高三三角函数教学反思

时间:2022-11-30 06:44:08 作者:生闷气 教学心得 收藏本文 下载本文

“生闷气”通过精心收集,向本站投稿了18篇高三三角函数教学反思,下面是小编为大家整理后的高三三角函数教学反思,欢迎阅读与收藏。

篇1:高三三角函数教学反思

直角三角形中边角之间的关系,是现实世界中应用最广泛的关系之一。锐角三角函数在解决现实问题中有着重要的作用,因此,学好本节中关于锐角的三种三角函数,正切,正弦,余弦的定义是关键。

通过这一阶段的课堂教学,在合作探究中培养学生的问题意识,同学们的表现有了明显的转变,课堂上有问题能及时提出来,有的同学一堂课能提出好几个问题,其他同学对提出的问题争先恐后地辩解,争得面红耳赤。

本节课采用问题引入法,从教材探究性问题梯子的倾斜度入手,让学生主动参与学习活动。用特殊值探究锐角的三角函数时,学生们表现得非常积极,从作图,找边、角,计算各个方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出,然后就问:三角函数与直角三角形的边、角有什么关系,三角函数与三角形的形状有关系吗?进一步深入地去认识三角函数;当得出正切的概念后,学生们就提出:能不能把公式变形成积的`形式,去求边,这个问题已经把本课的内容拓展了,说明学生的问题意识已经增强了,能够合理地提出问题。至此,每个学生在课堂的表现明显改变,表现得积极、主动、问题意识强。

在教学中,我还注重对学生进行数学学习方法的指导。在数学学习中,有一些学生往往不注重基本概念、基础知识,认为只要会作题就可以了,结果往往失分于选择题、填空题等一些概念性较强的题目。通过引导学生进行知识梳理,教会学生如何进行知识的归纳、总结,进一步帮助学生理解、掌握基本概念、基础知识。

在这节课的教学中存在许多缺陷,促使我进一步研究和探索。我们必须清醒地认识到,课程改革势在必行,在教学中加入新的理念,发挥传统教学的基础性和严谨性,不断地改善教法、学法,才能适应现代教学。

总之,在教学方法上,改变教师教、学生听的传统模式,采用学生自主交流、合作学习、教师点拨的方式,把主动权真正交给学生,让学生成为课堂的主人,才能提高学生的问题意识。

篇2:高三三角函数教学反思

1.关于三角函数的教学,应注意以下问题:

(1)要根据学生的生活经验,创设丰富的情境,使学生体会三角函数模型的意义。例如,通过单摆、弹簧振子、圆上一点的运动,以及音乐、波浪、潮汐、四季变化等实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,体会三角函数是刻画周期现象的重要模型。

(2)借助单位圆,帮助学生直观地认识任意角的三角函数,理解三角函数的周期性、诱导公式、同角三角函数关系式,以及三角函数的图象和基本性质。引导学生自主地探索三角函数的有关性质,培养他们分析问题和解决问题的能力。

(3)弧度是学生比较难接受的概念,教学中应使学生体会弧度也是一种度量角的单位,可在后续课程的学习中逐步理解这一概念,在此不作深究。

2.关于平面向量的教学,应注意以下问题:

(1)向量概念的教学应从物理背景和几何背景入手,物理背景是力、速度、加速度等概念,几何背景是有向线段。了解这些物理背景和几何背景,对于学生理解向量概念和运用向量解决实际问题都是十分重要的。

(2)引导学生运用向量解决一些物理和几何问题。例如,利用向量计算力使物体沿某方向运动所做的功,利用向量解决平面内两条直线平行与垂直的位置关系等问题。对于用向量解决较为复杂的平面几何问题不作要求。

(3)向量的非正交分解、向量投影的概念只要求了解,不必展开。线段定比分点坐标公式及应用不作要求。

3.三角恒等变换的教学,应注意以下问题:

(1)教学中,注意展示数学发现的过程,可以引导学生利用平面向量的数量积推导出两角差的余弦公式,并由此公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式。

(2)鼓励学生独立探索和讨论交流,引导学生推导积化和差、和差化积、半角公式,以此作为三角恒等变换的基本训练。

(3)能利用同角三角函数的基本关系式、诱导公式、两角和与差的三角函数公式、二倍角的三角函数公式,进行简单的三角函数式的化简、求值及恒等式证明。其中,简单的三角函数式的化简、求值及恒等式证明指三角函数变形的次数一般不超过三次,整个解题过程中三角函数公式的使用一般不超过5个。

篇3:锐角三角函数教学反思

杜巧云

一、弄清对邻斜。

锐角三角函数是定义在直角三角形中的研究边角之间的关系。而锐角三角函数值实质上就是边与边之间的'一种比值,它能沟通了边与角之间的联系,为解直角三角形提供了角边关系的根据。不管角怎样变,斜边是固定的,直角边或是某一锐角的对边或是某一锐角的邻边。不要死记硬背a,b,c的比值。记清对邻斜两者之比。

二、掌握一表两图记特殊锐角的三角函数值。

三、应用公式变形解决实际问题。

篇4:锐角三角函数教学反思

锐角三角函数教学反思

教学反思:

锐角三角函数在解决现实问题中有着重要的作用,但是锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关系。锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之间的联系,它是解直角三角形最有力的工具之一。

在今后教学过程中,自己还要多注意以下两点:

(1)还要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的.注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。

(2)我将尽我可能站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角。而我将尽我最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。

篇5:《锐角三角函数》的教学反思

《锐角三角函数》的教学反思

思维总是从问题开始的,有问题,学着才主动。学生在不断解决问题,发现问题中学习,知识得到了掌握,能力得到了训练,情感得到了体验。我来谈谈上完本节课之后的感想,做一小结和反思,以便更好地服务于课堂教学。

一、在教学时对学生状况进行了正确的分析,这是成功的开始。

有利条件:学生已经学过相似形、直角三角形及函数等有关知识,具备一定的分析判断及推理能力,通过教师引导能够完成学习任务。不利因素及对策:初三学生两极分化明显,不同学生的认知水平、思维能力不同,而数学抽象性较强,多数学生对数形结合类型题的适应能力较差。另外,学生虽然学过函数知识,但是锐角三角函数是初次接触,学生不易理解。所以,在教学中关键是抓住三角函数定义的理解,由浅入深,逐步解决问题。

二、教学过程注重学生基础知识的掌握及能力的培养。

本节课不仅要使学生了解三角函数的概念,而且要理解三角函数制值只与角的大小有关,即当某一锐角取固定值时,这角的三角函数值不仅存在,而且唯一。教学大纲明确指出,培养学生的分析问题、解决问题的能力是数学教学的一项重要任务。因此,根据教学目的的要求,在教学过程中让学生逐步学会观察、探索、猜想、发现新知识,培养学生解决问题的能力。

三、为了充实课堂容量,加强教学效果,采取了多种教学方式。

根据学生已有的知识结构,我把两节课的内容合并成一节,原因是学生探究出正弦的概念的同时,轻而易举地能得出余弦、正切的概念,这样更有助于学生对知识的联贯性学习。在教学过程中采用了多媒体教学。

四、教学过程中的不足在课堂教学过程中,将教师的指导教学和学生的`自主学习有效地结合起来,圆满完成了本节内容的教学任务。

并且,在自己的努力下,课堂教学中有些环节上有了很大的进步,特别是把两节的内容合并成一节按时间完成了教学任务。还有很多不足之处,譬如:从自身的角度看,和学生的交流做的不够、讲与练时间控制的不太好,特别在督促学生动笔书写方面;从学生的角度看,学生灵活运用概念的能力较差,及计算能力也有待加强。总之,本节内容的教学还是比较成功的,当然也有不足之处,在今后的教学工作中,需不断总结、反思。作为数学教师,一方面要激发学生学习数学的兴趣,让学生感觉到每解决一个数学问题,就有一种成就感;另一方面,更重要的是教师本人要不断提高自己的专业水平。在总结、反思中不断提升自己的教学水平。

篇6:《三角函数诱导公式》 教学反思

《三角函数诱导公式》 教学反思

《三角函数诱导公式》教学反思

陕州一高数学组 殷 雪

根据课题组和学校教学工作的安排,于3月份在学校录制了一节《三角函数的诱导公式》公开课,现将本节课的成功与遗憾之处总结如下:

本着培养学生学习数学的兴趣,逐步消除学生对数学的恐惧心理,让每个学生在课堂均有收获的原则,本节课设置的内容相对容易。本节课的学习目标是理解三角函数的诱导公式,掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明;学习重点是掌握诱导公式,能观察分析公式的特点,明确公式用途,熟练驾驭公式;学习难点运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明.

在课题研究阶段,为了培养学生对数学的兴趣,在课堂教学中尽量让学生成为课堂的主体,充分发挥学生学习的主动性,我们根据学生现状设置了导学案。导学案的知识预习和回顾部分设置以填空题为主,逐步引导学生了解本节课的重难点;课前小测部分设置的习题针对知识点设计一些较简单的习题,大部分学生通过自学就可以轻松完成,逐步树立学生的'自信心,克服对数学的恐惧;合作探究部分这对本节课的教学重难点设置一些题目,学生通过自己的思考可以解决部分内容,然后通过小组合作探究完成全部内容,有部分难点解决不了的部分教师给于适当提示。通过本节课可以看出,经过一段时间的训练,大部分同学已经基本适应了这种模式,同学的积极性也慢慢调动起来,能够在小组交流活动中大胆发言,表明自己的观点,敢于在黑板前展示本组的探究成果,语言的表达能力和数学语言的准确性也得到了很大的提高;结合班级的加分制度,增强了小组之间的竞争意识,活跃了课堂气氛,调动了学生学习数学的积极性,学生成了课堂的主宰。

但在教学过程中仍存在一些遗憾:上课时因为紧张没有在黑板上书写课题,教师基本没有板书,没能对学生起到示范作用,这对高一学生来说是非常不利的;教师在授课过程中受传统思想的影响,不能做到真正放权,还是讲的多,对学生的评价不够及时到位;学生的板书不够规范,安排不够合理,在板演过程中有的小组没能写清题号和组名。

课堂检测环节中学生大部分能完成本节课内容,课堂小结学生的发言给我一个惊喜,充分说明学生是有真正参与课堂的,有自己的想法。在今后的教学过程中要进一步放权,还课堂给学生,充分的相信学生。相信在我们师生的共同努力下,我们的数学成绩一定会有大的提高。

篇7:高中数学《锐角三角函数》教学反思

角三角函数是定义在直角三角形中的研究边角之间的关系,而锐角三角函数值实质上就是边与边之间的一种比值,它能沟通了边与角之间的联系,为解直角三角形提供了角边关系的根据。

本节课重难点就是对比值的理解,可以从以下几方面着手研究:

(1)讨论角的任意性(从特殊到一般)(2)运用相似三角形性质,让学生领悟到:在直角三角形中,对于固定角,无论直角三角形大小怎么样改变,都影响不到其对边与斜边的比值。

采 用激趣设疑方法,从修建扬水站铺设水管问题入手,让学生参与问题讨论,唤起学生学习兴趣和求知欲。再根据从特殊到一般的学习方法,利用特殊角来探究锐角的 三角函数,通画图,找出边的长度、角的度数,计算相关方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出相关边的长度,然后就问:三角函数与 直角三角形的边、角有什么关系,三角函数与三角形的形状大小有关系吗?整堂课都在愉快的氛围中进行。多数学生都能积极动脑积极参与思考。教学中,要关注学 生的情感态度,对那些积极动脑,热情参与的同学,都给予了鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证施教活动的有效性。

在以后教学中,还要多注意以下两点:

(1)要多花点时间来研究如何调控课堂气氛。学生的注意力是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。要不断摸索,不断实践找到合适的教学风格,每一种个性教学都是教学魅力和人格魅力的展现。

(2)要学会换位思考,站在学生的'角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,学会真正把课堂还给学生,让学生来做课堂的主角。

(3)下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。

篇8:高中数学《锐角三角函数》教学反思

本节课是锐角三角形这章的第一节课,是学生在学了直角三角形及勾股定理基础上再来研究直角三角形边与角的关系的内容,本章的知识通过解直角三角形与实际问题中的坡度、方向角方位角建立联系,解决问题。本章是中考必考的知识点,特别是特殊角的三角函数值,一定要熟记。本节课虽考虑到本班学生自从分班以后,学习氛围不浓,而基础又较差,因而必须将难度降低想办法调动学生的学习积极性;但在引入时,既用了直角三角形在数学中的重要地位,用:“黑夜给了我一个黑色的眼睛,我用它来寻找光明”类比数学中的“上帝给了我一双黑色的眼睛,我用它来寻找直角三角形”说明寻找直角三角形对解决数学问题的重要性;然后又引入用学生最近反应学习苦,学习累和不爱护公共财物的情况,从引入课桌要到了到其他贫困地区孩子午休谁桌子下的情况引入爱护公共财物,今儿从而引出本节课相关的知识。虽然大家都在说这节课的亮点就是将德育与数学知识结合起来,注重学科之间的联系。但我始终觉得这样的结合不免显得优点牵强,下来我将在思考如何让本节课的引入与内容结合得更好。

还有一个问题就是我在设计教学时,想到学生函数的基础不好,很怕函数,没有考虑到和函数的定义联系起来,而学生虽然会计算一个锐角的三角函数了,但对为什么把这些值成为这个锐角的三角函数并不清楚,在教学中我忽视了这一细节,也没有一个学生提出疑问,这说明学生只停留在定义的表面,并没有深入思考。因此,在下次教学时,我要设计这么一个问题:“为什么把它们成为函数值?”来启发学生。

篇9:高一数学三角函数教学反思

高一数学三角函数教学反思

本月份的教学内容是三角函数这一章,在讲授这一章时,各个老师各有各的见解,心得,现小结如下:

陈少敏老师认为:应把正、余弦、正切函数的内容讲过,这样我们在讲y=Asn(ωx+φ)、y=Acy(ωx+φ)y=Atan(ωx+φ)这一类函数时就很轻松,强调在教学过程中注重逐渐渗透化归和类比的思想以及数形结合思想的渗透。

何秋萍老师认为可以结合这一章知识点的特点即涉及图像以较多,一些结论是通过图像变换而来的。可以借助多媒体来演示,利用信息技术动态演示功能,帮助学生发现图象的特点,观察函数变化过程,通过这一系列的直观性认识自然而然得出结论,所以提倡积极受用信息技术讲授。

王桂芳老师对新课程中的过程与应试提出了自己的看法。新课程对教学过程的要求是用生动的课堂过程激发学生的对数学的兴趣,让学生理解所学的基本知能点,加强学生在一节课内的情感流线,使学生掌握自主探索的能力最后才是让学生对知识点的应有,这样就会造成课堂教学对知识点的延伸、拓展和变形应用几乎无法作出要求,所以,他认为要使新课程进行下去,以下几个方面至关重要:一是与新课程配套题率的建立;二是统一的教学思路,一致按新课程知能点的要求走,不乱补充,不乱扩展。

祁惠香老师在讲授正切线这一节课时,从学生的课堂练习中发现屡屡出错的原因在于概念的含混不清,强调概念教学一定要透彻,不能本末倒置,同时要提出了自己的的.教学理念——五能五让:能让学生观察的,让学生自己去观察,能让学生思考的让学生自己去思考,能让学生计算的,让学生自己去计算,能让学生总结的,让学生自己去总结,能让学生反思的,让学生自己去反思。

陈梅英老师认为:在课堂上尽量让他们在掌握教学大纲的同时,让他们抓住基础,教会他们牢记公式,灵活应用数学公式,善于变通之有益,变之有用,让学生体会到学习的乐趣。

篇10:高三数学三角函数公式

锐角三角函数公式

sin =的对边 / 斜边

cos =的邻边 / 斜边

tan =的对边 / 的邻边

cot =的邻边 / 的对边

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2 是sinA的平方 sin2(A) )

三倍角公式

sin3=4sinsin(/3+)sin(/3-)

cos3=4coscos(/3+)cos(/3-)

tan3a = tan a tan(/3+a) tan(/3-a)

三倍角公式推导

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

辅助角公式

Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B

降幂公式

sin^2=(1-cos(2))/2=versin(2)/2

cos^2()=(1+cos(2))/2=covers(2)/2

tan^2()=(1-cos(2))/(1+cos(2))

推导公式

tan+cot=2/sin2

tan-cot=-2cot2

1+cos2=2cos^2

1-cos2=2sin^2

1+sin=(sin/2+cos/2)^2

=2sina(1-sina)+(1-2sina)sina

=3sina-4sina

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cosa-1)cosa-2(1-sina)cosa

=4cosa-3cosa

sin3a=3sina-4sina

=4sina(3/4-sina)

=4sina[(3/2)-sina]

=4sina(sin60-sina)

=4sina(sin60+sina)(sin60-sina)

=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]

=4sinasin(60+a)sin(60-a)

cos3a=4cosa-3cosa

=4cosa(cosa-3/4)

=4cosa[cosa-(3/2)]

=4cosa(cosa-cos30)

=4cosa(cosa+cos30)(cosa-cos30)

=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]}

=-4cosasin(a+30)sin(a-30)

=-4cosasin[90-(60-a)]sin[-90+(60+a)]

=-4cosacos(60-a)[-cos(60+a)]

=4cosacos(60-a)cos(60+a)

上述两式相比可得

tan3a=tanatan(60-a)tan(60+a)

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

[www.xuexifangfa.com]

三角和

sin(++)=sincoscos+cossincos+coscossin-sinsinsin

cos(++)=coscoscos-cossinsin-sincossin-sinsincos

tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)

两角和差

cos(+)=coscos-sinsin

cos(-)=coscos+sinsin

sin()=sincoscossin

tan(+)=(tan+tan)/(1-tantan)

tan(-)=(tan-tan)/(1+tantan)

和差化积

sin+sin = 2 sin[(+)/2] cos[(-)/2]

sin-sin = 2 cos[(+)/2] sin[(-)/2]

cos+cos = 2 cos[(+)/2] cos[(-)/2]

cos-cos = -2 sin[(+)/2] sin[(-)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

积化和差

sinsin = [cos(-)-cos(+)] /2

coscos = [cos(+)+cos(-)]/2

sincos = [sin(+)+sin(-)]/2

cossin = [sin(+)-sin(-)]/2

诱导公式

sin(-) = -sin

cos(-) = cos

tan (a)=-tan

sin(/2-) = cos

cos(/2-) = sin

sin(/2+) = cos

cos(/2+) = -sin

sin() = sin

cos() = -cos

sin() = -sin

cos() = -cos

tanA= sinA/cosA

tan(/2+)=-cot

tan(/2-)=cot

tan()=-tan

tan()=tan

万能公式

sin=2tan(/2)/[1+tan^(/2)]

cos=[1-tan^(/2)]/1+tan^(/2)]

tan=2tan(/2)/[1-tan^(/2)]

其它公式

(1)(sin)^2+(cos)^2=1

(2)1+(tan)^2=(sec)^2

(3)1+(cot)^2=(csc)^2

证明下面两式,只需将一式,左右同除(sin)^2,第二个除(cos)^2即可

(4)对于任意非直角三角形,总有

tanA+tanB+tanC=tanAtanBtanC

证:

A+B=-C

tan(A+B)=tan(-C)

(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得证

同样可以得证,当x+y+z=nZ)时,该关系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

(9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n-1)/n]=0

cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0 以及

sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

以上就是小编为大家整理的高三数学三角函数公式大全。

[高三数学三角函数公式大全]

篇11:高三数学三角函数知识点

锐角三角函数定义

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin)等于对边比斜边;sinA=a/c

余弦(cos)等于邻边比斜边;cosA=b/c

正切(tan)等于对边比邻边;tanA=a/b

余切(cot)等于邻边比对边;cotA=b/a

正割(sec)等于斜边比邻边;secA=c/b

余割(csc)等于斜边比对边。cscA=c/a

互余角的三角函数间的关系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα.

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

积的关系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

锐角三角函数公式

两角和与差的三角函数:

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cosAsinB?

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

辅助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

推导公式:

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

其他:

sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

篇12:高三数学三角函数知识点

函数名正弦余弦正切余切正割余割

在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有

正弦函数sinθ=y/r

余弦函数cosθ=x/r

正切函数tanθ=y/x

余切函数cotθ=x/y

正割函数secθ=r/x

余割函数cscθ=r/y

正弦(sin):角α的对边比上斜边

余弦(cos):角α的邻边比上斜边

正切(tan):角α的对边比上邻边

余切(cot):角α的邻边比上对边

正割(sec):角α的斜边比上邻边

余割(csc):角α的斜边比上对边

三角函数万能公式

万能公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

(4)对于任意非直角三角形,总有

tanA+tanB+tanC=tanAtanBtanC

证:

A+B=π-C

tan(A+B)=tan(π-C)

(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得证

同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

万能公式为:

设tan(A/2)=t

sinA=2t/(1+t^2)(A≠2kπ+π,k∈Z)

tanA=2t/(1-t^2)(A≠2kπ+π,k∈Z)

cosA=(1-t^2)/(1+t^2)(A≠2kπ+π,且A≠kπ+(π/2)k∈Z)

就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.

篇13:三角函数教学课件

三角函数教学课件

一.教学目标

1.知识与技能

(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。

(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。

2.过程与方法

(1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。

(2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。

3.情感、态度、价值观

(1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。

(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。

二.教学重点与难点

教学重点:探求π-a的诱导公式。π+a与-a的诱导公式在小结π-a的诱导公式发现过程的基础上,教师引导学生推出。

教学难点:π+a,-a与角a终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。

三.教学方法与教学手段

问题教学法、合作学习法,结合多媒体课件

四.教学过程

角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值怎么求呢?先看一个具体的问题。

(一)问题提出

如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题。

【问题1】求390°角的正弦、余弦值.

一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系。即有:sin(a+k·360°) = sinα,

cos(a+k·360°) = cosα, (k∈Z)

tan(a+k·360°) = tanα。

这组公式用弧度制可以表示成sin(a+2kπ) = sinα,

cos(a+2kπ) = cosα, (k∈Z) (公式一)

tan(a+2kπ) = tanα。

(二)尝试推导

如何利用对称推导出角π-a与角a的三角函数之间的关系。

由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等。反过来呢?如果两个角的三角函数值相等,它们的终边一定相同吗?比如说:

【问题2】你能找出和30°角正弦值相等,但终边不同的角吗?

角π-a与角a的终边关于y轴对称,有

sin(π-a) = sina,

cos(π-a) =-cosa,(公式二)

tan(π-a) =-tana。

〖思考〗请大家回顾一下,刚才我们是如何获得这组公式(公式二)的?

因为与角a终边关于y轴对称是角π-a,,利用这种对称关系,得到它们的终边与单位圆的.交点的纵坐标相等,横坐标互为相反数。于是,我们就得到了角π-a与角a的三角函数值之间的关系:正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系。

(三)自主探究

如何利用对称推导出π+a,-a与a的三角函数值之间的关系。

刚才我们利用单位圆,得到了终边关于y轴对称的角π-a与角a的三角函数值之间的关系,下面我们还可以研究什么呢?

【问题3】两个角的终边关于x轴对称,你有什么结论?两个角的终边关于原点对称呢?

角-a与角a的终边关于x轴对称,有:

sin(-a) =-sina,

cos(-a) = cosa,(公式三)

tan(-a) =-tana。

角π+a与角a终边关于原点O对称,有:

sin(π +a) =-sina,

cos(π +a) =-cosa,(公式四)

tan(π +a) = tana。

上面的公式一~四都称为三角函数的诱导公式。

(四)简单应用

例求下列各三角函数值:

(1) sinp; (2) cos(-60°);(3)tan(-855°)

(五)回顾反思

【问题4】回顾一下,我们是怎样获得诱导公式的?研究的过程中,你有哪些体会?

知识上,学会了四组诱导公式;思想方法层面:诱导公式体现了由未知转化为已知的化归思想;诱导公式所揭示的是终边具有某种对称关系的两个角三角函数之间的关系。主要体现了化归和数形结合的数学思想。具体可以表示如下:

(六)分层作业

1、阅读课本,体会三角函数诱导公式推导过程中的思想方法;

2、必做题 课本23页13

3、选做题

(1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?

(2)角α和角β的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?

篇14:三角函数教学设计

(一)概念及其解析

这一栏目的要点是:阐述概念的内涵;在揭示内涵的基础上说明本课内容的核心所在;必要时要对概念在中学数学中的地位进行分析;明确概念所反映的数学思想方法。在此基础上确定教学重点。

概念

描述周期现象的数学模型,最基本而重要的背景:匀速圆周运动。

定义域:(弧度制下)任意角的集合;对应法则:任意角α的终边与单位圆的交点坐标为(x,y),正弦函数为y=sinα,余弦函数为x=cosα;值域:[-1,1]。

概念解析

核心:对应法则。

思想方法:函数思想--一般函数概念的指导作用;形与数结合--象限角概念基础上;模型思想--单位圆上的点随角的变化而变化的规律的数学刻画。

重点:理解任意角三角函数的对应法则--需要一定时间。

(二)目标和目标解析

一堂课的教学目标是教学目的的具体化,是教学活动每一阶段所要实现的教学结果,是衡量教学质量的标准。当前,许多教师没有意识到制定教学目标的重要性,他们往往只从“课标”或“教参”上抄录,而且表述目标时,“八股”现象严重。我们主张,课堂教学目标不以“三维目标”(知识与技能、过程与方法、情感态度价值观)或“四维目标”(知识技能、数学思考、解决问题、情感态度)分列,而以内容及由内容反映的思想方法为载体,将数学能力、情感态度等隐性目标融于其中,并用了解、理解、掌握等及相应的行为动词经历、体验、探究等表述目标,特别要阐明经过教学,学生将有哪些变化,会做哪些以前不会做的事。

为了更加清晰地把握教学目标,以给课堂中教和学的行为做出准确定向,需要对教学目标中的关键词进行解析,即要解析了解、理解、掌握、经历、体验、探究等的具体含义,其中特别要明确当前内容所反映的数学思想方法的教学目标。

教学目标:

理解任意角三角函数(正弦、余弦、正切)的定义。

目标解析:

(1)知道三角函数研究的问题;

(2)经历“单位圆法”定义三角函数的过程;

(3)知道三角函数的对应法则、自变量(定义域)、函数值(值域);

(4)体会定义三角函数过程中的数形结合、数学模型、化归等思想方法。

(三)教学问题诊断分析

这一栏目的要点是:教师根据自己以往的教学经验,对学生认知状况的分析,以及数学知识内在的逻辑关系,在思维发展理论的指导下,对本内容在教与学中可能遇到的困难进行预测,并对出现困难的原因进行分析。在上述分析的基础上指出教学难点。

教学问题诊断和教学难点:

认知基础

(1)函数的知识--“理解三角函数定义”到底要理解什么?--三要素;

(2)锐角三角函数的定义--背景(直角三角形)、对应关系(角度 比值)、解决的问题(解三角形)--侧重几何特性;

(3)任意角、弧度制、单位圆--在直角坐标系下讨论问题的经验,借助单位圆使问题简化的经验。

认知分析

(1)三角函数是一类特殊函数,“三角函数”是“函数”的下位概念,用“概念同化”方式学习,要理解“三要素”的具体内涵,其中核心是“对应法则”;

(2)从锐角三角函数到任意角三角函数,一种“形式推广”,载体要从直角三角形过渡到直角坐标系,其核心是要明确用坐标定义三角函数的思想方法;

(3)体会将“任意点”化归到“单位圆上的点”的意义--求简的思想。

教学难点

(1)先要在弧度制下(用单位圆的半径度量角)实现角的集合与实数集的一一对应,再实现数到坐标的对应,不是直接的对应,会造成理解困难;

(2)锐角三角函数的“比值”过渡到坐标表示的比值,需要从函数角度重新认识问题;

(3)求简到“单位圆上点的坐标”,思想方法深刻,学生不易理解。

(四)教学过程设计

在设计教学过程时,如下问题需要予以关注:

强调教学过程的内在逻辑线索;

要给出学生思考和操作的具体描述;

要突出核心概念的思维建构和技能操作过程,突出思想方法的领悟过程分析;

以“问题串”方式呈现为主,应当认真思考每一问题的设计意图、师生活动预设,以及需要概括的概念要点、思想方法,需要进行的技能训练,需要培养的能力,等。

另外,要根据内容特点设计教学过程,如基于问题解决的设计,讲授式教学设计,自主探究式教学设计,合作交流式教学设计,等。

教学过程设计

1、复习提问

请回答下列问题:

(1)前面学习了任意角,你能说说任意角概念与平面几何中的角的概念有什么不同吗?

(2)引进象限角概念有什么好处?

(3)在度量角的大小时,弧度制与角度制有什么区别?

(4)我们是怎样简化弧度制的度量单位的?

(设计意图:从为学习三角函数概念服务的角度复习;关注的是思想方法。)

2、先行组织者

我们知道,函数是描述客观世界变化规律的重要数学模型。例如指数函数描述了“指数爆炸”,对数函数描述了“对数增长”等。圆周运动是一种重要的运动,其中最基本的是一个质点绕点O 做匀速圆周运动,其变化规律该用什么函数模型描述呢?“任意角的三角函数”就是一个刻画这种“周而复始”的变化规律的函数模型。

(设计意图:解决“学习的必要性”问题,明确要研究的问题。)

3、概念教学过程

问题1 对于三角函数我们并不陌生,初中学过锐角三角函数,你能说说它的自变量和对应关系各是什么吗?任意画一个锐角 α,你能借助三角板,根据锐角三角函数的定义找出sinα的值吗?

(设计意图:从函数角度重新认识锐角三角函数定义,突出“与点的位置无关”。)

问题2 你能借助象限角的概念,用直角坐标系中点的坐标表示锐角三角函数吗?

(设计意图:比值“坐标化”。)

问题3 上述表达式比较复杂,你能设法将它化简吗?

(设计意图:为“单位圆法”作铺垫。学生答出“取点P(x,y)使x2+y2=1”后追问“为什么可以这样做?)”

教师讲授:类比上述做法,设任意角α的终边与单位圆交点为P(x,y),定义正弦函数为y=sinα,余弦函数为x=cosα。

(设计意图:“定义”是一种“规定”;把精力放在定义合理性的理解上。)

问题4 你能说明上述定义符合函数定义的要求吗?

(设计意图:让学生用函数的三要素说明定义的合理性,以此进一步明确三角函数的对应法则、定义域和值域。)

例1 分别求自变量π/2,π,- π/3所对应的正弦函数值和余弦函数值。

(设计意图:让学生熟悉定义,从中概括出用定义解题的步骤。)

例2 角α的终边过P(1/2, - /2),求它的三角函数值。

4、概念的“精致”

通过概念的“精致”,引导学生认识概念的细节,并将新概念纳入到概念系统中去,使学生全面理解三角函数概念。这里包括如下内容:

三角函数值的符号问题;

终边与坐标轴重合时的三角函数值;

终边相同的角的同名三角函数值;

与锐角三角函数的比较:因袭与扩张;

从“形”的角度看三角函数--三角函数线,联系的观点;

终边上任意一点的坐标表示的三角函数;

还可以引导学生思考三角函数的“多元联系表示”,例如,把实数轴想象为一条柔软的'细线,原点固定在单位点A(1,0),数轴的正半轴逆时针缠绕在单位圆上,负半轴顺时针缠绕在单位圆上,那么数轴上的任意一个实数(点)t 被缠绕到单位圆上的点 P(cost,sint)。

5、课堂小结

(1)问题的提出--自然、水到渠成,思想高度--函数模型;

(2)研究的思想方法--与锐角三角函数的因袭与扩张的关系,化归为最简单也是最本质的模型,数形结合;

(3)归纳概括概念的内涵,明确自变量、对应法则、因变量;

(4)用概念作判断的步骤、注意事项等。

(五)目标检测设计

一般采用习题、练习的方式进行检测。要明确每一个(组)习题或练习的设计目的,加强检测的针对性、有效性。练习应当由简单到复杂、由单一到综合,循序渐进地进行。当前,要特别注意摒除“一步到位”的做法。过早给综合题、难题有害无益,基础不够的题目更是贻害无穷。题目出不好、练习安排不合理是老师专业素养低的表现之一。

本课习题只要完成教科书上的相关题目即可,这里从略。

篇15:三角函数教学设计

一、教材内容及分析

《同角三角函数关系式》是人教版高中新教材必修4第一章第二节的第二课。本节内容是同角三角函数关系式的运用,三种题型“知值求值”“弦化切”“函数思想的应用”。

二、学生情况分析

本课时研究的是同角三角函数关系式的运用、逆用及变形,因此在教学过程中要发展学生的已有认知,发挥知识迁移。

三、教学目标

知识目标:

1掌握同角三角函数关系式的运用、逆用及变形;

2掌握同角三角函数关系式的三种题型。

能力目标:

渗透分类讨论思想、方程思想。

情感、态度、价值观目标:

发展学生研究问题、解决问题的能力。

四、教学重难点

重点:

同角三角函数关系式的运用、逆用及变形;

难点:

1、正确判断三角函数的符号

2、灵活运用公式做运算

五、教学方法与策略

教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学。

六、教学过程

引入(课件中:)

两个公式

新课

例1 练习1(课件中)

意图:加强学生对公式的理解,让学生学会知值求值,能注意角的取值范围,正确判断函数值符号。

例2 练习1(课件中)

意图:让学生掌握齐次式分子分母同除余弦化正切。

例3 练习3(课件中)

意图:让学生理解掌握方程思想的应用。

小结(课件中)

作业(课件中)

篇16:三角函数教学设计

一、教学内容:三角函数

【结构】

二、要求

(一)理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。

(二)掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)

(三)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。

(四)会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωx φ)的简图、理解A、ω、< 1271864542“>的意义。

三、热点分析

1、近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强。

2、对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至考查的内容看,大致可分为四类问题 (1)与三角函数单调性有关的问题;

(2)与三角函数图象有关的问题;

(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;

(4)与周期有关的问题

3、基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、或技巧),分析综合(由因导果或执果索因),实现转化。解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解。

4、立足课本、抓好基础。从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在中首先要打好基础。在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度。

四、复习建议

本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:

(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理。

(2)对公式要抓住其特点进行。有的公式运用一些顺口溜进行。

(3)三角函数是阶段研究的一类初等函数。故对三角函数的性质研究应结合一般函数研究方法进行对比。如定义域、值域、奇偶性、周期性、图象变换等。通过与函数这一章的对比,加深对函数性质的理解。但又要注意其个性特点,如周期性,通过对三角函数周期性的复习,类比到一般函数的周期性,再结合函数特点的研究类比到抽象函数,形成解决问题的能力。

(4)由于三角函数是我们研究的一门基础工具,近几年高考往往考查知识网络交汇处的知识,故学习本章时应注意本章知识与其它章节知识的联系。如平面向量、参数方程、换元法、解三角形等。(高考应用题源于此)

(5)重视数学思想方法的复习,如前所述本章都以选择、填空题形式出现,因此复习中要重视选择、填空题的一些特殊解题方法,如数形结合法、代入检验法、特殊值法,待定系数法、排除法等。另外对有些具体问题还需要掌握和运用一些基本结论。如:关于对称问题,要利用y=sinx的对称轴为x=kπ+ (k∈Z),对称中心为(kπ,0),(k∈Z)等基本结论解决问题,同时还要注意对称轴与函数图象的交点的纵坐标特征。在求三角函数值的问题中,要学会用勾股数解题的方法,因为高题一般不能查表,给出的数都较特殊,因此主动发现和运用勾股数来解题能起到事半功倍的效果。

(6)加强三角函数应用意识的训练,高考理科第20题实质是一个三角问题,由于考生对三角函数的概念认识肤浅,不能将以角为自变量的函数迅速与三角函数之间建立联系,造成障碍,思路受阻。实际上,三角函数是以角为自变量的函数,也是以实数为自变量的函数,它产生于生产实践,是客观实际的抽象,同时又广泛地应用于客观实际,故应培养实践第一的观点。总之,三角部分的考查保持了内容稳定,难度稳定,题量稳定,题型稳定,考查的重点是三角函数的概念、性质和图象,三角函数的求值问题以及三角变换的方法。

(7)变为主线、抓好训练。变是本章的主题,在三角变换考查中,角的变换,三角函数名的变换,三角函数次数的变换,三角函数式表达形式的变换等比比皆是,在训练中,强化“变”意识是关键,但题目不可太难,较特殊技巧的题目不做,立足课本,掌握课本中常见问题的解法,把课本中习题进行归类,并进行分析比较,寻找解题规律。针对高考中的题目看,还要强化变角训练,经常注意收集角间关系的观察分析方法。另外如何把一个含有不同名或不同角的三角函数式化为只含有一个三角函数关系式的训练也要加强,这也是高考的重点。同时应掌握三角函数与二次函数相结合的题目。

(8)在复习中,应立足基本公式,在解题时,注意在条件与结论之间建立联系,在变形过程中不断寻找差异,讲究算理,才能立足基础,发展能力,适应高考。

在本章内容中,高考试题主要反映在以下三方面:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。多数题型为选择题或填空题;其次是三角函数式的恒等变形。如运用三角公式进行化简、求值解决简单的综合题等。除在填空题和选择题出现外,解答题的中档题也经常出现这方面内容。

另外,还要注意利用三角函数解决一些应用问题。

篇17:《任意角的三角函数》教学反思参考

任意角三角函数的第一节课,其中心任务应该是让学生建立起计算一个任意角的三角函数与其终边上点的坐标之间的关系,并在此基础上初步建立任意角三角函数概念的意义,《任意角的三角函数》教学反思。如,计算方法、定义域、值域、符号表示、有关结论(与点的位置的选取无关)后,首先提供“坐标系”作为脚手架,并引发学生的认知冲突—“在坐标系下,如何研究一个任意角的三角函数?”并以坐标系为平台,有层次的研究随角的变化,即第一象限下的锐角(认识研究方法的变化,以及符号表示的变化)——0~2π范围内的角(认识该范围内角的三角函数的表示方法,特别是值域的变化)——不同象限下终边相同的角(逐渐形成计算一个任意角的`三角函数的操作过程)。

锐角三角函数概念教学时如果是先给一个锐角,再构造三角形,而不是象当前大多数教材中采用的直接放在一个直角三角形下,对学生概念的迁移会更有帮助。

“任意角和弧度制”,应该完成用弧度制表示一个角α及其终边相同的角的集合如何表示,会对本节课“任意角的三角函数”概念的教学更有意义。

新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计.

到底应该怎样去合理定义任意角的三角函数呢让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突.在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思.这样也有助于学生对任意角三角函数概念的理解.

让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个”形“的问题,转换到直角坐标系下点的坐标这个”数“的过程的.培养数形结合的思想.

《标准》把发展学生的数学应用意识和创新意识作为其目标之一,在教学中不仅要突出知识的来龙去脉还要为学生创设应用实践的空间,促进学生在学习和实践过程中形成和发展数学应用意识,提高学生的直觉猜想、归纳抽象、数学地提出、分析、解决问题的能力,发展学生的数学应用意识和创新意识,使其上升为一种数学意识,自觉地对客观事物中蕴涵的一些数学模式作出思考和判断,教学反思《任意角的三角函数》教学反思》。在解答问题的过程中体验到从数学的角度运用学过的数学思想、数学思维、数学方法去观察生活、分析自然现象、解决实际问题的策略,使学生认识到数学原来就来自身边的现实世界,是认识和解决我们生活和工作中问题的有力武器,同时也获得了进行数学探究的切身体验和能力。增进了他们对数学的理解和应用数学的信心。

篇18:《三角函数的诱导公式》教学反思

本人自己感到满意之处有:

1、教学目标明确,符合新教材的教学要求和学生的认知水平及认知心理,目标设计体现了学科素养。

2、教学内容的设计上抓住了主干知识,把握了重点,突破了难点,注重了教学的条理性。情境导入方面,通过三个设问,激发学生的学习兴趣,鼓励和引导学生积极参与诱导公式的探索发现过程。演板题目设计典型,难度适中,有一定的效度。

3、运用课件讲授诱导公式,做到图文并茂,让学生能轻松地认知诱导公式,基本达到了预期的教学效果。

4、使用普通话教学,语言精练准确,不说废话。

5、学生学习兴趣浓厚,答题踊跃,自主、合作、探究学习的态度得以体现,获得了积极的情感体验。

但在教学过程中仍存在一些遗憾:教学中一下细节打磨不够,强调不够;板书较少;对做得好的学生缺少表扬等

通过参与这次讲课,使我得到了锻炼,尤其是听课老师中肯的评课,让我收获颇多,将受益终生。希望今后有机会多参加这样的活动。

高三数学教案《三角函数》

同角三角函数的基本关系的教学及反思

高三生物教学反思

高三数学教学反思

高三化学教学反思

高三物理教学反思

高三语文教学反思

三角函数练习题

三角函数习题

2022高三地理教学反思

高三三角函数教学反思(共18篇)

欢迎下载DOC格式的高三三角函数教学反思,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档