【导语】“我的新事业”通过精心收集,向本站投稿了5篇怎么学高中数学方法具体有哪些,下面是小编为大家整理后的怎么学高中数学方法具体有哪些,供大家参考借鉴,希望可以帮助您。
篇1:怎么学高中数学方法具体有哪些
学高中数学的建议
1.树立学好高中数学的信心
进入高中就必须树立正确的学习目标和远大的理想。学生可以阅读一些数学历史,体会数学家的创造所经历的种种挫折、数学家成长的故事和他们在科学技术进步中的卓越贡献,也可请高二、高三的优秀学生讲讲他们学习数学的方法,以此激励自己积极思维,勇于进取,培养学习数学的兴趣,树立学好数学的信心。
2.培养良好学习习惯
良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
课前自学是学生上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。
上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。
及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。
独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程,这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”。
如何学好高中数学
1.学习被动。
许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权,没有真正理解所学内容。在初中的数学教学中,教师讲解详细,常把许多问题的解决建立为固定的思维模式,而且各类题型反复练习,学生渐渐养成了“依葫芦画瓢”的抄录式的学习方法。而高中数学要求学生勤于思考,善于思考,掌握数学思想方法,善于归纳总结规律,在思维的灵活性、可延伸性、创造性方面提出了较高的要求。但学生的思维能力的发展和思维方式的转换有一个循序渐进的过程,这就给高一数学的学习形成了思维障碍。
2.学不得法。
老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3.基础重视不够。
知识是能力的基础,要切实抓好基础知识的学习。数学基础知识学习包括概念学习、定理公式学习以及解题学习三个方面,一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。
4.进一步学习条件不具备。
高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃,这就要求必须掌握基础知识与技能为进一步学习做好准备。高中数学很多地方难度大、方法新、分析能力要求高,如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
高中数学解题的技巧
一、熟悉化策略
所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。
一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。
常用的途径有:
(一)、充分联想回忆基本知识和题型:
按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
(二)、全方位、多角度分析题意:
对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。
(三)恰当构造辅助元素:
数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。
数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。
二、简单化策略
所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。
简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。
因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。
解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。
1、寻求中间环节,挖掘隐含条件:
在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。
因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。
2、分类考察讨论:
在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。
3、简单化已知条件:
有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。
4、恰当分解结论:
有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。
三、直观化策略:
所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。
(一)、图表直观:
有些数学题,内容抽象,关系复杂,给理解题意增添了困难,常常会由于题目的抽象性和复杂性,使正常的思维难以进行到底。
对于这类题目,借助图表直观,利用示意图或表格分析题意,有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索。
(二)、图形直观:
有些涉及数量关系的题目,用代数方法求解,道路崎岖曲折,计算量偏大。这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,拓宽解题思路,找出简捷、合理的解题途径。
(三)、图象直观:
不少涉及数量关系的题目,与函数的图象密切相关,灵活运用图象的直观性,常常能以简驭繁,获取简便,巧妙的解法。
四、特殊化策略
所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。
五、一般化策略
所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题。
六、整体化策略
所谓整体化策略,就是当我们面临的是一道按常规思路进行局部处理难以奏效或计算冗繁的题目时,要适时调整视角,把问题作为一个有机整体,从整体入手,对整体结构进行全面、深刻的分析和改造,以便从整体特性的研究中,找到解决问题的途径和办法。
七、间接化策略
所谓间接化策略,就是当我们面临的是一道从正面入手复杂繁难,或在特定场合甚至找不到解题依据的题目时,要随时改变思维方向,从结论(或问题)的反面进行思考,以便化难为易解出原题。
篇2:怎么学高中数学方法是什么
学好高中数学的方法
一、逐步形成“以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
二、养成良好的学习习惯
1、要养成良好的个性品质。要树立正确的学习目标,培养浓厚的学习兴趣和顽强的学习毅力,要有足够的学习信心。
2、要养成良好的审题习惯,提高阅读能力。审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,逐字逐句细心推敲,寻找突破点,从而形成解题思路。
3、要养成良好的解题习惯,提高自己的思维能力。训练并规范解题习惯是提高用文字、符号和图形三种数学语言表达的有效途径,而数学语言又是发展思维能力的基础。因此,夯实基础才能逐步提高自己的思维能力。
4、要养成良好的演算、验算习惯,提高运算能力。同学们要多动脑勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。提高计算能力及计算速度和准确性。
5、要养成归纳总结的习惯,提高概括能力。每学完一节一章后,要按知识的逻辑关系进行归纳总结,使所学知识系统化、条理化、专题化,对进一步深化知识积累资料,灵活应用知识,提高能力将起到很好的促进作用。
6、要提高自我调控能力。尽快适应新的学习环境及各科教师的教学方法。立足于自身的实际,优化学习策略,调控自己的学习行为,从而使自己学得好、学得快。
三、针对自己的学习情况,采取一些具体的措施
记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。学会从多角度、多层次地进行总结归类。
如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。
四、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
高中数学学习建议
1、认真听好每一节课。有的同学上课不听,下课不看,资料不做,考试前拿着课本在那记公式,总结知识点,考试成绩是一塌糊涂。
2、记数学笔记,特别是对概念不同侧面的理解,以及典型例题。
3、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到能从反面入手深入理解;能由果朔因把错误原因弄个水落石出、以便对阵下药;解答问题完整、推理严密。
4、记忆数学规律和数学小结论。高中数学不是靠死记硬背,但是不代表不背,基本的规律和结论还是必须记的,记的熟练了,自然也就能灵活运用了。
5、在有能力的基础上做一些数学课外题,加大自学力度。
6、反复巩固,消灭前学后忘
7、学会总结归类。
初中数学与高中数学的区别
1、立方和与差的公式
这部分内容在初中教材中很多都不会讲到,但进入高中后,它的运算公式却还在用。
2、因式分解
十字相乘法在初中已经不做要求了,同时三次或三次以上多项式因式分解也不做要求了,但是到了高中,教材中却多处要用到。
3、二次根式对分子、分母有理化
这也是初中不作要求的内容,但是分子、分母有理化确实高中函数、不等式常用的解题技巧,特别是分子有理化。
4、二次函数
二次函数的图像和性质是初高中衔接中最重要的内容,二次函数知识的生长点在初中,而发展点在高中,是初高中数学衔接的重要内容。二次函数作为一种简单而基础的函数类型,是历年来高考的一项重点考察内容,经久不衰。
5、根与系数的关系(韦达定理)
在初中,我们一般都会用因式分解法,公式法、配方法解简单的数字系数的一元二次方程,而到了高中却不在学习,但是高考中又会出现这一类型的考题,对学生有以下能力要求:
1)理解一元二次方程的根的判别式,并能用判别式判定根的情况;
2)掌握一万二次方程根与系数的关系,并能运用它求含有两根之和、两根之积的代数式(这里指“对称式”)的值,能构造以实数p、q为根的一元二次方程。
6、图像的对称、平移变换
初中只作简单介绍,而在高中讲授函数后,对其图像的上下、左右平移,两个函数关于原点,对称轴、给定直线的对称问题必须掌握。
7、含有参数的函数、方程、不等式
初中教材中同样不作要求,制作定量研究,而在高中,这部分内容被视为重难点。方程、不等式、函数的综合考查常称为高考综合题
8、几何部分很多概念
(如重心、垂心、外心、内心等)和定理(如平行线分线段比例定理,射影定理,圆幂定理等),初中生大都没有学习,而高中教材多常常要涉及,并经常是在解题过程中直接运用。
篇3:高中学习数学方法
高中学习数学方法
高中学生不仅要想学,还必须“会学”,要讲究科学的学习方法,提高学习效率,变被动学习为主动学习,才能提高学习成绩。下面是高中学习数学方法,希望对高中生学习高中数学有帮助。
一、高中数学学习方法汇总
1、培养良好的学习习惯。
良好的学习习惯包括制定学习计划、课前预习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
(1)制定计划明确学习目的。
合理的学习计划是推动我们主动学习和克服困难的内在动力。
计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
(2)课前预习是取得较好学习效果的基础。
课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。
预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
(3)上课是理解和掌握基本知识、基本技能和基本方法的关键环节。
“学然后知不足”,上课更能专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。
(4)及时复习是提高效率学习的重要一环。
通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。
(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。
这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”。
(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。
解决疑难一定要有锲而不舍的精神。
做错的作业再做一遍。
对错误的地方没弄清楚要反复思考。
实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。
小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。
经常进行多层次小结,能对所学知识由“活”到“悟”。
(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。
课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
2、循序渐进,积极归因,防止急躁。
由于高一同学年龄较小,阅历有限,为数不少的同学容易急躁。
有的同学贪多求快,囫囵吞枣,想靠几天“冲刺”一蹴而就。
学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。
许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。
让高一同学学会积极归因,树立自信心,如:取得一点成绩及时体会成功,强化学习能力;遇到挫折及时调整学习方法、策略,更加努力改变挫折,循序渐进,争取在高考成功。
3、注意研究学科特点,寻找最佳高中数学学习方法。
数学学科担负着培养运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。
其中运算能力的培养一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行,教学中进行一题多解思考,优化运算策略;逻辑思维能力是具有高度的抽象性、
逻辑性和广泛的适用性,对能力要求较高,使用归类、网联策略,区别好几个概念:三段式推理、四种命题和充要条件的关系;空间想象能力对平面知识的扩充既要能钻进去,
又要能跳出来,结合立体几何,体会图形、符号和文字之间的互化;运用所学知识分析问题、解决问题的能力,就是要重视应用题的转化训练,归类数学模型,体会数学语言。
华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理,方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。
高一数学是高中学习一个艰苦的磨炼,经过了这个阶段的砺炼,就会打开高中数学的学习思维,前面的道路就会豁然开朗,只要同学们增强信心,再掌握正确的高中数学学习方法,付出的努力一定会有回报。
二、坚持整理独一无二的“错题集”
相信很多同学在学习数学的时候都会遇到这样的.情况:明明这道题看着很熟悉,自己好像遇到过,当时还做错了来着,但偏偏就是想不起来正确的解法是什么,结果……又做错了。
这说明你并没有真正的掌握这个知识点,或者说,你没有掌握得足够牢固。
面对一张讲解过的试卷,你有把握自己能得满分吗?人总是能从自己的失败中学到更多的东西,所以,你需要一本错题集。
整理错题集就是把自己平时和考试时做错过的题目抄下来,不仅要把正确的答案写上去,还要把错误的答案加上,然后分析做错的原因,是知识点没掌握,还是忽略了使用的条件范围,或者因为粗心计算错误。
数学的知识点繁多而且相对独立,考试前复习时总是不知道从哪里下手才好,回想一下好像自己基本原理都懂了,但考试要用到时却总是想不起来。
而错题集,就像一张药方,既有“症状描述”,还有对症下的药。
对比错题集,能够很快找到自己的不足,加以巩固,避免再犯同样的错误。
跌倒一次不可怕,可怕的是在同一个地方连续跌倒两次。
因此建议同学们能够在第一轮复习、老师系统地梳理知识点的时候,把自己的错题集建立起来。
错过这一时间的也可以自己根据知识点或者做错原因进行一下分门别类,便于以后的查找和整理。
错题集的升级版就是不仅有错题,还有“好题”。
相信阅尽题海的同学都会对一些题记忆深刻。
有的需要全面细致的分类讨论,稍微考虑不周就会坠入陷阱;有的看似计算量庞大得吓人,其实反向思维,将答案代入其中也不过小菜一碟(这种情况在选择题中尤为突出);有的条件众多,刁钻古怪,不知道从何下手(如最后的附加题),其实放下畏惧,步步为营,也可以得到大部分的步骤分。
收集好题可以让你摸清出题者的思路和惯用的考查手法,识破其中的陷阱和伎俩。
当你能够出一道复杂的题难倒同学时,还有什么难题能难倒你呢?
其实不少同学已经有把错题集合起来再做一遍的习惯,但难能可贵的是坚持。
错题集不仅适用于数学,也同样适用于政治、历史等其他学科。
它为你提供了一个知识的框架,提醒你考查的重点和自己尚存的缺点。
更重要的是,每个人的错题集都是独一无二的,它是属于你自己的“武林秘笈”
篇4:高中数学方法总结
坚持整理独一无二的“错题集”
相信很多同学在学习数学的时候都会遇到这样的情况:明明这道题看着很熟悉,自己好像遇到过,当时还做错了来着,但偏偏就是想不起来正确的解法是什么,结果……又做错了。这说明你并没有真正的掌握这个知识点,或者说,你没有掌握得足够牢固。面对一张讲解过的试卷,你有把握自己能得满分吗?人总是能从自己的失败中学到更多的东西,所以,你需要一本错题集。
整理错题集就是把自己平时和考试时做错过的题目抄下来,不仅要把正确的答案写上去,还要把错误的答案加上,然后分析做错的原因,是知识点没掌握,还是忽略了使用的条件范围,或者因为粗心计算错误。数学的知识点繁多而且相对独立,考试前复习时总是不知道从哪里下手才好,回想一下好像自己基本原理都懂了,但考试要用到时却总是想不起来。而错题集,就像一张药方,既有“症状描述”,还有对症下的药。对比错题集,能够很快找到自己的不足,加以巩固,避免再犯同样的错误。跌倒一次不可怕,可怕的是在同一个地方连续跌倒两次。
因此建议同学们能够在第一轮复习、老师系统地梳理知识点的时候,把自己的错题集建立起来。错过这一时间的也可以自己根据知识点或者做错原因进行一下分门别类,便于以后的查找和整理。
错题集的升级版就是不仅有错题,还有“好题”。相信阅尽题海的同学都会对一些题记忆深刻。有的需要全面细致的分类讨论,稍微考虑不周就会坠入陷阱;有的看似计算量庞大得吓人,其实反向思维,将答案代入其中也不过小菜一碟(这种情况在选择题中尤为突出);有的条件众多,刁钻古怪,不知道从何下手(如最后的附加题),其实放下畏惧,步步为营,也可以得到大部分的步骤分。收集好题可以让你摸清出题者的思路和惯用的考查手法,识破其中的陷阱和伎俩。当你能够出一道复杂的题难倒同学时,还有什么难题能难倒你呢?
其实不少同学已经有把错题集合起来再做一遍的习惯,但难能可贵的是坚持。错题集不仅适用于数学,也同样适用于政治、历史等其他学科。它为你提供了一个知识的框架,提醒你考查的重点和自己尚存的缺点。更重要的是,每个人的错题集都是独一无二的,它是属于你自己的“武林秘笈”。
篇5:高中数学方法总结
高中数学学习的方法总结
1.用心感受数学,欣赏数学,掌握数学思想。有位数学家曾说过:数学是用最小的空间集中了最大的理想。
2.要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-1)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-1)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
3.对数学学习应抱着二个词——“严谨,创新”,所谓严谨,就是在平时训练的时候,不能一丝马虎,是对就是对,错了就一定要承认,要找原因,要改正,万不可以抱着“好像是对的”的心态,蒙混过关。至于创新呢,要求就高一点了,要求在你会解决此问题的情况下,你还会不会用另一种更简单,更有效的方法,这就需要扎实的基本功。平时,我们看到一些人,做题时从不用常规方法,总爱自己创造一些方法以“偏方”解题,虽然有时候也能让他撞上一些好的方法,但我认为是不可取的。因为你首先必须学会用常规的方法,在此基础上你才能创新,你的创新才有意义,而那些总是片面“追求”新方法的人,他们的思维有如空中楼阁,必然是昙花一现。当然我们要有创新意识,但是,创新是有条件的,必须有扎实的基础,因此我想劝一下那些基础不牢,而平时总爱用“偏方”的同学们,该是清醒一下的时候了,千万不要继续钻那可怜的牛角尖啊!
4.建立良好的学习数学习惯,习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
5.多听、多作、多想、多问:此“四多”乃培养数学能力的要诀,“听”就是在“学”,作是“练习”(作课本上的习题或其它问题),也就是把您所学的,应用到解决问题上。“听”与“作”难免会碰到疑难,那就要靠“想”的功夫去打通它,假如还想不通,解不来就要“问”——问同学、问老师或参考书,务必将疑难解决为止。这就是所谓的学问:既学又问。
6.要有毅力、要有恒心:基本上要有一个认识:数学能力乃是长期努力累积的结果,而不是一朝一夕之功所能达到的。您可能花一天或一个晚上的功夫把某课文背得滚瓜烂熟,第二天考背诵时对答如流而获高分,也有可能花了一两个礼拜的时间拼命学数学,但到头来数学可能还考不好,这时候您可不能气馁,也不必为花掉的时间惋惜,因为种什么“因”必能得什么“果”,只要继续努力,持之有恒,最后必能证明您的努力没有白费!
高中数学难学的原因
1、上课听懂了,下课不会写
提出这个问题的同学首先要好好反思一下,自己是真的学懂了吗?我们的学习首先要求理解,然后总结,最后做到举一反三。上课的时候觉 得自己听懂了,但是一到下课,自己独立完成作业的时候又完全不会了,其实这是因为我们根本没有掌握好老师讲的内容,学得似懂非懂!对基础概念没有完全理 解。
在学习中,知识点有难有易,在学习相对难懂的知识点时,数学老师都会在课前稍稍提醒“下面我们要讲的有点难,有些同学直到毕业可能都还不会,大家要认真听讲”, 这个时候就需要我们打起十二万分的精神了。要是课后发现自己还是不会做题,身边又没有老师和同学的情况下,我们要怎么独立解决呢?首先回忆老师讲课的做题 思路,自己整理一下。然后把例题拿出来看一遍,确认自己能够独立解答之后合上课本再验算一下,并对这种类型题的解题思路加以思考。要是仍然不会的话,一定 要及时向老师和同学求救,务必解决问题。
2、老师讲的很快,没有办法做课堂笔记
首先,作为学生,我们不应该责怪老师讲课速度太快,一般来说,有一定教学经验的老师都会有适合自己学生的教学进度。不然,为什么课 堂上几十个学生,别人都能很好地跟上老师的思维,而自己却不行呢?若是大部分学生都跟不上,一定会有人向老师提出这个问题,老师也会做相应的改进,所以问 题还是出在我们自己身上。
跟不上老师的思维和教学进度的同学大部分应该都是没有预习的,或者是预习做得不好,导致上课的学习抓不住重点,不知道什么该记什么 不该记,什么该详记什么该简记。所以说,我们平时上课一定要提前做好预习工作,这是一个老生长谈的问题了。预习的目的是为了上课作铺垫,预习做得好,对于 上课的知识点掌握是事半功倍的。上课做笔记时只需要记思路,先大概记录一下,下课之后马上补充,满堂记录的话,就得不偿失了。
3、现在做题还是用以前的做题思维
每一个阶段的知识以及学习环境是不一样的,很多同学根本没有把这种差别搞明白。我们进入高一个阶段的时候,我们要注意学习方法的转 换。比如初一就是比较基础的,大部分的知识、概念、定理、规律老师和书本上都已经总结好了,但是到了初二、初三,甚至上了高中就不一样了,有些题目的解题 思路和技巧,需要我们自己在平时做题的过程中总结。当我们遇到这种类型题时,一定要及时记录,并在一定时间里,将这类题目进行思路总结。
4、几何就是听天书
很多孩子上几何课就发懵,大部分都是女同学。的确,男女的思维方式天生就不同,女生的逻辑思维能力和空间想象力就是没有男生强,这就表示女同学不能学好几何吗?答案当然是否定的。许多孩子一看到“几何”这两个字就头疼,这是因为知识点是串联的,当我们有一个知识点没弄明白,很有可能相当大一部分知识都弄不明白了。其实这是学习方法不对,而且我们对学好这门学科的信心不足。
立体几何一定要注意数形结合,不要一味地为了做题而做题。此外,数学中有很多思想方法,比如数形结合思想、化归思想、分类思想等 等。对于立体几何,数形结合思想是至关重要的,平时我们做题时一定要注意多画画图,加强图形的熟练程度。养成及时画草图的习惯,另外还要注意立体几何的空 间感。
5、怎么做证明题
证明题是必有鹅一类题目,也是很多孩子无从下手的一类题目。
其实证明题就是逻辑推理的过程,这方面的思路我讲一个方——由果到因逆推法:在组织解题思路的时候,由结果出发,然后一步一步往前推,直到推到最基本的原始条件,然后在我们解答,书写答题时,则是由最基本的条件,推到导到结果,逆向思维,这是解答证明题的一个常用方法。
其实数学并不难,而且往往独立完成一道很难的数学题之后那种自豪敢,心理满足感是难以用语言形容的,难的是有一颗学好数学的决心,和一个好的学习方法。
★ 学奕的翻译
★ 学农活动发言稿
★ 批复的具体格式
怎么学高中数学方法具体有哪些(精选5篇)




