高考物理的学习要点是什么,物理最重要的三点

时间:2023-03-15 03:57:14 作者:大郎卖饼 综合材料 收藏本文 下载本文

【导语】“大郎卖饼”通过精心收集,向本站投稿了6篇高考物理的学习要点是什么,物理最重要的三点,下面小编为大家带来整理后的高考物理的学习要点是什么,物理最重要的三点,希望大家喜欢!

篇1:2019高考物理的学习要点是什么,物理最重要的三点

一、习题演练

习题演练是我们在学习中必须经历的重要学习环节,而习题解答过程中,我们要注意不要过多的最求量的累计,而是寻求质的的突破,当我们将一道习题理解挖掘,领悟到深刻的知识点涵义,那么再解决另一种难题时,自然可以寻求突破口以解决,最终不断的积累习题本质内容,那么解题过程将越来越快,这就是将一道习题做精做熟的好处所在。

二、错题

错题是我们课本学习或考试答错的难题错题,这是我们在学习中,可能疏忽那一部分的知识点,或知识点掌握不牢固的原因所在,而物理错题,我们可以制定一份单独的物理错题收集本,集中探索物理习题中的规律,与总结在学习过程疏忽了那一部分的知识嗲内容,并以及时的改正学习,这就是我们可以不断学习进步的关键所在,只有真正的将所有错题解决,才能真正的掌握物理的本质。

三、总结

总结是我们对于自身学习状况的一个梳理整理,确定自身的学习状况,发现自身所缺乏的不足之处,探索我们在所学习中的知识点规律,最终将知识点巩固积累,而物理的知识点总结可以跟老师将知识点梳理一遍,发现基本概率是否缺失,不管运动学、力学、动量、能量、电磁学公式,再到一些常见的公式的推导,以及一些做题时常用的思路技巧等都要一一顾及发现,以确保在学习过程中,不会出现太大的纰漏。

篇2:2019高考学习重点是什么,高考学习最重要的三点

一、重视基础

我们在高考学习过程中,不管是难题解析,还是作文写作,都需要我们拥有充足的知识点储备来帮助我们进行破题提取,而知识点记忆之后,我们也需要将知识之间的联系结合,构建知识体系,把握其中的重点、难点、疑点,再根据其基本观点联系知识点中的内在关联,从而打造出一个坚固的基础,为我们后续的学习提供充足的知识储备。

二、重视思考

思考是我们在学习过程中所必须具备的基本能力,如果只会死记硬背,那么即使可以解决基础题型,遇到难一点的难题,可能就会使其卡主,只有多多思考每一个知识点的本质内涵,联系每一个知识点所可能存在的联系,才能将知识点真正的掌握理解。

三、掌握技巧

每一次解题,我们都会有相应的解题方法,解题思路来帮助我们进行解除难题,但是如果在一开始就将题型看错,实用错误的解题方式,那么就很容易出现卡题,答案错误,甚至将整个思路都带偏,所以我们在解题之前,就需要仔细的通过审题,来确定我们借下来的解题方式与方向,切记不要急躁,导致匆匆解题,只有真正的审透,审准,把握其中的关键词,才是我们解题方向的关键,而解题过程中,我们需要注意多多的运用我们的学科术语,尽量减少口语化与修饰的语句出现。

篇3:高考物理题型解题要点

一、选择题

1、选择题的特点①.基本知识、基本规律及拓展。②.知识归类、类比。③.物理知识与实际生活、现代科技相结合。

2、解选择题的一般技巧读题时要仔细、认真,在弄清题意之前,先不要看选择项,因为有一些选项有误导作用,应读懂题意后,再去逐项分析。如果有图示,则先由图读出信息,最后可比较选项之间的关联。

除了常见的直接判断法、定性分析法、逻辑推理法、图示比较法外,还有一些比较特殊的、行之有效的方法也可以使用。如筛选排除法(利用已知条件逐一筛选、排除)、极限分析法(把物理过程或物理现象推至极端,由极端情况推理一般情况)、特值简算法(把题目中给出的物理量代入特殊值进行计算或判断)、特例判断法(通过特例判断某些说法的对错)和量纲比较法(如果题目给出的结果都是用字母表示的,那么通过推演式子的单位是否符合要求,也是一个判断思路)等等。

多选题,因选择题的答案可能有一个也可能有多个,要认真判断每一个选项的对错,不能凭印象选择,不能主观地认为A选项对了B选项就一定错,吃不准的选项不要选,不会做的题要选一个认为最有可能的选项。

要注意“以下判断错误的是”,让你选的是错误的选项。

二、实验题

力学实验:

1.研究匀变速直线运动

2.探究弹力和弹簧伸长的关系

3.验证力的平行四边形定则

4.验证牛顿第二定律

5.研究平抛物体的运动

5.探究动能定理

6.验证机械能守恒定律

7.练习使用游标卡尺和螺旋测微器

光电门、气垫导轨的使用、创新实验:例如求滑动摩擦因数等。

电学实验

1.测定金属的电阻率(同时练习使用螺旋测微器)

2.描绘小灯泡的伏安特性曲线

3.电表的改装与校对

4.测定电源电动势和内阻

5.用多用电表探索黑箱内的电学元件

6.练习使用示波器

7.传感器的简单应用

选修实验

1.用单摆测定重力加速度

2.共振实验

3.测定玻璃的折射率

4.用双缝干涉测光的波长

5.验证动量守恒定律

说明:知识结构

高中阶段的19学生实验,按实验目的和特点可分为五个类型:

(1):测量性实验:长度的测量、用单摆测定重力加速度、用油膜法估测分子的大小、测定金属的电阻率、测定电源电动势和内阻、测定玻璃的折射率、用双缝干涉测光的波长。

(2):验证性实验:验证力的平行四边形定则、验证牛顿第二定律、验证动能定理、验证动量守恒定律、验证机械能守恒定律。

(3):研究性实验:研究匀变速直线运动、研究平抛物体的运动、改装电表。

(4):描述性实验:用描迹法画出电场中平面上的等势线、描绘小灯泡的伏安特性曲线、练习使用示波器。

(5):控索性实验:探索弹力和弹簧伸长的关系、用多用电表探索黑箱内的电学元件、传感器的简单应用。

实验原则:安全性、可操作性、可行性

三、选做题:

1.选择题部分一般有5个选项,而答案往往有三个。3—4的选择一般的机械振动和机械波,计算一般为折射定律和全反射的问题(多考察几何光学);3—5的选择一般为原子物理、电磁波、放射性、半衰期、德布罗意波等,而计算一般为动量守恒得计算。

四、计算题

1.动能定理、机械能守恒定律

2..带电粒子在电磁场中的运动解题思路①读清题目,试着画出轨迹。②找圆心、确定半径,列出几何关系。R=mv/qB.③求出圆心角,t=θT/2π,T=2πm/qB。④综合求解,计算准确。

3..法拉第电磁感应定律:

4.与实际生活想关联的运动学问题,

5.基本模型有:匀变速运动(可利用图像解决问题)、平抛运动、圆周运动等。

6.万有引力相关问题,例如双星问题等。

7.解题技巧

①要读全题目,把已知的信息、悟出的东西展示出来,建立一个清晰物理情景。(读题时要捕捉关键性的词语,例如“至多”,“至少”,“恰好”,“缓慢”,“迅速”,“瞬间”,变化”,“变化率”等。审题时应边读边想,读到关键词语处,要作出标记,反复咀嚼,从中捕捉解题信息。剔除干扰,把握物理现象本质,抓住物理模型特点。借助示意图,展示物理情景,注意题目的提示,如括号、星号、浪线等。)

②解题过程要规范、完整,每一步要有结果,做到有问必答。

③单位清楚。

④解答过程有理有据,一般一行文字一行公式,由……规律,得什么方程……

⑤模型法是物理解决问题的基本方法。我们所学到的规律都是经过简化以后与物理模型所对应的规律。只有找到题目所述的是什么样的模型,才能用这个模型所对应的所有的规律来解决问题。

⑥题目的变化来自于:时、空条件的变化。高中所学的模型不多,但是题目千变万化,原因是每一道题都有区别于其他题目的条件。审题的关键是将这种条件找出来,也就是我们平时所要找的初始条件(由静止开始、以某速度开始等)、边界条件、临界条件(恰好、刚好等)等。

⑦对于多过程、多对象的问题,学生们审题清楚以后的第一个任务就是:“拆”。就是将一个长过程拆成几个相对独立的子过程。把多个研究对象分别隔离作为单个物体来研究,或者将几个对象作为整体来研究。

⑧规范求解物理大题的一般步骤与方法:审题、建模、择法、列式、求解、讨论。

五、解物理题的几个注意点

1.仔细审题①找出关键的词——缓慢、快速、刚刚、恰好、轻质、不计--、最大和最小、g的取值等等;②找出关键的句子(也就是“题眼”);③看清题目要你求什么。

2.对看似再简单的问题也要画受力分析图,防止多力或漏力——处理物体在竖直平面内做圆周运动求物体在最低点的弹力,以及在处理打击问题求打击力时经常会漏掉重力就是很好的例证。

3.学会用示意图或函数图将抽象问题直观化——物理情景图、装置示意图、变化过程图、受力分析图、等效电路图等等。有很多的物理题目没有示意图,我们一些同学在做题时总喜欢“干”想,干想题目中所给出的物理情景,这样极易出错。画出示意图以后,即可以将抽象的问题直观化,又能避免使你忽略一些极易忽略的条件,也会减少了因“想当然”而出错的几率。一般情况下,涉及“力”的时候要画受力分析图;涉及“运动”的时候要画运动过程图(特别是多过程问题);涉及“波”的问题要画波动图;涉及“光的反射和折射”时要画出光路图;涉及“带电粒子在匀强磁场中做圆周运动的问题”时要画出包括圆心的轨迹图;涉及“电磁感应和电路的综合问题”时要画出包含内、外电路在内的电路图等等。

注读函数图和用函数图时要关注的几个要点

①纵坐标和横坐标所代表的物理量是什么,它们之间的定性和定量关系(也就是函数关系)如何?它们的单位是什么?它们刻度的起点是否是零?

②图像中斜率的物理意义是什么?

③图像与纵坐标和横坐标截距的物理意义是什么?

④图像的起始点、终止点以及状态变化连接点的物理意义是什么?

⑤坐标中不同图像交点的物理意义是什么?

⑥图像与坐标轴所围面积的物理意义是什么?

4、不能想当然、凭感觉。

①遇到“生题”时要生题熟做。首先要学会判断“生题”究竟生在何处,一般情况一是“生”在题目的条件隐含较深,不易挖掘。二是“生”在题目所设置的背景新颖陌生。总之,要设法在生题中找出我们所熟悉的物理模型来。

②遇到“熟题”时要熟题生做。遇到熟题时,要特别注意审题,找出眼前的熟题和以前做过的题目之间的细微区别,以防“会而不对”。

5、要合理地分配时间

选择题和实验题的解题时间(包括涂卡时间),要控制在40分钟(或再少一些)左右,不要在前面的某一道题上耽搁时间太长,吃不准的题可以先放下。对于平时成绩处于上等的学生,可以在考前的5分钟的阅卷时间内阅读并思考最后两道大题,其余同学可从头看起。当然,这要因人而异,不能绝对。

篇4:高考物理常用的重要公式

高考物理常用的重要公式

平抛运动公式总结

1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2,合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)影响与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体选有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

原子和原子核公式总结

1.α粒子散射试验结果a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;(c)较少数α粒子出现大角度的偏转(甚至反弹回来)

2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)

3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}

4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}

5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长较短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〔见第三册P64〕

6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}

7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。

注:

(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;

(2)熟记常见粒子的质量数和电荷数;

(3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;

(4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。

光的反射和折射公式总结

1.反射定律α=i {α;反射角,i:入射角}

2.折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}

3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n

2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角

注:

(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;

(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;

(3)光导纤维是光的全反射的实际应用〔见第三册P12〕,放大镜是凸透镜,近视眼镜是凹透镜;

(4)熟记各种光学仪器的成像规律,利用反射(折射)规律、光路的可逆等作出光路图是解题关键;

(5)白光通过三棱镜发色散规律:紫光靠近底边出射见〔第三册P16〕

电磁振荡和电磁波公式总结

1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}

2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}

注:

(1)在LC振荡过程中,电容器电量较大时,振荡电流为零;电容器电量为零时,振荡电流较大;

(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;

(3)其它相关内容:电磁场〔见第二册P215〕/电磁波〔见第二册P216〕/无线电波的发射与接收〔见第二册P219〕/电视雷达〔见第二册P220〕。

气体的状态参量

温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志

热力学温度与摄氏温度关系:T=t+273{T:热力学温度(K),t:摄氏温度(℃)}

体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:

1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

3.理想气体的状态方程:p1V1/T1=p2V2/T2{PV/T=恒量,T为热力学温度(K)}

注:

(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

篇5:高考物理常用的重要公式

对于考生来说物理这一科目至关重要,它是一门能够拉分的学科,因此想要取得好成绩必须要复习好物理知识,为了帮助大家备考物理,下面为大家带来高考物理复习资料,希望大家认真阅读。

高考物理常用的重要公式归纳

平抛运动公式总结

1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2,合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)影响与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体选有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

原子和原子核公式总结

1.α粒子散射试验结果a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;(c)较少数α粒子出现大角度的偏转(甚至反弹回来)

2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)

3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}

4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}

5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长较短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〔见第三册P64〕

6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}

7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。

注:

(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;

(2)熟记常见粒子的质量数和电荷数;

(3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;

(4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。

光的反射和折射公式总结

1.反射定律α=i {α;反射角,i:入射角}

2.折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}

3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n

2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角

注:

(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;

(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;

(3)光导纤维是光的全反射的实际应用〔见第三册P12〕,放大镜是凸透镜,近视眼镜是凹透镜;

(4)熟记各种光学仪器的成像规律,利用反射(折射)规律、光路的可逆等作出光路图是解题关键;

(5)白光通过三棱镜发色散规律:紫光靠近底边出射见〔第三册P16〕

电磁振荡和电磁波公式总结

1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}

2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}

注:

(1)在LC振荡过程中,电容器电量较大时,振荡电流为零;电容器电量为零时,振荡电流较大;

(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;

(3)其它相关内容:电磁场〔见第二册P215〕/电磁波〔见第二册P216〕/无线电波的发射与接收〔见第二册P219〕/电视雷达〔见第二册P220〕。

气体的状态参量

温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志

热力学温度与摄氏温度关系:T=t+273{T:热力学温度(K),t:摄氏温度(℃)}

体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:

1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

3.理想气体的状态方程:p1V1/T1=p2V2/T2{PV/T=恒量,T为热力学温度(K)}

注:

(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

高考物理复习资料:高考物理常用的重要公式归纳是物理网为大家带来的,希望大家能够科学的复习物理知识,这样大家就能在物理考试中轻松应对。

篇6:高考物理重要复习考点

热力学

(一)改变物体内能的两种方式:做功和热传递

1.做功:其他形式的能与内能之间相互转化的过程,内能改变了多少用做功的数值来量度,外力对物体做功,内能增加,物体克服外力做功,内能减少。

2.热传递:它是物体间内能转移的过程,内能改变了多少用传递的热量的数值来量度,物体吸收热量,物体的内能增加,放出热量,物体的内能减少,热传递的方式有:传导、对流、辐射,热传递的条件是物体间有温度差。

(二)热力学第一定律

1.内容:物体内能的增量等于外界对物体做的功W和物体吸收的热量Q的总和。

2.符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值,吸收热量Q取正值,物体放出热量Q取负值;物体内能增加取正值,物体内能减少取负值。

(三)能的转化和守恒定律

能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式或从一个物体转移到另一个物体。在转化和转移的过程中,能的总量不变,这就是能量守恒定律。

(四)热力学第二定律

两种表述:(1)不可能使热量由低温物体传递到高温物体,而不引起其他变化。

(2)不可能从单一热源吸收热量,并把它全部用来做功,而不引起其他变化。

热力学第二定律揭示了涉及热现象的宏观过程都有方向性。

(3)热力学第二定律的微观实质是:与热现象有关的自发的宏观过程,总是朝着分子热运动状态无序性增加的方向进行的。

(4)熵是用来描述物体的无序程度的物理量。物体内部分子热运动无序程度越高,物体的熵就越大。

注:1.第一类永动机是永远无法实现的,它违背了能的转化和守恒定律。

2.第二类永动机也是无法实现的,它虽然不违背能的转化和守恒定律,但却违背了热力学第二定律。

高一物理重点知识与学习要点

高三物理知识要点总结

关于高二物理的重要知识点

初中物理欧姆定律重要知识点

高考物理教学心得

高考物理高效复习方法

高考物理备考建议

物理学习经验发言稿

关于中考物理的10个重要知识点

高考物理做题技巧方法

高考物理的学习要点是什么,物理最重要的三点(共6篇)

欢迎下载DOC格式的高考物理的学习要点是什么,物理最重要的三点,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档