循环小数五年级教案

时间:2023-10-25 03:49:52 作者:飞了 教案 收藏本文 下载本文

【导语】“飞了”通过精心收集,向本站投稿了15篇循环小数五年级教案,下面是小编精心整理后的循环小数五年级教案,仅供参考,大家一起来看看吧。

篇1: 循环小数五年级教案

循环小数五年级教案

教学目标

1.理解和掌握循环小数的概念.

2.掌握循环小数的计算方法.

教学重点

理解和掌握循环小数等概念.

教学难点

理解和掌握循环小数等概念.

教学过程

一、铺垫孕伏

(一)口算

0.8/0.5=4/0.25=1.6+0.38=

0.15/0.5=1-0.75=0.48+0.03=

(二)计算

21/3=15/3=12/3=10/3=

教师提问:通过计算,你发现了什么?

二、探究新知

(一)教学例7

例710/3

1.列竖式计算

教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)

使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.

所以10/3=3.33……

(二)教学例8

例8计算58.6/11

1.学生独立计算

2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,

所以58.6/11=5.32727……

3.观察比较10/3=3.33……58.6/11=5.32727……

教师提问:你有什么发现?

(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)

4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.

教师板书:循环小数.像3.33……和5.32727……是循环小数.

5.简便写法

3.33……可以写作;

5.32727……可以写作

6.练习

把下面各数中的循环小数用括起来

1.5353……0.19292……8.4666……

(三)教学例9

例9一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了.大约用去了多少千克汽油?(保留两位小数)

1.学生独立列式计算

130/6=21.666……

asymp;21.67(十克)

答:小汽车大约装21.67千克汽油.

2.集体订正

重点强调:保留两位小数,只要除到小数点后第三位即可.

3.练习

计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.

28/182.29/1.1153/7.2

(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?

1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的.也就是被除数能够被除数除尽.如3/2=1.5.小数部分的位数是有限的小数,叫做有限小数.

2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的`.如10/3=3.33……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.

三、课堂练习

(一)计算下面各题,哪些商是循环小数?

5.7/914.2/115/810/7

(二)下面的循环小数,各保留三位小数写出它们的近似值.

1.29090……0.0183838……

0.4444……7.275275……

四、布置作业

(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.

(二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)

篇2:循环小数小学五年级教案

循环小数小学五年级教案

【教学内容】

九年制义务教学六年级小学数学教科书(苏教版)第九册第48~49页。

【教材简析】

循环小数是学生教难准确地理解和表述的一个概念,特别是在表述其意义的一些抽象说法,学生难以理解。教材通过除法的实例,引导学生观察比较,使学生掌握循环小数的特征,理解循环小数的意义,在此基础上,认识循环节、纯循环小数和混循环小数,并学习循环小数的简便写法。

【教学过程】

一、做好铺垫

1、拍节奏游戏

师:(板书:︱×××︱这个节拍你们能拍出来吗?

(学生一起齐拍掌,中断后提问)

师:你们的节奏为什么这么整齐呢?

生:我们全班同学都是按照先拍一下,后拍两下,这样相同的节奏拍的。

师:如果老师让你们按照这样的节奏,不断重复地一直拍下去,不叫停止,

想一想,你们要拍多少次?

生:要拍很多很多次。

生:要拍无数次。

师:象这样拍的次数是“有限的”还是“无限的”?

生:是无限的。

师:你们刚才拍的次数呢?

生::是有限的。

【用游戏的方法导入新课,一是直观,二是引人入胜,使学生一下子便进入学习的境地。另外,已使学生初步感知“循环”、“无限”等概念】

2、找规律,猜图形。

运用抽拉教具,一次出现两个圆和一个三角形的图形。

⑴ 当逐个出现至第七个图形,即第三组的第一个圆圈后,提问:

师:谁能猜到下面一个是什么图形吗?

生:下面一个图形是“○”。

师:你是怎样想出来的的呢?

生:因为这幅图形的排列顺序是有规律的,每组都有三个图形,前面两个是圆,后面一个是三角,而且是按照这样的规律重复地出项的,所以这个图形应该是第三组的第二个图形,当然是“圆形”。

师:×××同学回答得非常好。

(教师接着演示,让学生猜出图形)

⑵ 出示完第12个图形,当学生猜出下面一个是“圆”时,出现了“……”。

师:这个省略号表示什么意思?

生:表示后面有很多组前面两个圆,后面一个三角,这样的'图形。

师:对的。也就是说,这幅图形是依次不断地重复出现这样的图形。请同学们想一想,这幅图形中有多少组这样的图象呢?

生:很多组,无数组。

(板书:依次不断地重复出现、无限)

【采用从直观到半抽象的方法去认识新的概念,遵循了儿童的认知规律。这一环节的设计,有利于培养学生推理性逻辑思维能力。】

二、进行新课

㈠ 循环小数

1、组织学生用竖式计算一道题(出示32÷6),并引导学生注意观察商有什么

特点?

生:我发现这道除法题除不尽,商总是重复出现“3”。

师:为什么会重复出现“3”呢?

生:因为余数重复出现“2”了,所以……。

师:这么说,32÷6的商里有多少个“3”呢?

生:有无数个“3”。

师:既然是有无数个,可以怎样表示呢?

生:我认为可以用省略号表示无数个“3”。

(板书:32÷3=5.33 ……)

2、出示2.7÷11,让学生除到商是五位小数时停笔。

师:想一想,如果继续除下去,商会怎样?

生:商里会依次不断地重复出现“4”和“5”。

师:你是怎么想出来的呢?

生:因为余数重复出现“5”和“6”,所以商就会重复出现“4”和“5”。

师:是不是这样的情况呢?继续除除看。

师:谁能说出这道题的商。

生:2.7÷11等于0.24545等等。

篇3:循环小数(五年级)(人教版五年级教案设计)

教学目标

(一)理解循环小数,初步认识有限小数和无限小数。

(二)通过观察、比较,培养学生的抽象、概括能力。

教学重点和难点

理解循环小数,并会用循环小数的近似值表示除法的商。

教学过程设计

(一)复习准备

1.求下面各数的近似值(保留两位小数):

54.246  7.685 5.354 14.2971

2.分组计算比赛:

一组:2.4÷3=  0.75÷2.5=

二组:10÷3=  58.6÷11=

讨论:为什么一组做得快,二组做得慢?(一组题能够除尽,二组题除不尽,使学生对有限小数和无限小数有了初步印象。)

(二)学习新课

1.师生共同研究二组题。

2.观察思考:这两题的商有什么特点?想一想,这是为什么?(第1小题因为余数重复出现1,所以商就重复出现3,总也除不尽;第2小题因为余数重复出现3和8,所以商就会重复出现27,总也除不尽。)

教师用黄色粉笔描出竖式中重复出现的余数1和3,8。

3.在比较中认识有限小数和无限小数。

思考讨论:一组题与二组题的商小数部分的数位有什么不同?(一组题除得尽,商的小数部分的位数是有限的,二组题除不尽,商的小数部分的位数是无限的。)

教师说明:当小数部分的位数是无限的,可以用省略号表示:

10÷3=3.33… 58.6÷11=5.32727…

总结:两个数相除,如果不能得到整数商,会有两种情况:

一种情况是:除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的。也就是说被除数能够被除数除尽。如一组题。

另一种情况是:除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的。如二组题。

教师讲解:小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

4.理解循环小数。

下面我们共同研究无限小数中的一种:循环小数。(板书:循环小数)像二组题中的商3.333…,5.32727…就是循环小数。

(1)出示思考题:

①二组两题中商的小数部分有什么特点?(一题的商中有一个数字3重复出现;二题的商中两个数字27重复出现。)

小结:小数部分的一个数字或几个数字重复出现。

②小数部分的数字重复出现的地方有什么区别?(一题是从小数部分第一位就开始重复出现;二题是从小数部分第二位才开始重复出现。)

小结:小数部分从某一位起,数字开始重复出现。

(2)引导学生概括循环小数的定义:请你说说什么样的小数叫循环小数?

讨论后看书理解:一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。

(3)加深理解:循环小数后边的省略号表示什么?(小数部分的位数是无限的。)进一步说明:循环小数是无限小数。

(4)循环小数的简便写法:

练习:判断下面的数,哪些是循环小数,为什么?是循环小数的用循环点表示。

0.9375  1.5353…

5.1281414…  0.2142857142857…

5.314162…  8.4666…

3.1415926…  0.19292

5.用循环小数的近似值表示除法的商。

循环小数也可以根据需要取它的近似值。

(1)投影出示例9:一辆汽车的油箱里装130千克汽油,行驶一段路

学生试做后讲解:130÷6=21.666…≈21.67(千克。)

答:大约用去21.67kg。

强调:①保留两位小数,要在千分位上四舍五入;

②用四舍五入法得到的近似值要用“≈”表示。

(2)练习:P27“做一做”。

计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值。

28÷18=  2.29÷11.1=  153÷7.2=

(三)巩固反馈

1.下面哪道题的商是有限小数?哪道题的商是无限小数?

10÷9 1.332÷4  23÷3.33

2.写出下面各循环小数的近似值(保留三位小数):

3.在○里填上“>”,“<”或“=”符号。

4.思考题:

用循环小数表示1÷7,2÷7,3÷7的商,比较小数部分有什么规律?并根据这一规律直接写出4÷7,5÷7,6÷7的商。

5.课后作业:P29:1,2,3。

课堂教学设计说明

因为循环小数属于无限小数,因此,先让学生通过计算认识有限小数与无限小数,然后在无限小数知识的范围内进一步学习循环小数,使学生明确知识的结构。

教学由计算比赛引入,使全体学生积极参与。既激发学生学习兴趣,又创设情境,吸引学生产生疑问,从而促进学生积极思维,去探究其中的原因。

在循环小数的意义的教学中,通过两个有思考性的问题:①二组两题中商的小数部分有什么特点?②小数部分数字重复出现的地方有什么区别?使学生抓住循环小数的本质特征。通过讨论,顺利概括出循环小数的意义,培养学生抽象概括能力。

板书设计(略

篇4:小学五年级数学上册《循环小数》的教案

小学五年级数学上册《循环小数》的教案

教学内容:冀教版《数学》五年级上册第48-49页

教学目标:

1、在自主计算、借助计算器计算的活动中,经历初步认识循环小数的过程。

2、知道什么是循环小数,能指出哪些商是循环小数。

3、体会计算器的工具性,在借助计算器进行数学探索的活动中获得成功的体验。

教学过程:

教学环节师生活动设计意图

一、创设情境

师生谈话,由树上结果实的话题,引出教材中的问题。教师口述大枣、核桃的价钱信息,并板书出来。

(设计意图:由现实生活中秋季结果的谈话开始,创造愉快和谐的课堂氛围,自然引出要解决的问题情境。)

二、解决问题

1、提出“估算一下大枣和核桃的单价哪个便宜一些”的问题,要求说一说是怎样估算的,给学生充分表达不同想法的.机会。

(设计意图:充分利用课程资源,为学生提供估算的机会,培养学生估算意识和能力,发展数感。)

2、平均每千克大枣多少元。

提出问题,让学生列式并尝试用竖式计算。当板演的学生除到三位小数时,停止计算。

(设计意图:经历自主计算,初步感受商的特点的过程,为认识循环小数提供感性材料。)

汇报计算的情况,说一说发现了什么问题。给学生充分交流不同结果的机会。

(设计意图:在交流讨论的过程中,了解商中数的字3重复出现的事实,初步感受循环现象,增强学生进一步学习的好奇心。)

鼓励学生用自己的话解释商重复出现的原因。

(设计意图:以已有经验的基础上,带着问题经历自主计算,发现商的特点的过程,为认识循环小数提供感性材料。)

3、平均每千克核桃多少元。

提出问题,让学生列式并尝试用竖式计算。提示:边计算边观察商有什么特点。

(设计意图:在展示交流的过程中,使学生感受循环小数的特点。)

交流计算情况,讨论除得的商有什么特点,要给学生充分展示不同结果和想法的机会。

(设计意图:在自主尝试计算、交流的基础上,引导学生进行合理推测,培养学生归纳、推理能力,发展数学思维。)

让学生观察竖式,并提出“想一想”的问题。

用计算器验算。

三、循环小数

1、写出58.6÷11,学生用计算器计算后交流计算结果。

(设计意图:借助计算器,可使学生摆脱烦琐的计算,把更多的时间用于循环小数的研究和学习上。)

2、让学生观察58.6÷11的商,讨论商有什么特点。使学生了解从商的小数部分,第二位开始,重复出现2和7两个数字。

(设计意图:在观察讨论中使学生体会到商中数字循环的不同特点。)

3、介绍58.6÷11商的书写方法和表述方式。让学生写出10÷3、83÷11的商并交流。

(设计意图:了解循环小数的书写方式是数学学习的需要,写其他两个算式的商,既是书写练习,也为下面的讨论作准备。)

4、让学生观察三个算式的商,说一说它们有什么共同点和不同点。给学生充分发表自己意见的空间。

(设计意图:观察、讨论三个商的特点,为概括循环小数的概念作准备。)

四、课堂练习

学生独立完成练习。

教学反思:

篇5:循环小数 教案教学设计(人教版五年级上册)

教学内容:P27 例 8、例 9

教学目标:

1、使学生初步认识循环小数、有限小数、无限小数,认识循环节,学会循环小数的简便写法。

2、使学生经历观察和比较循环小数特点的过程,提高他们的分析概括能力和自主学习能力。

教学重点:初步认识循环小数、有限小数、无限小数。

教学准备:PPT

教学过程

一、创设情境,导入新课

1、理解依次重复出现的意义。

(1)出示月历表。月历表中的星期几是按照怎样的规律排列的?(星期一后是星期二,直到星期天,再回到星期一,继续重复)这种情况我们可以称它为“依次不断重复”,或者说是“循环”。

(2)观察月历,理解依次重复和循环的含义。

2、导入:生活中有这些重复现象,数学计算中也会遇到一些重复现象,这节课我们大家就一起探讨吧。

二、小组合作,探索新知

1、教学例8。

(1)用多媒体课件出示例8的情景图,引导学生观察并说出图意。

师:请看屏幕,它都提供了哪些数学信息?

(2)学生独立列出算式:400÷75。

(让学生试着计算,看他们有什么发现。)

(3)前面我们发现有些除法总是除不尽,这节课我们就来研究除不尽时商有没有规律,有什么规律?

(4)全班交流。

问:在计算过程中是否遇到什么问题?

(它的商有除不尽的现象。)

(5)如果继续除下去会是什么情况?(余数的数字和商的数字还会不断重复出现)

2、出示例9两题:28÷18        78.6÷11

男生做第一题,女生做第二题。(体验余数的数字和商的数字不断重复出现的情况。)

3、讨论:怎样表示这个除不尽的商呢?讨论除不尽的现象。

4、你知道这样的小数叫什么小数吗?

循环小数有什么特点呢?在循环小数里,依次不断重复出现的数字叫什么呢?怎样表示循环小数呢?看教材P28第一小节,将概念性的名词做上记号。

5、看教材理解。

三、理解循环节、有限小数和无限小数

1、看教材。

反馈看教材的情况。

(1)举例说明循环小数中的循环节。

(2)怎样简便表示循环小数?

(3)什么是有限小数?什么是无限小数?请举例说明。循环小数属于哪一种?

2、练习反馈。

(1)下面几个数中,是循环小数的有(   ),请用简便方法表示出来。

4.2    0.6666…    2.7467467…    3.08787…    5.47676    3.1415926…    5.7676…

(2)你还能给它们分一分类吗?

分类:可分成有限小数和无限小数,无限小数中又可分为循环小数和无限不循环小数。

3、取近似值。

对于循环小数,有时也可以根据实际需要取它的近似数。任取上面练习中的两个循环小数,取它们的近似值。

4、试做:如果有需要请老师帮助。

0.6666…≈(    )保留一位小数

0.6666…≈(    )保留两位小数

2.7467467…≈(     )保留一位小数

2.7467467…≈(    )保留两位小数

2.7467467…≈(    )保留三位小数

(1)你是用什么方法取近似值的?

(2)比较 0.6666…… 和 2.7467467… 在保留一位、两位、三位小数时有什么不同?

(比较区别得出:保留几位小数,就看几位小数的后一位,如果大于等于5,则向前进一;反之,则舍去。)

四、实践、练习

1、判断正误,并改正。

(1)一个小数从小数部分的某一位起,一个数字或几个数字重复出现,这样的小数叫循环小数。(    )

(2)9.666是循环小数。(     )

(3)循环小数是无限小数。 (     )

(4)3232.32是有限小数,也是循环小数。 (     )

(先独立判断,再交流评价。)

2、选一选。

(1)循环小数(  )无限小数,无限小数(  )循环小数。

A、是  B、不是  C、不一定是

(2)3.223223   的循环节是(  )。

A、233  B、223  C、322

3、小刚练习书法,他把“我们是共产主义接班人”这句话依次反复写,第62个字应写什么字?

五、课堂总结

这节课你有什么收获?交流收获,并提出问题。

六、作业。

1、用竖式计算下面各题,哪些是循环小数?将循环小数表示出来。

5.7÷9     5÷8       6.64÷3.3

2、8.736726……小数部分第17位上的数字是几?

5.23434……小数部分第50位上的数字是几?

(通知学生下节课带计算器。)

篇6:循环小数(二)(人教版五年级教案设计)

教学目标

1.理解和掌握循环小数的概念.

2.掌握循环小数的计算方法.

教学重点

理解和掌握循环小数等概念.

教学难点

理解和掌握循环小数等概念.

教学过程

一、铺垫孕伏

(一)口算

0.8×0.5=       4×0.25=      1.6+0.38=

0.15÷0.5=      1-0.75=      0.48+0.03=

(二)计算

21÷3=          15÷3=        12÷3=          10÷3=

教师提问:通过计算,你发现了什么?

二、探究新知

(一)教学例7

例7  10÷3

1.列竖式计算

教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)

使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.

所以10÷3=3.33……

(二)教学例 8

例8  计算58.6÷11

1.学生独立计算

2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,

所以58.6÷11=5.32727……

3.观察比较  10÷3=3.33……   58.6÷11=5.32727……

教师提问:你有什么发现?

(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)

4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.

教师板书:循环小数.像3.33……和5.32727……是循环小数.

5.简便写法

3.33……可以写作  ;

5.32727……可以写作

6.练习

把下面各数中的循环小数用括起来

1.5353……       0.19292……      8.4666……

(三)教学例9

例9  一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了  .大约用去了多少千克汽油?(保留两位小数)

1.学生独立列式计算

130÷6=21.666……

≈21.67(十克)

答:小汽车大约装21.67千克汽油.

2.集体订正

重点强调:保留两位小数,只要除到小数点后第三位即可.

3.练习

计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.

28÷18      2.29÷1.1      153÷7.2

(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?

1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的.也就是被除数能够被除数除尽.如3÷2=1.5.小数部分的位数是有限的小数,叫做有限小数.

2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的.如10÷3=3.33……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.

三、课堂练习

(一)计算下面各题,哪些商是循环小数?

5.7÷9      14.2÷11        5÷8        10÷7

(二)下面的循环小数,各保留三位小数写出它们的近似值.

1.29090……          0.0183838……

0.4444……           7.275275……

四、布置作业

篇7:循环小数(一)(人教版五年级教案设计)

教学目标

1.理解循环小数的意义,初步认识有限小数和无限小数.

2.通过观察、比较,培养学生抽象、概括的能力.

3.向学生进行辩证唯物主义“对立统一”观点的教育.

教学重点

理解循环小数的意义,并能用循环小数的近似值表示除法的商.

教学难点

理解循环小数的意义,并能用循环小数的近似值表示除法的商.

教学过程

一、复习引新

(一)求下面各数的近似值(保留两位小数)

54.246      7.685      5.354      14.2971

(二)分组计算下面各题

3.45÷5      10÷3      58.6÷11

讨论:为什么第一道题做得快,第二道题和第三道题做得慢?

二、学习新课

(一)观察思考:第二道题和第三道题的商有什么特点?想一想,这是为什么?

(第二道题因为余数重复出现1,所以商就重复出现3,总也除不尽;第三道题因为余数重复出现3和8,所以商就重复出现27,总也除不尽.)

教师把重复出现的余数用红笔圈出.

(二)比较异同

思考讨论:第一道题和第二道题、第三道题的商小数部分的数位有什么不同?

(第一道题除得尽,商的小数部分的位数是有限的,第二道题和第三道题除不尽,商的小数部分的位数是无限的)

教师说明:当小数部分的位数是无限的,可以用省略号表示.

(三)建立概念

小数部分的位数是有限的小数,叫做有限小数.小数部分的位数是无限的小数,叫做无限小数.

(四)循环小数

1.像第二道题的商0.3333……,第三道题的商5.32727……就是循环小数

2.思考

(1)这两道题的商有什么特点?

小结:小数部分的一个数字或几个数字重复出现

(2)小数部分的数字重复出现的地方有什么区别?

小结:小数部分从某一位起,数字开始重复出现

3.概括循环小数的意义

一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.

4.加深理解:循环小数后边的省略号表示什么?(小数部分的位数是无限的)

教师说明:循环小数是无限小数

5.简便写法:3.33……写作  ,5.32727……

练习:判断下面的数,哪写是循环小数,为什么?是循环小数的用循环点表示.

0.875      2.7373……    5.2858585      3.1415926535……

(五)教学例9

一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了  .大约用去了多少千克汽油?(保留两位小数)

1.列式解答

130÷6=21.666≈21.67(千克)

答:大约用去21.67千克汽油.

2.强调:(1)保留两位小数,要在千分位上四舍五入;

(2)用四舍五入法得到的近似值要用“≈”表示.

三、巩固概念,强化练习

(一)下面各小数

0.3737……    2.855

5.306306……    7.6

有限小数有(            )

无限小数有(            )

循环小数有(            )

(二)判断

1.  (   )

2.  (   )

3.  (   )

篇8:五年级数学循环小数教案设计教学

教学目标:

1、知识与技能:让学生初步认识循环小数、有限小数和无限小数,认识循环节,能用简便记法表示循环小数。

2、过程与方法:让学生经历探究的过程,培养学生观察、比较、分析与概括能力。

3、情感态度和价值观:让学生在学习过程中获得成功体验,激发学生学习数学的兴趣。

教学重点:

认识循环小数,会用简便记法表示循环小数。

教学难点:

认识循环小数、有限小数和无限小数及它们之间的关系。

教学准备:

多媒体课件。

教学过程:

一、创设情境,引入新课

1、给出故事情境。(PPT课件适时演示。)

(1)在上课之前老师给大家讲一个故事:从前有座山,山里有个庙。庙里有个老和尚在给小和尚讲故事。讲什么呢?从前有座山,山里有个庙。庙里有个老和尚在给小和尚讲故事。讲什么呢?从前有座山,山里有个庙。庙里有个老和尚在给小和尚讲故事。讲什么呢?……

(2)你能接着讲这个故事吗?(让几个学生继续讲这个重复的故事。)

2、理解“循环”。

(1)同学们,你们从这个故事中发现了什么规律吗?(随着学生的交流、互动,适时板书“重复出现”“不断”“依次”等。)

(2)像这样依次不断重复出现的现象,我们把它称为“循环”(板书:循环)。在实际生活中,也有许多循环的现象,如一年有春、夏、秋、冬四季,每年都是按照这样的规律依次不断重复出现。你们发现生活中还有哪些循环的现象呢?(PPT课件演示。)

(3)这样的循环现象不仅出现在故事中、生活中,在我们的数学中也有这种有趣的循环现象,你们想了解吗?

【设计意图】用有趣的故事和生活中的循环现象导入新课,利于激发学生的学习兴趣,调动学生学习数学的积极性,同时让学生初步感知“循环”与“无限”。

3、揭示课题。

(1)出示教材第33页例7。(PPT课件演示。)

(2)引导学生弄清题意,并列出算式400÷75。

(3)组织学生用竖式进行计算,并观察竖式计算的过程,提问:从中你能发现什么?

(4)组织学生交流,引导学生发现400÷75的竖式计算过程有三个特点(PPT课件适时演示)

①余数总是重复出现“25”;

②商的小数部分总是重复出现“3”;

③继续除下去,永远也除不完。

(5)揭示课题:怎样表示这种“永远也除不完”的商呢?这样的商有什么特点呢?就是我们这节课我们要研究的问题,也就是我们这节课要认识的新朋友——循环小数。(板书课题:循环小数。)

二、自主探究,构建新知

1、初步认识循环小数。(教学教材第33页例7。)

(1)教师:我们刚才发现了400÷75的竖式计算过程中有三个特点,下面我们探讨一个问题,为什么商的小数部分总是重复出现“3”?它和每次出现的余数有什么关系?

(2)猜想:如果继续除下去,商会是多少?它的第4位商是多少?第5位商呢?(引导学生发现:如果继续除下去,无论除到哪一位,只要余数重复出现“25”,它的商也就会重复出现“3”。)

(3)验证:是这样的吗?同学们可以接着往下除试试看。

(4)表示:那么我们可以怎样表示400÷75的商呢?(引导学生说出:可以用省略号来表示永远也除不完的商;教师板书:400÷75=5.333…。)

(5)揭示:像5.333…这样小数部分有一个数字依次不断重复出现的小数,就是循环小数。

2、进一步认识循环小数。(教学教材第33页例8。)

(1)出示教材第33页例8。(PPT课件演示。)

(2)学生用竖式计算28÷18,78.6÷11,并指两名学生板演。

(3)请同学们观察这两道算式的商,你发现有什么特点?(PPT课件演示。)

(4)思考:你觉得像这样的算式除到哪一位就可以不除了?(引导学生发现:只要余数出现重复了,就可以不除了。因为余数重复出现,商也会跟着重复出现。)

(5)揭示:像5.333…、1.555…、7.14545…这样的小数都是循环小数。

篇9:五年级数学循环小数教案设计教学

教学内容:循环小数

教学要求:

1、使学生理解循环小数、有限小数、无限小数的意义,通过求商,使学生感受到循环小数的特点,掌握循环小数的两种表示方法,会判断循环小数、有限小数、无限小数。

2、培养学生发现问题、提出问题、解决问题的能力。提高学生的观察、比较、分析、判断、抽象概括能力及自学能力。

3、感受数学的美与乐趣,渗透集合思想,进行“对立统一”观点和爱国教育。

教学重点:理解循环小数的意义

教学难点:怎样判断除得的商是循环小数

教学过程:

一、创设情境导入新课

师:同学们,我们做个拍手游戏好吗?

(1) 先听老师拍手:“啪啪啪”,你们会按照这个节奏“依次不断的重复”拍下去吗?

提问:拍下去能拍完吗

(2) 再听老师拍手:“啪,啪啪”,你们能接着拍吗?

提问;这样依次不断的拍下去,能拍完吗?再拍下去,还是出现什么节奏?

教师边板书便叙述:“依次不断的重复出现”也就是“循环”出现、

(3) 举例说出日常生活中遇到的“循环”现象、

生1:;体育课上老师喊的:“一二一、一二一、一二一 ……”的口令

生2:太阳的东升西落

生3:每个星期,星期日为每个星期的第一天,然后循环着日、一、二、三、四、五、六。

生4:一年之季在于春,每年都循环着春、夏、秋、冬

生5:火车滚动的声音,“咔嚓,咔嚓……

生6;人的血液流动

师叙:看来生活中这种循环现象还是很多的。其实,数学中也存在这种有趣的循环现象,你们想知道吗?好,这节课咱们就一起来探索发现数学中的循环现象。

二、探究新知

(一)认识循环小数

1、示例7、例8

例7 1÷3 例8 58.6÷11

师:请左边两排同学完成例7,右边两排同学完成例8,看哪排同学完成的快又好。

学生完成后教师提问

(1) 从计算中你发现了什么?

生1:计算1÷3时,商的小数部分重复出现“3”,余数重复出现“1”

师追问:商为什么会重复出现”3”呢?(因为余数重复出现“1”,所以商就重复出现“3”)

生2:计算58.6÷11时,商的小数部分重复出现“27”,余数重复出现3和8

教师追问:商又为什么重复出现“27”呢?(因为余数重复出现3和8,所以商就重复出现“27”)

(2) 这两个算式能除尽吗?再继续除下去会怎样?(商还是不断地 重复出现“3”或“27”)

(3) 1÷3的商重复出现“3”,表示商中有多少个“3”?(无数个)

那么1÷3的商应该怎样表示呢?(用省略号)

板书:1÷3=0.33……

(4)58.6÷11的商重复出现“27”,说明什么?(商中有无数个“27”)

那么,58.6÷11的商应该怎样表示呢?

板书:58.6÷11=5.32727……

2、归纳概括循环小数的概念

提问:

(1)谁能照样子说一个类似的小数

如:0.61555…… 2.558558……

(2)看上面的几个小数,,不断重复出现的数字在小数的那一部分了?

板书:小数部分

(4) 请同学们认真的观察以上几个小数的小数部分,看看它们重复出现的数字是从小数部分的第几位起的?重复出现的数字是什么?重复出现的数字各有几个?

学生边回答,教师边板书:

0.33…… 从十分位起 1个数字 3

5.32727…… 从百分位起 2个数字 27

0.6155…… 从千分位起 1个数字 5

2.558558…… 从十分位起 3个数字 558

师:同学们想一想,有没有可能从小数部分的第四位起、第五位起依次不断地重复一个或者几个数字呢?(有)

(5) 那么,“依次不断地重复出现的数字”到底是从小数部分的哪一位起呢?谁能用三个字概括?(某一位)

板书:从小数部分的某一位起

(6) 重复出现的数字有一个的,两个的,三个的,还有多个的,那么我们就概括成“一个数字或者几个数字”(板书)

(7) 从以上例子中,我们可以看出数学中的循环现象了,那么,数学中的这种循环现象发生在什么数中呢?

板书:小数

(8) 谁能根据以上小数的特征,给这些小数取个合适的名字呢?

板书:循环小数

(9) 谁能把教师的板书连起来读一下?(教师边板书边补写“这样的小数叫做循环小数”)

定义:一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。

师:这就是我们今天要学习的“循环小数”

板书课题:循环小数

像0.333…… 5.32727……等都是循环小数

3、理解概念

提问:

(!)你怎样理解“依次不断的重复出现”?

(2)你能再说一个循环小数吗?

(3)判断:下面哪个数是循环小数?那个不是循环小数?为什么?

①10.9797 10.9797……

② 8.567567…… 3.1415926……

③0.19292 1.5353……

④ 3.087 8.4666…… 2.142857142857……

4、循环小数的简写

(1) 师:如果每个循环小数都这样写,你觉得怎么样?你有什么想法吗?(想简写)

(2)介绍“循环节”

师:一个循环小数的小数部分,依次不断的重复出现的数字,叫做这个循环小数的循环节。

(3)问:0.333……重复出现的数字是几?(3)

5.32727……重复出现的数字是几?(27)

它们的循环节各是多少?(3或27)

(4) 请同学们说出翻板上几个循环小数的循环节

(5) 介绍简写方法

写循环小数的时候,为了简便,整数部分和小数部分中不循环的部分照写下来,循环的部分只写出第一个循环节,并在这个循环节的首位和末尾的数字上面各记一个小圆点。

如;0.333……写作 5.32727……写作

6.416416……写作

(6)练习,用简便形式写出下面的循环小数

1.746746…… 0.105353…… 312.222……

四、综合练习

1、判断对错

(1)一个小数,从某一位起,一个数字或者几个数字依次不断的重复出现,这样的小数叫做循环小数。 ( )

(2)9.4747是循环小数 ( )

(3) 是循环小数 ( )

(4)2.07=( )

(5)3.2456456……=( )

(6)循环小数13.243243……可写作 ( )

(7) >1.333 ( )

五、全课小结

这节课我们通过分析、发现,原来数学王国中也有循环现象,那就是循环小数(齐读循环小数概念)。通过这节课的学习,你有什么收获?

篇10:循环小数 教案教学设计(人教新课标五年级上册)

教学内容:

P27、28例8、例9、课文,P30练习五第1、2题。

教学目的:

1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。能用“四舍五入”法求循环小数的近似值,能用循环小数表示除法的商。

2、理解有限小数,无限小数的意义,扩展数的范围。

3、培养学生抽象概括能力,及敢于质疑和独立思考的习惯。

教学重点:

掌握循环小数、无限小数、有限小数的意义。

教学难点:

掌握循环小数的简便记法。

教学过程:

一、自主探索,获取新知

1、师谈活引入新课:

今天这节课老师给你们讲个故事:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:……这个故事讲得完吗?为什么讲不完呢?(板书:重复出现)

今天我们要学习的知识和这个故事有相同的地方,首先我们一起到运动场上去看一看吧。从图中你知道了什么?

全班齐笔算王鹏平均每秒跑了多少米?(指名一生板演)。

2、初步感受循环小数的特点。

有些同学算着算着就停下了,发现了什么问题吗?(组织学生小组内交流)

可能发现:1、余数总是“25”。2、继续除下去,永远也除不完。3、商的小数部分总是重复出现“3”。

师:你们怎么能肯定会永远除不完,商的小数部分总是重复出现“3”?让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。

师:那么商如何表示呢?你为什么使用省略号?省略号在这里表示什么意思?(师板书)

3、总结概括循环小数的意义

其他除法算式会不会出现这种情况呢?请同学们算一算:

28÷18        78.6÷11

先计算,再说一说这些商的特点。如果继续除下去,商会怎样?能除尽吗?(请生板演计算结果)

观察例8、例9的三道题,你们发现他们的异同吗?(不同点:一个是小数“3”的循环,另一个是小数“4”和“5”的循环。相同点:

学生讨论后,指名汇报,教师抓住学生回答板书:

(1)小数部分,位数无限(或者除不尽)。

(2)有的是一个数字不断重复出现,有的是两个……。教师小结循环数的意义,(板书课题)。

4、巩固练习:下列哪些是循环小数?并说一说理由。

0.999……       52.52525……     4.1677……

3.212121……    3.1415926……

学生评议。

5、介绍简便记法

除了用省略号来表示循环小数外,还可以用简便记法来表示。如5.333……还可以写作5.3,7.14545……还可以写作7.145,请学生把前面判断题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。

(52.52525……可能出现问题52.52 52.525 52.52,师生共同辨析)

6、看书P27-28第一自然段,及了解“你知道吗?”

7、理解有限小数和无限小数的意义。

师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况?请举例说明?

学生小组讨论,汇报。

师两个数相除,如果不能得到整数商会有两种情况:1、商的小数部分位数是有限的,叫做有限小数;2、商的小数部分倍数是无限的,叫作无限小数。判断前面练习题中的小数哪些是有限小数?哪些是无限小数。

循环小数是有限小数,还是无限小数?为什么?

学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。

二、小结:这节课我们学习了哪些知识?能用自己的话说说你是怎样理解这些概念的吗?

三、巩固练习

用计算器算出商后,说出商是什么小数,依据是什么?是循环小数的要求用简便方法写出来。

19÷11  1.08÷3.3  13.25÷10.6

四、作业:P30第1、2题。

板书设计:

循环小数

(1)小数部分,位数无限(或者除不尽)。

(2)有的是一个数字不断重复出现,有的是两个……

5.333……=5.3       7.14545……=7.145

7、循环小数的练习

教学内容:

P30练习五第3-6题。

教学目的:

1、使学生进一步理解并循环小数、有限小数、无限小数的概念,掌握它们之间的联系和区别,并能正确区分。

2、培养学生总结规律的能力,使学生既长知识,又长智慧。

3、培养学生学习数学的积极情感。

教学重点:

进一步掌握相关概念并建立联系。

教学难点:

对循环小数的实际应用。

教学过程:

一、主动回顾,知识再现:上节课我们学习了什么知识?

二、单项训练,夯实基础:

1、进一步理解循环小数的概念。

下面哪些数是循环小数,如何判断的?

0.666……       3.27676……    301415926……

40.03666……    100.7878       0.06262……

3.203203……    70.2641        0.2142857142857……

2、上面这些小数可以分为几类?哪几类?这几类小数有怎样的关系?

有限小数

小数                循环小数

无限小数

无限不循环小数

三、综合练习,运用提高:

1、求循环小数的近似值:P30第3题

先请学生说说取近似值的方法,再让学生独立完成。

2、P30第6题

先观察这些小数的特点,再试一试.

请学生说出判断大小的过程,教师适时评价。

方法:把这些简便记法的循环小数还原。

师小结:先观察需要还原的小数位数,再比较,比较方法与以前比较小数的大小方法相同。

四、独立练习 :P30第4、5题。

板书设计:

循环小数的练习

有限小数

小数                循环小数

无限小数

无限不循环小数

篇11:教案-循环小数

教案-循环小数

《循环小数》教学设计 教学内容:教科书第27~28页的例7~9和“做一做”中的题目,练习七的第1~3题。 教学目的: 1、使学生初步理解循环小数的概念,会用近似值表示除法中是循环小数的商。 2、使学生知道有限小数和无限小数的区别。 教学过程: 一、新课 1、教学例7 教师出示例7,让学生独立计算,提出下列问题让学生思考: (1)这道题能不能除尽? (2)商的小数部分和余数有什么规律和特点? (3)这样的商如何表示? 当学生发现商的小数部分总是不断地出现3,而且总也除不尽,教师引导学生思考第2个问题,使学生发现:因为余数总是重复出现1,所以商就重复出现3,总也除不尽。教师指出:这样的除法算出的商应该表示为(板书): 10÷3=3.33…… 2、教学例8 教师出示例8,要求学生计算到商的第三位小数。 当学生算到商的第三位小数时,让学生停下来,看一看余数是多少?接着再除出两位小数,并提出下列问题供学生思考: (1)已经算出的商的最后两位小数和余数同它前面的两位小数和余数有什么关系? (2)如果继续除下去,商会怎样? (3)这样的商如何表示? 让学生观察和比较计算的过程,引导学生发现余数重复出现3和8,继续除下去商就会重复出现2和7,总也除不尽。教师把商写出来:58.6÷11=5.32727…… 并说明2和7分别出现两次,如果继续除下去,会不断地重复出现,就可用省略号表示。 教师:例7和例8所得到的商是一种比较特殊的小数。(教师指着黑板上的板书)例7的商从小数部分第一位开始不断重复出现数3,写出3.33……。例8的`商从小数部分的第二位开始不断地依次重复出现2和7,写成5.32727……。使大家看到,一个小数,从小数部分的某一位起,一个数字(指着例7商中的数字3)或者几个数字(指着例8商中的数字2和7)依次不断地重复出现,这样的小数叫做循环小数。 教师让学生默读教科书第118页下面循环小数的概念,并让学生思考循环小数的特点是什么?教师引导学生总结出循环小数的特点: (1)重复出现的数字是接连依次不断的; (2)小数的位数有无限多; (3)用省略号来表示无限多的小数位数。 教师出示题目:1.332÷4,这道题的商是不是循环小数?为什么?(1.332÷4=0.333,这个商中虽然小数部分有重复出现的数字3,但是小数位数是有限的,所以它不是循环小数。) 教师:循环小数还有比较简便的表示法,板书: 3.33……写成3. 5.32727……写作5.3 其中“”是“33……”的简便表示法,“”是“2727……”的简便表示法。 教师:今后做小数除法时,如果遇到除不尽的情况,可以根据要求取商的近似值,也可以用循环小数表示除得的商。在一般情况下,遇到除不尽的情况通常保留一位、两位或三位小数。商是循环小数的也可以根据需要取它的近似值。例如,例8的商,可以保留两位小数,也可以保留三位小数。板书: 保留两位小数,商的近似值为5.33 保留三位小数,商的近似值为5.327 3、做第28页例9前“做一做”中的题目。 除了题目中的要求以外,还要将每个循环小数分别取保留两位和三位小数的近似值。做完后,集体订正。 4、教学例9. 教师出示例9,让学生审题后独立计算,集体订正时,让学生说一说循环小数取近似值的方法。 5、做第28页中间“做一做”中的题目。 让学生独立做题。集体订正时,让学生说一说循环小数取近似值的方法。 6、教学有限小数和无限小数的概念。 教师让学生做下列题目: (1)15÷16 (2)1.5÷7 对于第(2)题要尽可能地多除几位小数。做完后,让学生说一说两道题所得的商有什么特点?(第(1)题能除得尽,第(2)题除不尽,商是循环小数。) 教师:从第(1)、(2)题可以看出:两个数相除,如果不能得到整数商,会有两种情况。 第一种情况:除到小数部分的某一位时,不再有余数,商里的小数部分的位数是有限的,也就是被除数能够被除数除尽.例如,第(1)题的商就是属于这种情况。 第二种情况:除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的。例如,第(2)题的商就是属于这种情况。 小数部分的位数是有限的小数,叫做有限小数;小数部分的位数是无限的小数,叫做无限小数。循环小数是无限小数。 7、做第29页最上面的“做一做”中的题目。 教师让学生计算后,判断哪道题的商是有限小数或无限小数。 二、巩固练习1、做练习七的第1题。 教师让学生独立计算后,再进行判断.集体订正时,教师要求学生说出怎样根据循环小数的概念来判断哪些商是循环小数。 2、做练习七的第2题。 让学生直接将得数写在题后.做完后,集体订正。 3、做练习七的第3题中第一行3道小题。 让学生独立做题,做完后,集体订正。 三、布置作业:练习七第3题中第二行的3道小题。  

篇12:循环小数教案

【使用教材】新世纪版小学数学第八册P65

【教学目标】

1.让学生经历自主探究、合作学习的过程,初步了解循环小数、有限小数、无限小数的意义,循环小数的读写方法,通过生活实例、实践、观察、分析达到认识理解并能应用相关知识解决一些实际问题。

2.培养学生的观察、分析、理解、概括能力和自主合作学习能力。

3.创设综合的现实情境,激发学生的学习兴趣,培养学生的应用意识与合作精神。

【教学重难点】正确理解循环小数的意义。

【教学准备】课件

【教学过程】

一、情景创设,激趣导入。

1.课件出示:一个天气预报的网页,星期一至星期日的天气预报滚动播出。

师:你从这个画面上看到了什么?

生:看到了星期一至星期日的天气预报依次不断重复出现。(板书:依次不断重复出现)

师:对,依次不断重复出现,也就是循环出现。(板书:循环)

你在生活中遇到过类似的循环现象吗?给我们说说好吗?(学生举例:扶手电梯,一年四季,时钟,一周7天,12生肖,……)

师:你们知道得可真多!在日常生活里有很多的循环现象,那么在数学王国里有没有循环现象呢?大家想知道吗?今天我们就一起来研究吧!

二、自主探究,合作学习。

1.师:请各组组长取出10道计算题卡,我们来比赛计算,做得最快的一组可上台展示你们的结果。(每组6人,算得快的学生可计算2题以上)

2.715÷5=0.54310÷3=3.333……58.6÷11=5.32727……6÷2.2=2.7272……

27.3÷13=2.16.61÷9=0.734444……17÷4=4.2545÷111=0.405405……

0.5÷1.2=0.416666……90÷22=4.090909……

2.各组讨论:如何把10个得数分类,你们分类理由是什么?然后到黑板上展示。

认识有限小数(小数位数是有限的,可数得清的)和无限小数(小数位数是无限的,数不清的)。

3.各继续讨论:请观察7个无限小数,看看它们有什么特点,把你们的发现写下来。(每组由一人执笔)

小组1:我们发现有些小数是从小数部分直接重复,有些是后几位开始的;整数部分不参加重复;重复的地方可以有很多位。

小组2:我们发现有些小数是一位重复,有些是两位重复,有些是三位重复;它们的共同特点是都除不尽。

小组3:我们发现这些小数的小数部分会依次不断重复出现;有些小数是2位2位的重复或几位几位的重复。

小组4:我们发现数位永远数不清;有些数循环位数多,有些数循环位数少;都是无限小数。小组5:我们发现有些小数前几位是不一样的,从后面的小数才开始一样。

…………

师:你现在知道数学王国里有没有循环现象了吗?

原来数学王国里也有循环现象的,那就是我们刚刚研究的这些数——循环小数。(补充板书:小数)

继续认识纯循环小数和混循环小数:循环的数字从小数部分的十分位开始的.是纯循环小数,循环的数字从百分位或以后的数位开始的是混循环小数。

师:把你们手头的7个循环小数摆成两类循环小数。

4.师:请组长发练习纸,各位同学把8个循环小数中依次不断重复出现的数字找出来。

3.3333……0.416666……4.090909……0.405405……5.3272727……0.73444……2.727272……1.3469469……

(在这里学生对2.727272……依次不断重复出现的数字发生了意见分歧,讨论激烈起来)

师用课件出示循环节的意义:一个循环小数的小数部分……

师:现在同学们明白了2.7272……的循环节是什么了吧?(明白啦!)

课件演示:如果说循环小数的整数部分是火车头的话,那循环节就代表后面一节节的车厢了。

5.再出示:3.3333……0.416666……4.090909……0.405405……5.3272727……

0.73444……2.727272……1.3469469……

师:如果每个循环小数都这样写,你觉得怎么样?(不方便!)那么就请你以1.3469469……为例设计一种循环小数的表示形式,要求循环节只能写一次,还要能表示依次不断重复出现的循环意思。每组评出一种最简明的写法。

(在这里学生的热情高涨,设计的形式五花八门,多姿多彩,让我大开眼界,有1.3469、1.3(469)、1.3469、1.3469、1.3469

1.3469、1.3?469?、1.3469(无限)…………)

师:大家的设计很有创意,也能表示循环小数的意思,老师祝贺你们也成为小数学家!(掌声)循环小数有一种国际上认可了的表示形式。(介绍循环小数的简明写法和读法)

6.师:我们认识了这么多的循环小数,请同学们也自己设计一个纯循环小数和一个混循环小数。(师巡视,有典型的请学生展示并读出来)

三、小结回顾,促进内化。

1.这节课我们学习了什么?(学生先说,教师补充)

2.课件出示:2.010010001……是循环小数吗?

生:它不是循环小数,因为它没有循环节。

师:它不是循环小数,那它是什么小数呢?(介绍无限不循环小数)

3.师:现在我们已经学习了很多种小数,同学们能否根据它们的特点把这些小数分类?

学生每组有一套小数名称卡,每组摆一摆,说一说。分好类的小组到黑板上展示。

有限小数

篇13: 循环小数教案

教学目标:

1、理解循环小数的好处,初步认识有限小数和无限小数。

2、能用简便记法表示循环小数,能正确区分有限小数和无限小数。

3、培养学生的概括潜力和探究精神。

教学重点:掌握循环小数、无限小数、有限小数的好处。

教学难点:用简便记法表示循环小数

教学过程:

一、情景引入

师:在上课之前,老师要给大家讲一个故事:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:……(这个故事总是在重复同一个资料。)

师:不错!大家已经发现这个故事的一个特点了。(板书:不断重复)

师:谁能根据这个特点之后老师的故事继续往下讲?(让几个学生继续讲这个重复的故事。)

师:照这样讲下去,你发现这个故事还有一个什么特点?

(引导学生讨论后回答:像这样重复下去,这个故事永远也讲不完。)(板书:讲不完。)

师:这种不断重复的现象不但故事中有,在有的计算中我们也会遇到。首先我们一齐到运动场上去看一看吧。

师:根据图中的数学信息,你能提出一个什么样的数学问题呢?(王鹏400米只跑了75秒,平均每秒跑多少米?)

师:请同学们根据这个问题列出算式,再用竖式计算这个算式,看一看在计算过程中你能发现什么?(学生计算,在计算过程中引导学生发现400÷75这个算式的两个特点:①余数重复出现“25”;②商的小数部分连续地重复出现“3”。)

师:像这样继续除下去,能除完吗?(可能永远也除不完。)

师:怎样表示这种永远也除不完的商?这种商有些什么特点,就是这节课我们要研究的问题,也是我们要认识的新朋友——循环小数。(板书课题:循环小数)

二、教授新课

1、、初步认识循环小数

师:此刻我请一位同学把400÷75的竖式计算放到视频展示台上,刚才我们发现了这个算式的三个特点:余数重复出现“25”,商的小数部分连续地重复出现“3”而且继续除下去可能永远也除不完。下面让我们一齐来思考一个问题:为什么商的小数部分总是重复出现“3”,它和每次出现的余数有什么关系?(引导学生发现:当余数重复出现时,商就要重复出现;商是随余数重复出现才重复出现的。)

师:猜想一下,如果继续除下去,商会是多少?它的第4位商是多少?第5位呢?(如果继续除下去,无论是哪一位,只要余数重复出现25,它的商也就重复出现3。)

师:是这样的吗?我们能够之后往下除来看看。

师:那么我们怎样表示400÷75的商呢?(引导学生说出:能够用省略号来表示永远除不尽的商。教师随学生的回答板书:400÷75=5.333…)

师:我们所说的重复也叫做循环,像5.333…这样小数部分有一个数字依次不断地重复出现的小数,就是循环小数。

2、、进一步认识循环小数

师:下面我们来继续研究循环小数,请同学们用竖式计算78.6÷11。计算的同时想一想,这个算式能不能除尽?它的商会不会循环?如果循环它时怎样循环的?

(学生计算、讨论、交流,大约控制在4分钟,然后组织全班汇报。

预测汇报状况:

(1)、认为这个算式不能除尽,但它的商不会循环。因为它不像例1那样连续出现数字“3”。

(2)、认为那里的商不能除尽,而且会循环。因为发现有数字“4”和“5”的重复。

师:大家觉得他们的猜测正确吗?请赞同第一种观点的同学继续除下去,看商的小数部分会不会重复出现4、5。(学生计算后证实会重复出现4、5。)

师:比较5.333…和7.14545…,你觉得这两个小数有什么不同?

生:前一个小数是一个数字循环,后一个小数是两个数字循环。

师:请同学们用循环小数的方式标出78.6÷11的商。(指导学生写出78.6÷11=7.14545…)

师:你觉得这样的算式除到哪一位就能够不除了呢?(指导学生说出,只要余数重复了,就能够不除了。)为什么?(引导学生说出:因为像这样的算式余数循环,商也会跟着循环。)

师:对了!像5.333…,7.14545…这样的小数都是循环小数。你能像这样写出几个循环小数吗?

①学生独立完成

②组织全班交流。

师:观察这些循环小数,说说它们有什么共同之处?(引导学生观察、讨论后得出小结)

小结:一个数的小数部分,从某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。

3、练习:下列哪些是循环小数

0.999…52.52525…4.1677…3.212121…3.1415926…

①学生独立完成

②群众订正

4、学习用简便记法表示循环小数

师:你能把这些循环小数中循环的数字用你喜欢的方式标出来吗?

(学生自主活动,并让几名学生在黑板上的循环小数上进行标示。如:5.3333…7.14545…)

师:除了用省略号来表示循环小数外,还能够用简便记法来表示。如5.333……还能够写作5.3,7.14545……还能够写作7.145,这就是用循环节表示循环小数,如果同学们对循环节有兴趣,能够看一看教材第28页的阅读材料。此刻请同学们把前面决定题中的循环小数用简便记法写一写。

①请学生板演

②同座互相检查

③群众交流订正

(52.52525……可能出现问题52.5252.52552.52,师生共同辨析)

5、认识有限小数和无限小数

师:请同学们计算15÷16和1.5÷7。从中你发现什么?

(15÷16=0.9375,1.5÷7=0.2142857…)

师:像这样两个数相除,如果得不到整数商,所得的商可能会有两种状况,你明白是哪两种状况吗?

(引导学生说出一种是继续除下去能够除尽,像15÷16一样;另一种状况是继续除下去,永远也除不完,像1.5÷7一样。)

师:能够除尽的商的小数部分的位数是有限的,我们把它叫做有限小数;永远也除不完的商的小数部分是无限的.,我们把它叫做无限小数。循环小数的小数位数是有限的还是无限的?(无限的)

师:所以循环小数是无限小数。请同学们写几个无限小数,再写几个有限小数。

①学生写后

③群众订正

三、巩固练习

师:用计算器算出下列商后,说出商是什么小数,依据是什么?是循环小数的用简便方法写出来。

19÷111.08÷3.313.25÷10.6

①学生独立完成

②群众订正

四、小结

师:同学们,时间过得真快,谁能告诉我这天我们学习了什么你还有什么不懂得地方吗?

1、学生汇报

2、教师总结评价

篇14: 循环小数教案

《循环小数》教学设计板书设计教案

课时教案

课题:第三单元:小数除法—循环小数第课时总序第个教案

课型:新授编写时间:年月日执行时间:年月日

教学资料:教材P33~34例7、例8及练习八第4、5、6、7、9题。

教学目标:

知识与技能:理解“有限小数”和“无限小数”的好处。

过程与方法:透过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。

情感、态度与价值观:培养学生发现问题、提出问题、解决问题的潜力,提高其观察、分析、比较、决定、抽象的概括潜力。

教学重点:透过笔算发现循环小数的规律,掌握循环小数的好处。

教学难点:能正确决定循环节数字,学会用简便记法表示循环小数。

教学方法:计算、观察、分析、比较、讨论。

教学准备:多媒体。

教学过程

一、创设情境

1.理解依次重复出现的好处。故事引入:这天老师给大家讲一个故事,从前有座山,山里有座庙,庙里有个老和尚,正在给小和尚讲故事:从前有座山,山里有座庙,庙里有个老和尚,正在给小和尚讲故事……

问:学生这个故事能讲完吗?(不能,因为它不断地重复。)

这种“依次不断重复”的状况我们能够称它为“循环”。(板书:循环)

2.初步感知循环小数。

出示教材第33页例7情境图,引导学生观察并说出图意,并找到数学信息,独立列算式。学生列式:400÷75。

让学生用竖式计算这个算式,并说一说在计算过程中你有什么发现。

透过计算,学生会发现这个算式的余数重复出现“25”;商的小数部分连续地重复出现“3”。

3.引出课题。像这样继续除下去,能除完吗?(可能永远也除不完。)

揭题:那怎样表示这种永远也除不完的商?这种商有些什么特点?这节课我们来研究这个问题,也是我们要认识的“新朋友”——循环小数。

(板书课题:循环小数)

二、互动新授

1.认识循环小数。

引导学生思考:为什么商的小数部分总是重复出现“3”,它和每次出现的余数有什么关系?(当余数重复出现时,商就要重复出现。)

让学生猜一猜400÷75的商下一位是多少?并计算验证。

引导学生说出:400÷75的商能够用省略号来表示永远除不尽的商。

(板书:400÷75=5.333…)

2.出示第33页例8的两道计算题,让学生自主计算,并说出商的特点。

在第2小题:78.6÷11计算到商的第三位小数时,让学生先停一停,看一看余数是多少,然后再之后除出两位小数,指导学生和除得的前几步比较,想一想继续除下去,商会是什么?

透过观察和比较,引导学生发现:余数重复出现5和6,如果继续除下去商就会重复出现4和5,总也除不尽。

3.引导学生比较400÷75,28÷18,78.6÷11的商,你有什么发现?

引导学生发现:400÷75和28÷18的商,从小数部分的第一位起不断重复出现某个数字,78.6÷11的商,从小数部分的第二位起开始不断地依次重复出现数字4和5。

师小结:我们所说的重复也叫做循环,像5.333…1.555…和7.14545…这样小数部分有一个数字或者几个数字依次不断重复出现的小数,就是循环小数。

4.引导学生自主学习。

师引导:循环小数有什么特点?在循环小数里,依次不断重复出现的数字叫什么?怎样表示循环小数呢?请同学们自主学习教材第33—34页的知识。

学生自学后指生回答,学习循环小数的概念。

循环小数:一个数的小数部分,从某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。

循环节:一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节。如:5.333…的循环节是3;714545…的循环节是45。(板书)

5.师小结:今后在计算小数除法时,如果遇到除不尽的状况能够根据要求取商的近似值,也能够用循环小数表示除得的商。

三、巩固拓展

1.完成教材第34页“做一做”第1题。学生自主完成,群众订正。

2.完成教材第34页“做一做”第2题。学生自主完成,并讨论:两个数相除,如果不能得到整数商,所得的商会有哪些状况?学生可能会说:商是小数,商是循环小数,而且有的能除尽,有的除不尽。

教师从而引出“有限小数”和“无限小数”的概念:小数部分的位数有限的小数是有限小数。如0.9375是有限小数;小数部分的位数无限的小数是无限小数。如0.2142857是无限小数。(板书)

师小结:我们此刻学的小数比以前又扩大了,又增加了无限小数,而循环小数就是一种无限小数。

四、课堂小结。

这节课你们学了什么知识?有什么收获?(学生反馈)

作业:1.熟记概念。

2.练习八4、5、6、7、9第题。

板书设计:

循环小数

400÷75=5.333…

5.333…的循环节是3714545…的循环节是45。

有限小数0.9375无限小数0.2142857

批注

教学(后记)反思:

篇15: 循环小数教案

循环小数教案

教学目标:1、透过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。

2、理解有限小数,无限小数的好处,扩展数的范围。

3、培养学生抽象概括潜力,及敢于质疑和独立思考的习惯。

教学过程:

一、自主探索,获取新知

1、师谈活引入新课:

我班男生400米谁跑得最快成绩如何和“王鹏”比比,(出示例题)。全班齐笔算王鹏平均每秒跑了多少米(指名一生板演)。

2、初步感受循环小数的特点。

观察竖式,你发现了什么(组织学生小组内交流)

可能发现:1、余数总是“25”。2、继续除下去,永远也除不完。3、商的小数部分总是重复出现“3”。

师:你们怎样能肯定会永远除不完,商的小数部分总是重复出现“3”让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。

师:那么商如何表示呢你为什么使用省略号(师板书)

3、总结概括循环小数的好处

出示:28÷1878.6÷11

先计算,再说一说这些商的特点。(请生板演计算结果)

学生讨论后,指名汇报,教师抓住学生回答:如1、小数部分,位数无限(或者除不尽)。2、有的是一个数字不断重复出现,有的是两个……。教师小结循环数的好处,(板书课题)。

4、巩固练习:下列哪些是循环小数

0.999…52.52525…4.1677…3.212121…3.1415926…

学生评议。

5、介绍简便记法

如5.333…还能够写作5.3、7.14545还能够写作7.145,请学生把前面决定题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。

(52.52525…可能出现问题52.5252.52552.52,师生共同辨析)

6、看书p27-28第一自然段,及了解“你明白吗”

7、理解有限小数和无限小数的好处。

师:想一想,两个数如果不能得到整数商,所得的商会有哪些状况请举例说明

学生小组讨论,汇报。

师适时抛出有限小数,无限小数的概念,并板书,决定前面练习题中的小数哪些是有限小数哪些是无限小数,使学生明确循环小数属于无限小数。

学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。

二、学生小结

三、巩固练习

全班练习:19÷111.08÷3.313.25÷10.6报名板演,说出商是什么小数,依据是什么

循环小数教案

五年级《循环小数》说课稿

《循环小数》

循环小数练习题

循环小数数学反思

循环小数教学设计

五年级体育教案

五年级语文教案

五年级作文教案

五年级信息技术教案

循环小数五年级教案(共15篇)

欢迎下载DOC格式的循环小数五年级教案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档