与平均数差的平方的平均数

④ 其中是x1 ,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根

⑤ 一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

初二数学上册知识点

初二数学知识点

初二数学知识点归纳

初二数学上册教学总结

九年级上册数学旋转知识点总结

初二物理上册知识点

初二地理上册知识点

初二数学下册知识点

初二下册数学知识点

初一数学上册知识点

初二上册数学知识点总结(精选16篇)

欢迎下载DOC格式的初二上册数学知识点总结,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档