加法的意义和加法交换律(人教版四年级教案设计)

时间:2023-02-28 04:02:34 作者:姚润薅点韭菜精 教案 收藏本文 下载本文

【导语】“姚润薅点韭菜精”通过精心收集,向本站投稿了13篇加法的意义和加法交换律(人教版四年级教案设计),下面小编为大家带来整理后的加法的意义和加法交换律(人教版四年级教案设计),希望大家喜欢!

篇1:加法的意义和加法交换律(人教版四年级教案设计)

教学目标

1.使学生理解加法的意义,并会应用解答实际问题.

2.进一步认识加法算式中各部分的名称以及明确0在加法中的特殊性.

3.使学生理解并掌握加法交换律并能运用这一定律进行验算.

教学重点

使学生对加法的意义的建立,加法交换律的概括及对它们的理解、掌握.

教学难点

学生对加法意义、加法交换律运用.

教学步骤

一、铺垫孕伏.

1、口算.

44+56 37+23 180+20 42+8+10

12+0  0+17  386+124  124+235

2、导入:以前我们学过了加法的计算方法,这节课我们还要进一步学习、掌握加法的一些规律性知识,这将对我们以后的学习有很大帮助.

二、探究新知.

(一)教学加法的意义.

1、加法的意义.

(1)例1 一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?

教师提问:这题怎样解答?

(因为已知北京到天津铁路长是137千米,又知道天津到济南的铁路长是357千米,要求北京到济南的铁路长,就是把137与357合起来,所以要用加法计算.)

教师提示:把137与357合并起来用加法计算,加法是什么样的运算呢?

(板书:两个数合并成一个数的运算就叫加法)

教师明确:这就叫加法的意义.

(板书:加法的意义)

(2)练习:小强有125枚邮票,小明有75枚邮票.小强和小明一共有多少枚邮票?

说明理由:已知小强与小明的邮票张数,要求小强与小明共有多少张邮票,就是把两人的邮票数合并起来.加法就是把两个数合并成一个数的运算,所以这道题要用加法计算.

2、加法等式中各部分名称.

教师提问:我们已经学过加法各部分的名称,在137+357=494算式中,各部分的名称是什么?(板书:加数 加数 和)

3、有关0的加法.

教师提问:一个自然数和0相加,得到的和与加数比较会怎样呢?有关0的加法可有

哪几种情况呢?

小结:任何数和0相加都得原数.

(二)教学加法交换律

1、教师谈话:通过以上学习,我们知道了加法的意义,加法各部分的名称以及有关0的加法的特殊性.除此之外,关于加法的运算还有一些基本性质,它对我们以后的计算将起到很大的作用.

2、教师提问:137+357=494(千米),表示求的是什么?

如果要求济南到北京的铁路长又该怎样列式计算呢?

357+137=494(千米)

3、引导学生观察,比较两种解法的结果.

教师板书:137+357=357+13

4、出示例2,引导学生归纳规律.

18+17○17+18

124+235○235+124

0+25○25+0

规律:

①每个等式中,每组算式中有两个加数,而且两个加数相同,只是交换了位置.

②每个等式中,左右两边的加数的和相等.

教师说明:两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律.

教师强调:我们要看一些等式哪些符号不符合加法交换律就必须看两个加数的位置变不变,它们的和变不变.当然前提是等号两边的两个加数必须相同.

5、练习:判断:下面各等式运用了加法交换律,对吗?为什么?

9+7=7+9 10+1=10+1

20+8=2+26 2+0=0+2

6、用字母表示加法交换律.

教师指出:以上我们学习了加法的交换律,并运用它做了练习,这一定律若用字母该怎样表示呢?

教师强调:用字母表示这一运算定律更简单清楚.如果用字母a和b分别表示两个加数(注意:a、b是拉丁字母),在这我们读作“ei”和“bi”,(教师领读几遍,提醒学生不要按汉语拼音来读)

教师板书:a+b=b+a

提醒注意:a与b可以表示0、1、2、3、……中任意整数,如1+2=2+1,9+20=20+9等,所以a+b=b+a表示任意两个数相加,交换加效的位置,和不变.而像这些(指其中的等式)一个用数字表示的等式只能表示两个具体的数,交换位置,和不变.a+b=b+a这一公式表示的一类所有符合条件的式子,交换加数位置,和不变.

篇2:四年级下册《加法交换律》教案设计

设计说明

加法交换律的学习是在学生已经掌握了加法的意义,积累了大量的用交换两个加数的位置进行验算的知识经验的基础上进行教学的,因此,本节课的学习对于学生来说并不困难。本节课的教学教师注重唤醒学生的已有认知,借助归纳和演绎推理,引导学生自主发现加法交换律。具体设计如下:

1.创设情境,唤醒认知经验。

数学知识的学习是螺旋上升的,任何一个新知的学习都能在旧知的基础上找到生长点,因此,数学的学习实际就是同化和顺应的过程。新课伊始,教师为学生呈现“李叔叔骑车旅行”的`生活化情境,并引导学生根据数学信息,借助已有的加法知识提出数学问题:李叔叔今天一共骑了多少千米?并提出不同的列式解答方法。学生在熟悉的情境中,自觉调动已有认知经验解决问题,使新知的学习植根于学生已有的知识基础上。

2.遵循教学主线,教给学生学习方法。

遵循这样一条教学主线:发现规律―验证规律―应用规律。在教学加法交换律时,先引导学生从解决情境图的实际问题中发现规律,再引导学生验证这个规律,最后应用规律来解决一些问题,这也是学习数学的一种很好的方法。学生如果能真正掌握这种方法,并能把这种方法应用到以后的学习生活中去,可以受益终生。

3.关注运算定律的形式化表达,培养学生的抽象能力和模型思想。

让学生用自己喜欢的方式把加法交换律表示出来,用文字、符号、字母都可以,并不加以限制,这样有利于培养学生的符号意识,提高学生的抽象概括能力,为以后学习用字母表示数打下基础,同时,也有助于学生发散性思维的训练。

课前准备

教师准备 多媒体课件

教学过程

⊙创设情境,导入新课

师:同学们,你们喜欢旅游吗?(喜欢)

师:你们打算去什么地方旅游呢?(生汇报)

师:看来喜欢旅游的同学还真不少,有谁骑车旅行过呢?(生举手表示)骑车旅行不仅能锻炼身体,还能开阔视野,给我们带来好心情。瞧,李叔叔正骑车旅行呢!(播放课件)

你从中获取了哪些信息?和你的同桌互相说一说。(同桌交流)

师:谁愿意把你获取的信息和大家分享一下?

预设

生1:李叔叔准备骑车旅行一个星期。

生2:李叔叔今天上午骑了40 km,下午骑了56 km。要求李叔叔今天一共骑了多少千米。

师:说得不错!今天我们就来解决这个问题。

设计意图:从创设贴近学生生活实际的情境出发,让学生观看情境图并自主搜集信息,可以培养学生看图搜集信息的能力。

⊙自主探究,寻找规律

(课件出示例1)

1.解决问题,发现规律。

(1)独立计算,汇报结果。

师:在练习本上算一算李叔叔今天一共骑了多少千米。(学生独立计算)

师:谁来汇报一下自己解决问题的方法和结果?

(生汇报,教师板书)

预设

生1:用李叔叔上午骑的路程加上他下午骑的路程就是他今天一共骑的路程。40+56=96(km)。

生2:用李叔叔下午骑的路程加上他上午骑的路程也是他今天一共骑的路程。56+40=96(km)。

(2)引导学生观察算式,比较这两种算法。(出示课堂活动卡)

师:请同学们观察这两个算式,说说你有什么发现。

(相同点:两个算式都可以求出李叔叔今天一共骑了多少千米;不同点:两个算式的加数交换了位置)

(3)思考:你能表示出这两个算式的关系吗?

[课件出示:40+56( )56+40]

师:想一想,( )里能填什么符号?(课件出示:=)

设计意图:引导学生观察,发现两种算法的相同点与不同点,从而确定这两个加法算式的关系,进而使学生对加法交换律有了感性认识,培养了学生的发现意识。

2.验证、总结加法交换律。

(1)思考:这一组算式交换了两个加数的位置,它们的和没有变,是不是任意两个数相加,都有这样的规律呢?谁能任意说出一个加法算式来验证一下呢?(18+17=17+18)

(2)验证。

师:这两个数相加符合这个规律,其余的数是不是也符合这个规律呢?请同学们在练习本上举几个例子并验证,然后在小组内交流一下。(小组内交流汇报,教师板书)

预设

生1:28+71=71+28,这两个算式的加数相同,只是交换了位置,它们的和都是99,所以这两个算式用等号连接。

生2:36+54=54+36,加数相同,位置不同,但是这两个算式的结果都是90,所以这两个算式用等号连接。

篇3:加法的意义和加法交换律

例1(略) 7+0=7 0+7=7 0+0=0

(画示意图) 一个数加上0,还得原数

137+357=494(千米)

137+357=494(千米) 137+357=357+137

加数 加数 和                              18+17㈡17+18

答:(略)               两个数相加,交换加数的位置,它们的和不变,这就是加法交换律。

把两个数合并成一个数的运算,叫做加法。   a+b=b+a

篇4:数学教案-加法交换律

教学内容:六年制小学数学第七册第22页。

教学目标

1.能从实际例子中,观察、概括出加法交换律。

2.理解掌握加法交换律,会用字母公式表示加法交换律。

3、提高观察、概括能力。

教学过程

(一)呈现事实,形成问题

1.出示准备题:

27+73      73  +27

58+37      37+58

2.学生计算得数。

3、请学生观察两组算式,说说有什么发现?是否任意一个加法算式中调换两个加数的位置,都会出现和不变的现象?

4、根据学生回答板书:猜想――两个数相加,交换加数的位置它们的和不变。

5.问题:这个猜想正确吗?

(二)验证猜想,形成结论

1,验证我们的猜想是否正确,我们可以举更多的例子,符合猜想的例子越多,猜想将被认为越可靠。

女生完成:3024+76     96+237

男生完成:76+3024     237+96

学生汇报答案。加数相同,调换位置,得数也相同,符合猜想。

2、同学自己设计一组式题验证,小组交流结果,汇报结论。

3、这种猜想看起来比较可靠,但我们不可能把符合猜想的例

全部举完过就给我们的证明留下了遗憾,有没有其他的办法呢?我们来看生活实例。

例:一家电影院,走廊的左边是476个座位,走廊的右边有518个座位,一共有几个座位,(用两种方法计算)

(1)口答列式:476+518      518+476

为什么这样列式?

(2)判断:得数会相同吗?

(3)计算结果,得出结论:476+518=518+476

为什么会相等呢?固为根据加法的.意义,这两个算式都是把两个相同的部分数合并起来,所不同的只是加数在算式中的位置,它们的意义是一样的。所以,在加法算式中,交换加数的位置,和不变。

4.揭题:这就是我们今天要学习的“加法交换律”(板书)

5.学生自学书本、质疑。

6.小结:

(1)什么是加法交换律?

(2)用字母a、b表示加法交换律。板书:a+b=b+a

(三)应用成果,巩固新知

1.学习加法交换律的最终目的是用。

问:验算加法,我们用什么方法?根据什么?

2.“练一练”1,先计算出得数,再用加法交换律进行验算。

问:验算方法运用什么运算定律?

3、“练一练”

(1)分组完成。(每组一生板演,比赛形式进行)

(2)指名说出验算方法和根据。

4、放录音、做游戏――“我该在什么位置”

470+830=830+    101     3+214=       十

256+214=          +256               十 367=367 +

(1)将卡片470、880、1013、214、58、58发给六个同学。

(2)伴随音乐,寻找自己的位置,并贴上。

(3)小结:这些算式都用等号连接,两边都有相同加数,那就意味着另一个加数也相同,我们并用了加法交换律。

(四)反思过程,学会学习

1.这节课我们发现了什么?是怎样获得证明的?  (举例证明一意义论证) 2.这一规律已有哪些运用?

3.质疑:满足“和不变”这一要求,有没有其他可能?

如:37+73=     +          在     中可以填哪些数据?

(五)作业

篇5:《加法交换律》说课稿

本课是苏教版小学数学四年级上册第56—58页运算律第1课时,是一节新授课。教学内容有两个:一个是加法的交换律,另一个是加法的结合律。例题主题图是“28个男生在跳绳”、“17个女生在跳绳”、“23个女生在踢毽子”。通过提问:“跳绳的有多少人?”引入加法交换律;通过提问:“参加活动的一共有多少人?”引入加法结合律的教学。运算律是小学数学最基础的一种规律性知识,学习加法的运算律,不仅有助于加深对加法计算方法的理解,还能使一些计算简便,而且以后学习也要经常用到。因此,在教学中我们积极引导学生学好这一部分知识。

设计本课教学的基本思想:

一是紧密联系学生的生活实际,引导学生在已有经验的基础上发现和归纳出运算律。

二是重视让学生在探索中经历运算律的发现过程,大致应该经过以下几步:观察、猜测、举例、验证,得到规律。

三是让学生在具体的情境中逐步学会合理灵活地应用运算律,使计算简便。

因此教学目标制定如下:

1.使学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,并初步感知加法运算律的价值。

2.使学生在学习用符号、字母表示自己发现的加法运算律的过程中,初步发展符号感,初步培养分析、比较、抽象、概括的思维能力。

3.使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识与习惯。

下面说说主要的教学过程及设计意图。

课前:创设了一个“朝三暮四”的故事情景,调动学生的学习热情,通过这个情境让学生们在笑猴子受骗的同时也得到了一点启示,同时通过此例使得学生在愉悦的氛围中轻松提前感知了加法交换律。

参考县里的小学数学新授课“激趣·引探·释疑·导练·启思”教学模式,本课的教学过程主要分成四个大环节。

一、情境激趣——提出问题

通过谈话“学校每天上午都会进行大课间活动,你们喜欢大课间活动吗?瞧,这些同学也在开展活动呢”然后,让学生自由地提问,培养学生的发散性思维和问题意识。学生提出的一些问题,为后面的探究学习做了素材提供与铺垫。创设情境是为了引出问题,情境要为问题服务。这里的的设计,既有学生的提问,又考虑到教学内容的提问,做到了教学内容与学生思维对接,也符合新课程“创造性使用教材”的理念。

二、尝试探索——互动释疑

(一)探索加法交换律

1.解决第一题“跳绳的有多少人?”由问题得到两个算式,计算结果相等,写成等式28+17 = 17+28

2.解决第二题“女生有多少人?”由问题再次得到两个算式,写成等式,加强感知

3.举更多案例

我以为,教学运算律主要让学生经历不完全归纳的过程,我想努力让广阔的数学王国展现在学生的视野中,一位数加一位数、两位数加一位数、两位数加两位数,甚至更大的数和特殊的0,都满足这样的规律。

对于运算律的教学,不少教师只注意让学生举出实例进行验证,而忽视了能否找到反例的问题。对于不完全归纳法来说,举出的正例越多,则意味着结论的可靠性越大;但若发现了一个反例,则可推翻结论。因此,我设提了“刚才老师和同学们举了这么多例子,有没有不符合这个规律的例子?”这个问题,学生通过无法找到反例,加深了对结论可靠性的认识。在这个过程中,学生不仅获得了数学结论,更重要的是学到了获得数学结论的思想方法和体悟到科学研究方法的严谨性。

4.概括规律

教学运算律,有效地引导学生进行概括与提升是教学的关键。虽然新课程现在不要要求学生用完整的语言叙述加法交换律,但我觉得适度的强化语言表述对于理解和表达式有好处的。因此,我指黑板上等式问:那谁来说说,像这样的等式,都有什么共同的特点?(生自由说)大家看,等式的左边和右边都是几个数相加?(两个)两个数相加,交换加数的位置,它们得数和变不变?(和不变)谁能连起来说一说这个规律?哪个会?引导学生大致说到:两个数相加,交换加数的位置,和不变。

5.表达规律

根据教材的要求,让学生用自己喜欢的方式表达对规律的认识,让学生经历由数上升到用符号、字母表示的一种抽象过程,既是对加法交换律的概括与提升,又能发展符号感。学生在此过程中感受到了方法的形成,并且能把这种方法迁移到加法结合律的学习上。这也就是完成一个培养学生符号意识的任务(指能够理解并且运用符号表示数、数量关系和变化规律)

6.回顾旧知

得出加法交换律和结合律后,我启发学生回顾一下以前学习什么知识时已用过了这两个规律,以利于学生巩固知识,形成知识结构。

(二)探索加法结合律

也是差不多教学流程。

有一点说明,就是:学生在得出(28+17)+23=28+(17+23)后,教师没有要求让学生自己写出这样的等式,而是出示了类似结构的几组等式,引导学生通过算一算,思考这些等式之间是否相等。毕竟,加法结合律这一数学模型相对而言要复杂些,由学生举例有一定困难。

三、分层练习、巩固深化

当我们的教学使学生经历了在情境中提出问题,在问题的控制下解决问题之后,为了促进学生对知识的掌握,并形成技能,教学要十分重视设计新知学习过程中的基础性练习和探究新知后的变式练习、发展性练习,巩固学生对新知的掌握和理解,培养他们运用新知解决实际问题的能力。

(一)基本题

1.完成“想想做做”第1题。

下面的等式各应用了什么运算定律?

2.完成“想想做做”第2题。

你能在□里填上合适的数吗?

这里就是,借助媒体演示加数交换和结合过程,充分发挥了多媒体的优势,让学生把抽象的思维过程转化成了形象的思维过程,突破了难点。

(二)提高题

1.游戏“快速反应”。

通过这道题,你对同学们有什么想说的?(看题要仔细)

2.比赛。

⑴不公平

⑵公平

师指出:看来,运用刚才所学的加法运算律进行凑整,凑成整百数再加,可以使计算简便!

⑶凑整专项练习(完成“想想做做”第5题)

师:你能很快找出哪两片树叶上数的和是100吗?培养学生凑整的意识和能力。

四、总结全课——拓展启思

1.全课总结。

2.阅读质疑。

引导学生回顾课堂学习的内容,进行归纳总结,看书内化,比较反思,让学生体验成功。

3.练习启思。

“考考你”:在下面的○里填上合适的运算符号。

4○10=10○4(2○3)○5=2○(3○5)

在恰当的练习中,发现新的问题,引出“加法有交换律和结合律,乘法是否也有交换律和结合律呢?”为后续学习打下伏笔。这样,既总结当课的教学内容,又产生悬念,把课堂延伸到课外,激发学生强烈的求知欲望,激励学生在今后的学习中不断地探索、发现、创新。

篇6:《加法交换律》说课稿

加法的交换律和结合律一课在人教版和苏教版中都是布置在四下上这个内容,在现在的苏教国标版教材也是布置在四年级。加法的交换律和结合律一课是属于第二学段中的数的运算中的一个重要内容。是在同学经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。同学从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律结合律的基础。

新教材布置这两个运算律都是从同学熟悉的实际问题的解答引入,让同学通过观察、比较和分析,找到实际问题不同解法之间的一起特点,初步感受运算规律。然后让同学根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示动身现的规律,笼统、概括出运算律。教材有意识地让同学运用已有经验,经历运算律的发现过程,让同学在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。新教材教学目标:

1、知识技能目标:使同学理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。使同学在学习用符号、字母表示自身发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高笼统思维能力。

2、过程方法目标:使同学经历探索加法交换律和结合律的过程,通过对熟悉的实际问的解决,进行比较和分析,发现并概括出运算律。

3、情感、态度、价值观目标:使同学在数学活动中获得胜利的体验,进一步增强对数学的兴趣和信心,初步形成独立考虑和探究问题的意识、习惯。

教学重点:使同学理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:使同学经历探索加法结合律和交换律的过程,发现并概括出运算律。

旧教材教学目标:

1、使同学理解并掌握加法交换律和结合律。

2、使同学理解和掌握加法交换律与加法结合律的异、同点,和其特点。

3、能利用加法的交换律进行加法的验算。

4、培养同学观察、概括、分析推理的能力。

教学重点:引导同学概括、总结加法的加法交换律和结合律,会用字母表示。

教学难点:在理解的基础上概括加法交换律和结合律,并能用文字和字母表示。

从新旧教材的目标比较以和例题设计中可以看出两者的目标定位是不一样的。

1.旧教材的目标比较单一,主要的目标是知识技能方面的目标,如能口头表达加法交换律和结合律的意义,能用字母去表示,并会运用于验算。新教材的目标设定不只仅体现了知识技能方面的目标,更多的体现了过程和方法,情感态度方面的目标以和对于数学思想方法(不完全归纳法,符号感)的渗透。目标的设定是使各项目标与具体的学习相结合起来,成为一个有机的整体。

2.旧教材的目标体现不出教学的方法和同学的学法,而新教材的教学目标中能体现出一些具体的做法,如通过对熟悉的实际问的解决,经历探索加法交换律和结合律的过程,数学活动过程始终作为重点贯穿与教学中。

韩玲老师在上加法的交换律和结合律这课时,也充沛考虑到了新旧教材目标定位的不同。从课堂的引入韩老师就以最贴近生活的实际体育要闻十运会金牌数为题,一下子激起了同学学习的“兴奋点”,很自然的进入了后面的学习。在同学提出一些列的数学问题并列出算式之后,教师开始引导同学比较和分析这两道算式之间有什么相同的地方?有什么不同的地方?可以用等号连接吗?问:观察黑板上的这三道等式,你发现了什么规律?问:是不是其他的数之间也存在这种规律呢?请你再举一个这样的例子验证验证。举了这么多的例子,你找到规律了吗? 这个规律用语言叙述比较长,你能够用自身喜欢的方式把这个规律简单明了地表达出来吗?(生口述,教师板书)在这样一个教师引导,同学进行比较、分析、举例、验证,表达的过程中,充沛发挥了同学主体的作用,也让同学感受到了发现规律的一般过程,从而达到经历过程,讨论提升,归纳概括的目的。结合律的教学过程则更多的体现了同学自主探索,推导,验证的一个完整过程。

新教材的目标设定和教学过程,更多的体现了动态生成,寓数学考虑,探究,发现于一体的数学活动过程,教师只有掌握住了这个精髓才干去上好课,发展同学的综合能力。

篇7:加法的意义和运算定律(人教版四年级教案设计)

教学目标

(一)使学生理解加法的意义,并能在实际计算中应用.

(二)使学生掌握加法交换律,并会应用定律进行验算.

(三)培养学生观察、比较、概括推理的能力.

教学重点和难点

由于学生对加法的计算已经比较熟悉,对加法的意义及加法交换律也有了感性认识,所以这节课就是要明确地概括出加法的意义及加法交换律,使学生的认识由感性上升到理性.因此教学重点应放在引导学生概括、总结加法的意义及加法交换律的过程中.由于学生对抽象概括定义、定律重视不够,又不习惯于用加法意义进行说理,因此这也是教学的难点.

教学过程设计

(一)复习准备

1.口算.

39+47  83+15  420+180

47+39  15+83  180+420

2.口答.

(1)小明栽了18棵杨树和14棵柳树,他一共栽了多少棵树?

(2)小敏做了25朵红花,做的黄花比红花多5朵.做黄花多少朵?

(3)赵强读一本书,已经读了46页,还有58页没读,这本书共有多少页?

(二)学习新课

师:我们已经学过了加法的计算方法,今天要在学加法知识的基础上,明确概括出加法的意义,并且能应用它解答实际问题.(板书:加法的意义和运算定律)

1.教学加法的意义.

(1)例  一列火车从北京过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?

读题后,师生共同完成线段图:

学生独立解答:

137+357=494(千米)

加数 加数 和

答:北京到济南的铁路长494千米.

提问:

①这道题为什么用加法计算?

②加法是一种什么样的运算?

③要合并的两个数指的是什么数?合并成的一个数指的是什么数?

引导学生明确:要求北京到济南铁路的长度,就要把北京到天津的铁路长137千米和天津到济南的铁路长357千米这两个数合并起来,所以要用加法计算;加法是求两个数合并成一个数的运算;要合并的两个数是137千米和357千米,合并成的一个数是494千米.

启发提问:加法的意义是什么?说说看.

引导学生概括出加法的意义:“把两个数合并成一个数的运算,叫做加法”.

教师板书加法的意义.

练一练

练习十一第1题,应用加法的意义说明各题为什么用加法计算.

在学生独立计算的基础上,教师强调要合并的两个数和合并成的一个数分别指的是什么数,从而让学生更深刻理解加法意义,并会运用它解决实际问题.

(2)教学加法各部分名称.

提问:例1中的137和357在等式中叫什么数?(加数)它们相加得到的494叫什么数?(和)

教师板书.(写在例1算式的下面)

教师联系加法意义说明:相加的两个数也就是要合并的两个数,叫做加数,加得的数也就是合并的结果,叫做和.

反馈提问:你能根据加法的意义说明72+28=100这个算式的各部分名称吗?

(3)加法中有关0的问题.

提问:

①我们例1做的加法,两个加数是什么样的数?(是自然数)

②任何两个自然数相加的和与加数比较会怎样?(相加的和会比原自然数大)

③0和一个自然数相加的和会怎样呢?(0和自然数相加还得原来的自然数)

引导学生讨论:

0的加法可能有哪几种情况?举例说明.

在学生讨论的基础上,使学生明确:一个数加上0,还得原数.

(4)阅读课本第47页“加法的意义”.

2.教学加法交换律.

根据加法的意义引出加法交换律.

提问:

(1)我们刚才计算例1时,求济南到北京的铁路长用137+357,根据加法的意义还可以怎么算?(还可用357十137)

(2)观察比较一下,这两种解法的结果,能得出什么结论?(可以得出:相加的两个加数交换位置,和不变.也可说出这是两个相等的式子,写成137+357=357+137)

教师指出:我们不能只根据一个例子就得出结论,我们必须多参考几组不同的数目.

(3)出示 18+17○17+18

350+150○150+350

274+100○100+274

873+127○127+873

提问:

①观察每组算式有什么关系?○里应填什么符号?

引导学生明确:每组算式里加数是一样的,和也一样,每组两个算式是相等关系,○里应填“=”.

②这几组算式有什么共同特点?你发现了什么规律?

引导学生明确:这几组算式的共同点是,两个数相加,其结果只与加数的大小有关,而与这两个加数的顺序无关.因此可以得出:交换加数的位置,它们的和不变.

教师明确:你们发现的这个规律,就叫做加法交换律.

板书:“两个数……,它们的和不变.”

教师继续指出:上述几组算式说明,每组等式只能表示两个具体的数交换位置和不变,但不能表示任意整数.大家想一想,怎样用字母把加法交换律表示得既简单又清楚呢?

学生看书自学:第48页.

反馈提问:

什么叫加法交换律?怎样用字母公式表示?过去在什么地方应用了这个定律?

教师板书加法交换律的字母公式:

a+b=b+a

引导学生小结出:过去学过的加法的验算方法既可以用交换加数的位置再加一遍,也可以利用原来的竖式从下往上加一遍.

教师指出:学习了加法交换律,可以进行加法验算,要会运用定律.

练一练

现在用你们学过的知识做第48页的“做一做”.

订正题时要说出根据,以进一步巩固加法交换律的概念及其应用.

3.总结.

(1)说一说加法的意义是什么?

(2)什么叫加法交换律?它的字母公式是什么?怎样应用加法交换律?

(三)巩固反馈

1.口答.(用加法意义说明算法)

玉门县要修一条公路,已经修了400千米,还有260千米没修,这条公路有多少千米?

2.下面各式哪些符合加法交换律?

140+250=260+130  260+450=460+250

20+70+30=70+30+20 a+400=400+a

3.根据运算定律在“□”里填上适当的数.

(1)□+55=55+42  (2)a+44=□+□

(3)38+35=□+38  (4)48+□=72+□

订正时,要求学生严格按照定义、定律来加以说明.

(四)作业

练习十一第2~4题.

课堂教学设计说明

加法是数学中最基本的运算方法之一.在前三年中学生已经学会加法的计算方法,对加法的意义也有了感性认识,这节课就是在学生已经学过的加法知识的基础上,明确概括出加法的意义,使学生对加法的认识从感性上升到理性.不仅理解加法的意义,而且还能用它解决实际问题;不仅概括出加法运算定律,而且进一步用字母式子表示,为以后学习“用字母表示数”打下基础.

由于本节知识都是在已学的基础上进行的,因此要突出观察、比较、抽象、概括的过程.新课分为两部分.第一部分学习加法的意义,通过学生独立解答例题后,在讨论的过程中,明确加法是一种什么样的运算,从而引导学生概括出加法的意义,并用加法的意义对具体问题进行说理,以加深学生对加法意义的理解和应用;第二部分学习加法交换律,通过对例题的不同解法及对几组算式的观察、比较,找出它们的共同点,启发学生总结出一般规律.在教学过程中,力争充分体现学生参与学习的全过程,并在其中使学生的观察,概括能力得到提高.

本节课采取边讲边练的形式,及时反馈,目的明确,最后再进行综合练习,以加深学生对概念的理解和应用.

板书设计

加法的意义和运算定律

例1  一列火车,从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?

137+357=494(千米)

加数加数和

357+137=494(千米)

答:北京到济南的铁路长494千米.

把两个数合并成一个数的运算,叫做加法.

18+17  17+18

350+150  150+350

274+100  100+274

873+127  127+873

两个数相加,交换加数的位置,它们的和不变.这叫做加法交换律.字母公式:

a+b=b+a

篇8:课题一:加法的意义和加法交换律

课题一:加法的意义和加法交换律

教学内容:教科书第48―49页的内容,练习十一的第1―4题。

教学目的:

1.使学生在已学过的加法知识的基础上,概括出加法的意义,对加法的认识从感性上升到理性。

2、使学生理解并掌握加法交换律。

教学重点:加法的意义

教学难点 :加法交换律

教具准备:小黑板

教学过程 :

一、教学加法的意义

教师:我们在前三年已经学过加法的计算方法,现在要进一步学习、掌握加法的一些规律性知识,这些知识对以后学习有很大帮助。

1、加法的意义。

(1)教学例1。

教师出示例1,让学生读题,边指名说出条件和问题,教师边用线段图表示出数量关系。

137千米      357千米

北京      天津                济南

然后让学生自己解答,解答后,说一说为什么用加法计算。(因为已知北京到天津的铁路长137千米,又知道天津到济南的铁路长357千米,要求北京到济南的铁路长,就要把两段铁路长合并起来,出就是要把137和357合并起来,所以要用加法计算。)教师边重述用加法算的理由,边板书出算式和答案。现进一步提问:

“加法是什么样的运算?”

在此基础上,教师给出加法的意义:把两个数合并成一个数的运算叫做加法。

(2)做练习十一的第1题。

要让学生应用加法的意义说明各题为什么用加法计算。如第1小题,可以启发学生说出:因为已知小强和小明邮票的张数,要求小强和小明一共有多少张邮票,就要把他俩的邮票张数合并起来,加法就是把两个数合并成一个数的运算,所以这道题要用加法计算。

2.加法各部分的名称。

教师指着137+357=494,提问:

137和357在加法算式中叫什么数?(加数。)

它们相加得到的结果494叫什么?(和。)

然后教师联系的意义说明:相加的`两个数叫做加数,加得的数也就是合并的结果叫做和。边说边对应地板书出:

1 3 7 + 3 5 7 =4 9 4

加数+加数=和

提问:

“我们上面做的加法,两个加数是什么样的数?”(自然数。)

“任何两个自然数相加得到的和都比加数怎样?”(大。)

“一个自然数和0相加得到的和怎样呢?”(还得原数。)

“你能举出一个自然数和0相加的几个例子吗?”

教师把学生举出的例子板书出来。(如,3+0=3,0+4=4,0+0=0)

然后接着问:

“0和0相加会怎样?”(还得0。)

“人上面的例子我们可以看出一个自然数和0相加还得这个自然数,0和0相加还得0,也就是说任何数和0相加都怎样?”(得原数。)

二、教学加法交换律

教师:加法运算有一些基本性质,对我们以后的计算很有用。下面我们就来学习加法的一个运算定律。

1、结合例1的两种解法,引导学生比较它们的特点。

提问:

“上面”的例1,求北京到济南的铁路长是怎样列式计算的?”

“如果求济南到北京的铁路长该怎样列式计算?”(如果学生说仍用原来的算式,教师可以引导学生想还可以怎样列式计算。)

学生回答后,教师板书出:357+137=494(千米),并让学生说一说为什么用加法计算。

接着让学生观察、比较两种解法的结果怎样,启发学生说出:137+357和357+137的结果相等。教师板书:137+357=357+137

然后让学生比较一下等号两边的算式的相同点是什么?(都是137和357两个数相加)不同点是什么?(等号左边是137加357,等号右边是357加137。)

引导学生回答后,教师归纳:137和357与357和137的得数一样,出就是和不变。

2.再出两组算式,引导学生比较,加以概括。

提出:能不能只从这一个例子就得出“相加的两个数交换位置,和不变”?

教师指出:不能只根据一个例子就做出一般结论,我们必须多考察几组不同的算式。下面我们观察一下这几组算式,看一看它们有什么样的关系。

教师板书出下面的算式:

18+17   17+18

124+235   235+124

让学生算一算,再提问:

“每组算式有什么关系?   里应填什么?这几组算式有什么共同特点?你发现了什么规律?从这几组算式你能得出什么结论?”

3.比较三个等工,归纳出一般规律。

引导学生归纳,突出以下几点:

(1)这三个等式中,每组算式有几个加数?(两个加数)

(2)每个等式中,左右两边的加数的位置怎样?左右两边的和怎样?请几个学生试着把发现的规律说一说,然后教师完整地叙述一遍,说明这一规律叫做加法交换律。再看看教科书第48页方框里的话。

4.用字母表示加法交换律。

教师提出:用语言表述加法交换律比较麻烦,大家想一想怎样能把这一规律表示得既简单又清楚?

学生回答后,教师肯定地说明用字母表示可以做到这一点。然后提出:如果用字母a或b分别表示两个加数,怎样表示加法交换律?(同时说明a、b是拉丁字母,通常读作“ei”“bi”,不要按汉语拼音来读,并领读几遍。)

学生回答后,教师板书:a+b=b+a

说明:a和b可以表示0、1、2、3、……中的任意一个数;一个用数字表示的等式只能表示两个具体的数交换位置,和不变,不能表示任意的两个数交换位置,和不变,而用“a+b=b+a,就可以表示任意两个数相加,交换加数的位置,和不变。比如,“a+b=b+a”可以表示2+1=1+2,137+357=357+137,18+17=17+18等等。

接着教师提问:

“想一想我们在以前学过的哪些计算中用到了加法交换律?”

使学生明确以前学过的用交换加数的位置再加一遍的方法来验算加法,就是用加法交换律的。

5.做第48页的“做一做”。

第1题,让学生在方框里填上适当的数,订正时,说一说是根据哪个规律填写的。

第2题,验算的竖式可以直接写在原始的右边。

三、巩固练习

做练习十一的第2―4题。

1.第2题,要注意让学生清根据哪个运算定律来填数,对有困难的学生可以对照运算定律的结语及字母表达式帮助理解,对于运算定律的表述,只要求表达得清楚没有错误,不要求学生一字不差地背下来。

2.第3题,让学生根据运算定律来判断每个等式是不是符合运算定律的要求。如230+370=380+220,虽然左右两边的得数相等,但由于两边的加数不同,所以不符合加法交换律。又如,30+50+40=50+30+40,虽然是三个数相加,但是前两个加数交换了位置,加得的和不变,还是符合加法交换律的。

四、小结

教师:今天我们学习了加法的意义和加法的一个运算定律――加法交换律。谁能结合具体的题目说一说加法的意义和加法交换律的含义?

篇9:《加法交换律》教学反思

今天完成了加法交换律的教学,由于借班上课,上完后感觉自己前半节课发挥得不如后半节课,不过学生对交换律的理解和应用以及对交换律对减法、和加减混合的应用掌握的还是不错的。这节课,我从学生以学知识入手,引导学生发现加法交换律,理解知识就在我们身边,进而提出除了帮助我们验算外还有什么强大的功能!接下来利用加法交换律使计算简便,进而发现还可以使减法简便,加减混合简便!使交换律得以推广!

听完课后,赵老师没来得及喝水就结合这节课进行了评析。

赵老师首先肯定了我的素质,作为骨干教师课堂扎实,教学思路清晰!

同时赵老师提出这节课可以从经验拓展的角度,让学生从更多的生活实例入手,从道理上理解“交换”,如8+74+2、想:原来有8本作业,先拿来74本又拿来2本,我们可以这样,先拿来2本,又拿来74本,都表示现在有的,因此8+74+2和8+2+74是相等的。再如:35-17+5,可以这样想公交车原来有35人,下去17人,上来了5人,可以这样想有35人,上来了5人,又下去了17人。这样的结果都表示现在有的因此人数是一样的。结果是相等的。

“理”上的理解更容易让学生从根上明白算理。我在教学时,用计算的方法验证下的工夫多了一些,学生举例少了点,这样总感觉形式上稍多了点,另外“验证”更多的是验证这种方法可以,但不能在道理上理解,赵老师提出可以看看马刚老师的课例。也鼓励我们多去看看名师的课例。

从第一次听课得到王宏主任的指导,指出“苹果”的贯穿,课堂练习的量,今天得到赵老师的指导,自己感觉收获很多,发现了自己身上的不足,从备课到上课,用了两天的时间,昨晚还熬夜制作课件到11点多,虽然累,但自己有了收获,此时感觉一切累都值得!

【《加法交换律》教学反思(通用6篇)】

篇10:《加法交换律和加法结合律》说课稿

教学内容:

北师大版小学数学四年级上册第三单元乘法探索与发现(三)加法交换律与结合律P47。

教学目标:

1、经历探索过程,推导出加法交换律和结合律,会用字母表示数。

2、会运用加法交换律和结合律对一些算式进行简便计算。

3、激发学生的学习兴趣,培养学生的思维能力和科学的学习方法。

教学重点:

引导学生探索概括出加法交换律和结合律,并初步理解运用、进行简便计算。

教学难点:

篇11:《加法交换律和加法结合律》说课稿

教具准备:

PPT课件等。

教学过程:

一、复习导入,回忆旧知。

要求学生回忆一下上一节课学过的乘法的运算规律。

(我们上节课学习了《乘法交换律和乘法结合律》,那么,大家回忆一下,乘法交换律和乘法结合律的公式又是什么呢?)

a×b=b×a

(a×b)×c=a×(b×c)(黑板板书)

(那么加法是否也有同样的规律呢?让我们现在来探讨一下)

二、创设情境、操作体验

1、由生活引入,通过对话的形式与学生共同探讨交换的含义。

数一数:本班男生的人数和本班女生的.人数,求本班一共有多少人?

男生+女生:(26+17)人

女生+男生:(17+26)人

结果无论哪一种计算方法,计算出来的结果都是相等的。

再举书本上两个例子来说明。

26+17=17+26

3+2=2+3

15+20=20+15

a+b=b+a(黑板板书)

让学生列出不同的算式,分析比较两个算式的共同点和不同点。

突出强调“交换”的意思。结果表明:两个式子的加数交换了位置,但和不变。再要求学生自己举一两个例子来试试看。

2、出示题目:同学们的课间活动很丰富,看,有28个男生在跳绳,17个女生在跳绳,23个女生在踢毽子,参加活动的一共有多少人?

方法一:先算跳绳的一共有多少人:28+17人,再算全部的人数:(28+17)+23人。

方法二:先算一下女生,再算一下他们加起来一共是多少人:28+(17+23)人。

那么得出:(28+17)+23=28+(17+23)整十

(3+2)+5=3+(2+5)

(19+12)+38=19+(12+38)整十

(a+b)+c=a+(b+c)

结果表明,计算出来的结果都是相等的。

3、再举书本中的例子来说明结合的两个数的条件和原因。

57+49

=50+7+40+9

=50+40+7+9

=(50+40)+(7+9)因为50+40=90,90是一个整十数。

=90+16

=106

三、巩固练习,加深记忆。

1、书本P47(3)利用你发现的规律,计算下列各式。

2、想一想:下面的等式各应用了什么运算律?

82 + 0 = 0 + 82

47 +(30 + 8)=(47 + 30)+ 8

(87 + 68)+ 32 = 84 +(68 + 32)

75 +(48 + 25)=(75 + 25)+ 48

3、比一比:谁算得又快又对!

38+76+24 (88+45)+12

四、布置作业。

五、板书设置。

篇12:加法交换律教学反思

在学校举行的一人一节研究课展示活动中,我执教的苏教版四上《加法交换律和结合律》这一课题,通过活动我收获颇多,现将我的反思呈现如下:

具体做法是:

一、学生经历有效地探索过程。

在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察发现——举例验证——得出结论”这一数学学习全过程。教学这两个运算律都是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。我有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。

二、注意数学学习方法的渗透。

加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了“观察发现——举例验证——得出结论”的学习过程,在此基础上,再让学生探索加法结合律,教师加以适当的引导,为学生提供足够的自主探索的时间和空间,学生将已有学习方法渗透到探索加法结合律中,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。

三、教学中注意沟通知识间的联系。

在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。在教学完加法结合律时,又出示了两道口算题9+7、34+27,让学生回忆口算过程。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。在最后的提高巩固阶段,结合练习为下节课学习加法简便计算垫下了基础。

总的来说,这堂课取得了较好的效果。通过本课的学习,学生不但掌握了加法交换律,加法结合律的知识,更重要的是学会了数学方法,所以到课尾出现了学生由加法运算律联想到减法、乘法、除法运算中,是否也存在一定的规律呢这一想法。并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。同时,在教学过程中,我也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。总之,在学习洋思经验及实施新课改中,我会不断地反思,及时地总结,适时地改进,充分地完善自我,相互学习,取长补短,不断提高自己的教育教学水平。

篇13:加法交换律教学反思

加法的运算定律是运算体系中的普遍规律。为了让学生能够理解并掌握这一规律,以便为今后的应用服务。我在教学中从学生的已有知识经验的实际状态出发,通过抽象建模,大胆猜测,操作验证,合作总结这四个环节,让学生能够理解加法运算定律的含义,并从过程中体验成功的喜悦或失败的情感。

本课我把凑整简算的思想贯穿始终,让学生从学习中体验选择简便的方法是学习的最好途径。对于小学生来说,运算定律的理解与运用是培养和发展学生抽象的极好时机。本节课,我引导学生在知识的形成过程中提升学生的思维能力,在课堂上充分调动学生积极性,让孩子们大胆猜想,举例验证、得出结论。

1、在复习引用中,巩固学生的思维基础。

通过一组口算练习,让学生明确能够凑整十或整百数的两个数加起来比较简便,这个为后面学习结合律打下基础。

2、大胆猜想,自主探究,培养学生独立思考的能力。

在教授新课的过程中,我通过提问、设疑,让学生观察―猜测―举例―验证四个环节,同时通过小组合作得出结论。这样既培养了学生的抽象概括能力,同时让学生的思维得到了有效的训练和发展。

加法交换律教案

人教版加法交换律教学设计

加法交换律教学反思

四年级数学上册《加法交换律和加法结合律》说课稿

加法交换律和结合律的评课稿

两位数加两位数(进位加法)(人教版一年级教案设计)

有理数的加法说课稿人教版

《加法的意义及其运算定律》四年级数学教学反思

加法的认识教学设计人教版

人教版分数的加法教学设计

加法的意义和加法交换律(人教版四年级教案设计)(锦集13篇)

欢迎下载DOC格式的加法的意义和加法交换律(人教版四年级教案设计),但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档