【导语】“小白☀️”通过精心收集,向本站投稿了6篇八年级上册数学第一章知识点,以下是小编为大家准备的八年级上册数学第一章知识点,欢迎大家前来参阅。
- 目录
篇1:八年级上册数学第一章知识点
八年级上册数学第一章知识点
因式分解
1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.
3.公因式的确定:系数的公约数?相同因式的最低次幂.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式.
6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.
7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.
分式
1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为 的形式,如果B中含有字母,式子 叫做分式.
2.有理式:整式与分式统称有理式;即 .
3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.
4.分式的基本性质与应用:
(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;
(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;
即
(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.
5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.
6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.
7.分式的乘除法法则: .
8.分式的乘方: .
9.负整指数计算法则:
(1)公式: a0=1(a≠0), a-n= (a≠0);
(2)正整指数的运算法则都可用于负整指数计算;
(3)公式: , ;
(4)公式: (-1)-2=1, (-1)-3=-1.
10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.
11.最简公分母的确定:系数的最小公倍数?相同因式的次幂.
12.同分母与异分母的分式加减法法则: .
13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.
14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.
15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.
16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.
17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.
18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.
学好数学的方法有哪些
1学好初中数学课前预习是重点
数学解题思路和能力的培养主要在于课堂上,所以想要学好初中数学一定要重视数学的学习效率和提前预习。只有提前预习才知道自己哪里不会,这样在课堂上才会注意力集中不走神。同时在初中数学的课上,学生也要紧跟老师的解题思路,注意自己的解题思路和老师的有什么不同。尤其是基础知识和最基本的技能学习,课上数学老师讲完后,初中生要在课后及时复习,争取老师讲完每一节的知识后,学生都不要留下疑问。
2独立完成初中数学作业
在完成老师布置的作业时,初中生要学会自己能够独立完成,想要学好初中数学就要勤于思考,千万不能偷懒。平时对于自己弄不懂的题目和解题思路,不要放弃,静下心来认真分析和研究,尽量做到自己能够解决,实在是想不出来在问同学或者老师。对于初中数学的每一个学习阶段,都要学会进行整理和归纳。
建立数学思维方式
到了初中,数学出现了很多新的知识点,也是重点考点和关键难点,比如系统性的开始学习几何知识,首次引入函数的概念并求解一般的线性函数问题,这些对于初中生来说既是全新的,又是有一定难度的。这就需要学生创新数学思维方式,紧跟教材进度和课堂进度,训练自己的数学思维尤其的几何图形的感觉,以及对函数的深刻理解。
篇2:数学八年级上册知识点第一章
数学八年级上册知识点第一章
1.勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾最短的边、股较长的直角边、弦斜边。
勾股定理又叫毕达哥拉斯定理
2.勾股定理的逆定理:
如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
3.勾股数:
满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用
例题精讲:
练习:
例1:若一个直角三角形三边的.长分别是三个连续的自然数,则这个三角形的周长为
解析:可知三边长度为3,4,5,因此周长为12
(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为
解析:可知三边长度为6,8,10,则周长为24
例2:已知直角三角形的两边长分别为3、4,求第三边长.
解析:第一种情况:当直角边为3和4时,则斜边为5
第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7
例3:一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )
A.斜边长为25
B.三角形周长为25
C.斜边长为5
D.三角形面积为20
解析:根据勾股定理,可知斜边长度为5,选择C
数学学习方法诀窍
1细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2养成良好的解题习惯
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
初中数学全等三角形的判定定理
⑴边边边:三边对应相等的两个三角形全等.
⑵边角边:两边和它们的夹角对应相等的两个三角形全等.
⑶角边角:两角和它们的夹边对应相等的两个三角形全等.
⑷角角边:两角和其中一个角的对边对应相等的两个三角形全等.
⑸斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等
篇3:八年级上册数学第一章知识点
八年级上册数学第一章知识点归纳
一.重点
1.平移,翻折,旋转前后的图形全等.
2.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.
3.全等三角形的判定:
SSS三边对应相等的两个三角形全等[边边边]
SAS两边和它们的夹角对应相等的两个三角形全等[边角边]
ASA两角和它们的夹边对应相等的两个三角形全等[角边角]
AAS两个角和其中一个角的对边开业相等的两个三角形全等[边角边]
HL斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]
4.角平分线的性质:角的平分线上的点到角的两边的距离相等.
5.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上.
二、正数和负数
1、以前学过的0以外的数前面加上负号-的数叫做负数。
2、以前学过的0以外的数叫做正数。
3、零既不是正数也不是负数,零是正数与负数的分界。
4、在同一个问题中,分别用正数和负数表示的量具有相反的意义。
三、有理数
1、正整数、0、负整数统称整数,正分数和负分数统称分数。
2、整数和分数统称有理数。
3、把一个数放在一起,就组成一个数的集合,简称数集。
四、数轴
1、规定了原点、正方向、单位长度的直线叫做数轴。
2、数轴的作用:所有的有理数都可以用数轴上的点来表达。
3、注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
4、性质:(1)在数轴上表示的两个数,右边的数总比左边的数大。
(2)正数都大于零,负数都小于零,正数大于负数。
五、相反数
1、只有符号不同的两个数叫做互为相反数。
2、数轴上表示相反数的两个点关于原点对称。
3、零的相反数是零。
集合的特性
1、确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
2、互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
3、无序性
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
cos是什么意思数学
cos是余弦函数的表达式。余弦函数的定义域是整个实数集,值域是[-1,1]。它是周期函数,其最小正周期为2π,在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。
篇4:八年级上册北师大数学第一章知识点
八年级上册北师大数学第一章知识点
数学勾股定理的由来
勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方。
勾股定理的逆定理
如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边.
①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和a2+b2与较长边的平方
c2作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若a2+b2c2时,以a,b,c为三边的三角形是锐角三角形;
②定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c2,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边.
③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。
数学勾股定理规律方法
1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。
3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。
4.勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a2+b2=c2,那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.
5.应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
如何学好初中数学的方法
1重视课本的内容
书本知识是初中生学习数学最根本的一部分了,初中生一定要重视书本上的知识点,不管是概念还是公式以及书本上的练习题,初中生一定要熟练掌握。初中生要想更熟练的掌握书本的知识点,可以将数学课本的每一章节,从头到尾的仔细阅读,这样可以增加自己对容易忽略的知识点的了解。有很多学生常常会忽略课本的习题,虽然课本的习题很简单,但是考察的知识点却特别有针对性,所以一定要引起学生的重视。
2通过联系对比进行辨析
在数学知识中有不少是由同一基本概念和方法引申出来的种属及其他相关知识,或看来相同,实质不同的知识,学习这类知识的主要方法,是用找联系、抓对比进行辨析。如直线、射线、线段这些概念,它们既有联系又有区别。
3多做练习题
要想学好初中数学,必须多做练习,我们所说的“多做练习”,不是搞“题海战术”。只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广等等。
4课后总结和反思
在进行单元小结或学期总结时,要做到以下几点:一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。
初中数学基本定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
篇5:八年级上册数学第一章三角形知识点
八年级上册数学第一章三角形知识点
相似、全等三角形
1、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
2、相似三角形判定定理1两角对应相等,两三角形相似(ASA)
3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
4、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
5、判定定理3三边对应成比例,两三角形相似(SSS)
6、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
8、性质定理2相似三角形周长的比等于相似比
9、性质定理3相似三角形面积的比等于相似比的平方
10、边角边公理有两边和它们的夹角对应相等的两个三角形全等
11、角边角公理有两角和它们的夹边对应相等的两个三角形全等
12、推论有两角和其中一角的对边对应相等的两个三角形全等
13、边边边公理有三边对应相等的两个三角形全等
14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等
15、全等三角形的对应边、对应角相等
等腰、直角三角形
1、等腰三角形的性质定理等腰三角形的两个底角相等
2、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
3、等腰三角形的顶角平分线、底边上的中线和高互相重合
4、推论3等边三角形的各角都相等,并且每一个角都等于60°
5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
6、推论1三个角都相等的三角形是等边三角形
7、推论2有一个角等于60°的等腰三角形是等边三角形
8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
9、直角三角形斜边上的中线等于斜边上的一半
女生学数学的方法有哪些
1注重打好数学基础
对于学生来说,想要学好数学,那么一定从小打好基础,因为数学是一个非常注重基础,一环扣一环的学科,之前知识上的欠缺也会影响后续的学习,所以对于数学不好的学生来说首先应该做的就是打基础,把自己欠缺的基础都补上,才能更好的进行后续的学习。
2整理笔记
关于数学的笔记我有两本,一个是我们老师总结的一些方法和技巧,一些公式的记忆以及法则概念之类的(这个要好好记!做题的时候经常用到!没有公式做题简直是… )另一本是关于一些好题难题错题典型题,把这些题从纸上剪下来贴到本子上再做一遍,到中考前我把这个错题本又全部重新做了一遍(当然,这个由于太懒,有的题有点三天打渔两天晒网 )
3改进方法,注重学法
在数学学习方法方面,女生比较注重基础,学习较扎实,喜欢做基础题;上课记笔记,复习时喜欢看课本和笔记,比较注重条理化和规范化,因此,教师可以指导女生“开门造车”,主动在小组讨论中发言,让她们暴露学习中的问题,以便于有针对地指导,强化双基训练。对综合能力要求较高的问题,指导她们学会利用等价转换、类比、化归等数学思想,将问题转化为若干基础问题,组织她们学习其他同学成功的经验,参加和高年级同学的帮扶结对活动,改进学习方法,逐步提高能力。另外,平时家长应该给女生多创设一些活动空间,而不仅仅是埋头书本,让她们多一点生活的积累,这对她们解决与生活有关的应用题、提高学习的趣味性有很大的帮助。
4多看辅导书
老师布置的作业我肯定都要做完,但我不会满足于老师布置的作业,我还要看一些辅导书籍;
做一些辅导书籍上的作业,直到我能理解定义、定理和公式的含义,一道题尽量用多种办法去解题,做到举一反三。
初中数学一元二次方程常见考法
1.考查一元二次方程的根与系数的关系(韦达定理):这类题目有着解题规律性强的特点,题目设置会很灵活,所以一直很吸引命题者。主要考查①根与系数的推导,有关规律的探究②已知两根或一根构造一元二次方程,这类题目一般比较开放;
2.在一元二次方程和几何问题、函数问题的交汇处出题。(几何问题:主要是将数字及数字间的关系隐藏在图形中,用图形表示出来,这样的图形主要有三角形、四边形、圆等涉及到三角形三边关系、三角形全等、面积计算、体积计算、勾股定理等);
3.列一元二次方程解决实际问题,以实际生活为背景,命题广泛。(常见的题型是增长率问题,注:平均增长率公式。
篇6:八年级上册生物第一章知识点
无脊椎动物——体内没有由脊椎骨组成的脊柱
(一)腔肠动物
(1)主要特征:生活在水里,身体呈辐射对称;体表有刺细胞,有口无肛门。(2)代表动物名称:水螅、海蛰、海葵、珊瑚虫等。(3)水螅的纵切面示意图,书本P5.(4)水螅触手接触到水蚤时,水蚤挣扎几下不动了,为什么?当活动的水蚤碰到水螅触手的刺针时,刺丝立即从刺细胞中弹出,把其中的毒素射向水蚤,使其麻醉,然后触手一起把水蚤送入口中。
(二)扁形动物
(1)主要特征:身体呈两侧对称;背腹扁平;有口无肛门。 (2)代表动物名称:涡虫、华枝睾吸虫、血吸虫(水域感染)(中间宿主:钉螺)、绦虫(寄生部位:人体小肠内)(米猪肉:含有猪肉绦虫幼虫的猪肉)。 (3)涡虫结构示意图,P6 身体前端呈三角形,背部两侧有一对黑色眼点,只感光,不成像。涡虫的口位于腹面,口内有一个管状的咽,咽可伸出体外,捕食水中的小动物,食物在肠内消化,从口排出,有口无肛门。(4)预防血吸虫病:消灭钉螺;强化粪便管理;个体防护
(三)线形动物
(1)主要特征:身体细长,呈圆柱状;体表有角质层(保护作用);有口有肛门。(2)代表动物名称:蛔虫、线虫、钩虫是寄生生活;秀丽隐杆线虫是自由生活。 (3)预防蛔虫:注意个人卫生(不喝不干净的生水,生的蔬菜瓜果洗净,饭前便后洗手);严格管理粪便(不随地大小便,粪便要处理后做肥料)
(四)环节动物
(1)主要特征:身体呈圆筒状,由许多彼此相似的体节组成;靠刚毛或疣足辅助运动。(2)代表动物名称:蚯蚓、水蛭、沙蚕等 (3)蚯蚓的外部形态:长圆柱形,身体分节(使身体更灵活),体表有黏液,腹部有刚毛,体壁有发达肌肉(4)蚯蚓的运动:刚毛与肌肉配合,肌肉提供运动的动力,刚毛增大与土壤的摩擦力,使蚯蚓能在土壤中钻行。身体变化:蚯蚓的前端先向前移动,身体伸长变细,前段锚定后,身体缩短变粗,拉动后端向前,逐渐向前移动。(5)蚯蚓的呼吸:体壁毛细血管里的气体可与溶于体表黏液中的气体进行交换(气体交换示意图)。(6)蚯蚓与人类的关系:1、蚯蚓在土壤里活动,使土壤疏松,改良土壤;2、能提高土壤肥力;3、是优良的蛋白质饲料和食品;4、处理有机废物。(7)蚯蚓中,有环带的一端为前端
(五)软体动物(动物界第二大类群)
(1)主要特征:柔软的身体表面有外套膜,大多具有贝壳,运动器官是足(蜗牛的是腹足,河蚌的是斧足)。 (2)常见的软体动物有:河蚌、蜗牛、乌贼(贝壳退化)和章鱼(贝壳退化)(3)与人类的关系:有益:食用、药用(乌贼的壳:海螵蛸,鲍的壳:石决明)、工艺品 有害:有的危害农作物,传播疾病,如钉螺是日本血吸虫的中间寄主。 (4)河蚌内部结构图及相关结构 P12 (外套膜及贝壳—保护作用;足—运动;鳃—与水流进行气体交换完成呼吸;出水管和入水管—食物和气体进出的通道。珍珠在外套膜形成,贝壳是由外套膜分泌的物质形成的) (5)珍珠的形成:当外套膜受到微小砂粒等异物侵入时,受刺激处的上皮细胞即以异物为核,分泌珍珠质,一层又一层地将核包住,逐渐形成珍珠。(六)节肢动物(动物界第一大类群) (1)主要特征:体表有坚硬的外骨骼,身体和附肢都分节。(2)代表名称:虾、蟹、蜘蛛、蜈蚣、苍蝇、蝗虫等。(3)昆虫(地球上种类和数量最多的动物)(节肢动物中种类最多和唯一会飞的动物)A主要特征:身体分为头、胸、腹部(头部负责感觉和摄食,有一对触角、三个单眼、一对复眼、一个口器;胸部是运动中心,有三对足,两对翅;腹部集中容纳内脏器官,有气门用于呼吸);体表还有外骨骼。外骨骼的优点:保护;防止体内水分蒸发。外骨骼的缺点:会限制昆虫的发育和长大,故蜕皮。B代表动物名称:蜜蜂、蜻蜓、蝉、瓢虫、螳螂、菜粉蝶、家蚕等。
八年级上册数学第一章知识点(合集6篇)




