九年级数学有效的学习方法

时间:2025-04-15 03:39:43 作者:fuhuisheng 综合材料 收藏本文 下载本文

【导语】“fuhuisheng”通过精心收集,向本站投稿了9篇九年级数学有效的学习方法,这里小编给大家分享一些九年级数学有效的学习方法,方便大家学习。

篇1:九年级数学有效的学习方法

1.突出一个“勤”字(克服一个“惰”字)

数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”

我们在化学网学习的时候要突出一个勤字,克服一个“懒”字,怎么突出“勤”字

“聪”:怎么个勤法,从这个字面上来看,要做到五勤:“耳勤”“眼勤”(耳朵听,眼睛看,接受信息)

“口勤”(讨论,回答问题,而不是讲话,消化信息)“脑勤”(善于思考问题,积极思考问题——吸收、储存信息)那是不是做到以上四点就行了呢?不是。这个字还有缺陷,在聪下面加上“手”。

“手勤”(动手多实践,不仅光做题,做课件,做模型)

这样的人聪明不聪明?

最大的提高学习效率,首先要做到—— 上课认真听讲(这是根本)回家先复习再做题如果课听不好,就别想消化知识。

2.学好初中数学还有两个要点,要狠抓两个要点:

学好数学,一要(动手),二要(动脑)。

动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知想象之间有什么联系,多问几个为什么。

动手就是多实践,多做题,要“拳不离手”(武术)“曲不离口”(唱歌)

同学就是“题不离手”,这两个要点大家要记住。

“动脑又动手,才能最大地发挥大脑的效率”

3.做到“三个一遍”

大家听过“失败是成功之母”听过“重复是学习之母”吗?

培根(18-19世纪英国的哲学家)——“知识就是力量”

“重复是学习之母”

如何重复,我给你们解释一下:

“上课要认真听一遍,动手推一遍,想一遍”

“下课看”

“考试前”

4.重视“四个依据”

读好一本教科书——它是教学、中考的主要依据;

记好一本笔记 ——它是教师多年经验的结晶;

做好做净一本习题集——它是使知识拓宽;

记好一本心得笔记,最好每人自己准备一本错题集

熟练掌握数学方法,以不变应万变。一般同一份试卷,相同的方法不可能出现多次;同时,数学的主要方法在一份试卷上基本都能用得上。因此遇到思路一下不能突破的难题,要好好想想以前遇到的类似的问题是如何处理的,在已经作答好的题目中用过了哪些方法,常用的方法还有哪些没用得上,能否用来解决这个难题,只要平时多加分析,是不难发现解题思路的。

篇2:九年级数学学习方法

九年级数学知识点

1、绝对值

一个数的绝对值就是表示这个数的点与原点的距离。|a|≥0。零的绝对值时它本身。也可看成它的相反数。若|a|=a。则a≥0;若|a|=-a。则a≤0。正数大于零。负数小于零。正数大于一切负数。两个负数。绝对值大的反而小。

(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞

(2)实数的绝对值是一个非负数。从数轴上看。一个实数的绝对值就是数轴上表示这个数的点到原点的距离.

(3)几个非负数的和等于零则每个非负数都等于零。

注意:│a│≥0。符号“││”是“非负数”的标志;数a的绝对值只有一个;处理任何类型的题目。只要其中有“││”出现。其关键一步是去掉“││”符号。

2、解一元二次方程

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

(1)直接开平方法:

用直接开平方法解形如(x-m)2=n(n≥0)的方程。其解为x=±m.

直接开平方法就是平方的逆运算.通常用根号表示其运算结果.

(2)配方法

通过配成完全平方式的方法。得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法。配方的依据是完全平方公式。

1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)

2)系数化1:将二次项系数化为1

3)移项:将常数项移到等号右侧

4)配方:等号左右两边同时加上一次项系数一半的平方

5)变形:将等号左边的代数式写成完全平方形式

6)开方:左右同时开平方

7)求解:整理即可得到原方程的根

(3)公式法

公式法:把一元二次方程化成一般形式。然后计算判别式△=b2-4ac的值。当b2-4ac≥0时。把各项系数a。b。c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

3、圆的必考知识点

(1)圆

在一个平面内。一动点以一定点为中心。以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。

(2)圆的相关特点

1)径

连接圆心和圆上的任意一点的线段叫做半径。字母表示为r

通过圆心并且两端都在圆上的线段叫做直径。字母表示为d

直径所在的直线是圆的对称轴。在同一个圆中。圆的直径d=2r

2)弦

连接圆上任意两点的线段叫做弦.在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴。因此。圆的对称轴有无数条。

3)弧

圆上任意两点间的部分叫做圆弧。简称弧。以“⌒”表示。

大于半圆的弧称为优弧。小于半圆的弧称为劣弧。所以半圆既不是优弧。也不是劣弧。优弧一般用三个字母表示。劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧。劣弧是所对圆心角小于180度的弧。

在同圆或等圆中。能够互相重合的两条弧叫做等弧。

4)角

顶点在圆心上的角叫做圆心角。

顶点在圆周上。且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半。

1.数的分类及概念数系表:

说明:分类的原则:1)相称(不重、不漏)2)有标准

2.非负数:正实数与零的统称。(表为:x0)

性质:若干个非负数的和为0。则每个非负数均为0。

3.倒数:

①定义及表示法

②性质:A.a1/a(a1);B.1/a中。aC.0

4.相反数:

①定义及表示法

②性质:A.a0时。aB.a与-a在数轴上的位置;C.和为0。商为-1。

5.数轴:

①定义(三要素)

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数自然数)

定义及表示:

奇数:2n-1

偶数:2n(n为自然数)

7.绝对值:

①定义(两种):

代数定义:

几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│0。符号││是非负数的标志;

③数a的绝对值只有一个;

④处理任何类型的题目。只要其中有││出现。其关键一步是去掉││符号。

二元一次方程组

1、定义:含有两个未知数。并且未知项的次数是1的整式方程叫做二元一次方程。

2、二元一次方程组的解法

(1)代入法

由一个二次方程和一个一次方程所组成的方程组通常用代入法来解。这是基本的消元降次方法。

(2)因式分解法

在二元二次方程组中。至少有一个方程可以分解时。可采用因式分解法通过消元降次来解。

(3)配方法

将一个式子。或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。

(4)韦达定理法

通过韦达定理的逆定理。可以利用两数的和积关系构造一元二次方程。

(5)消常数项法

当方程组的两个方程都缺一次项时。可用消去常数项的方法解。

解一元二次方程

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

1、直接开平方法:

用直接开平方法解形如(x-m)2=n(n≥0)的方程。其解为x=±m.

直接开平方法就是平方的逆运算.通常用根号表示其运算结果.

2、配方法

通过配成完全平方式的方法。得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法。配方的依据是完全平方公式。

(1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)

(2)系数化1:将二次项系数化为1

(3)移项:将常数项移到等号右侧

(4)配方:等号左右两边同时加上一次项系数一半的平方

(5)变形:将等号左边的代数式写成完全平方形式

(6)开方:左右同时开平方

(7)求解:整理即可得到原方程的根

3、公式法

公式法:把一元二次方程化成一般形式。然后计算判别式△=b2-4ac的值。当b2-4ac≥0时。把各项系数a。b。c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

代数式

1、代数式与有理式

用运算符号把数或表示数的字母连结而成的式子。叫做代数式。单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2、整式和分式

含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3、单项式与多项式

没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母)

几个单项式的和。叫做多项式。

说明:

①根据除式中有否字母。将整式和分式区别开;根据整式中有否加减运算。把单项式、多项式区分开。

②进行代数式分类时。是以所给的代数式为对象。而非以变形后的代数式为对象。

4、同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并依据:乘法分配律。

5、根式

表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

6、同类二次根式、最简二次根式、分母有理化

化为最简二次根式以后。被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数。因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

九年级数学学习方法和技巧

(1)多看数学书。抓住基础。

工欲善其事。必先利其器。中考试题有知识面全、注重基础的特点。所以学生要从基本的做起。多看课本。基础差的学生更要多看几遍。在看课本的过程中要强调一点:第一、例题要重读 。教材中的例题都是很有代表性的,。珍惜每道例题,。以自己先试着做一做,。后在看解答。第二、概念要精读,。如射线、二次函数等的概念都是很精准的,。一字一句的仔细阅读。才能加深对概念定理的理解。第三、学会点、划、批、问。把关键的地方点出来,。公式、结论等画出来、把自己的理解、质疑等批出来,。没看懂的地方问出来。

(2)学会听课

老师每节课讲课发的讲义都是知识点很全面的。大家都认真听。可是听课后的效率为什么会不同呢?所以要学会听课。听课中要注意:(1)听每节课的学习要求(2)听知识引入及知识形成过程(3)听懂重点、难点(4)听立体解法的思路和数学思想方法的体现(5)听好课后总结。

(3)建立纠错本

学生要把典型例题、出错的题目写在纠错本上。错题一般分为两种:一种是自己根本就不会做。因为太难了。没有思路;另一种是自己会做。因为粗心做错了。我觉得。最有机制的错题是第二类。因为粗心也有很多种。我们也要分析它。为什么会错?有哪些教训?下一阶段怎么学?

(4)做题规范

要求学生书写格式要规范、步骤要完整、条理要清楚。平常的题目要正确的由条件画出图形。老师平常给学生做示范作用。有意让学生模仿、训练。逐步养成学生良好的书写习惯。

(5)学会总结

通过不同类型的题目的练习。列出重点、难点、自己哪些不会?归纳出各种题型的解题方法。

我看过李晓鹏的《系统学习完全工具》 里面的画图式解题方法挺不错的。他曾经用了6个月的时间从最后一名成为高考状元只要掌握学习方法肯定能提高成绩的。你可以去他博客看看。不仅有学习方法。还可以看看人家是怎么利用短短时间做到高考状元的。祝大家都学的轻松玩的也快乐!

(6)多看

主要是指认真阅读数学课本。把课本当成练习册。一般地。阅读可以分以下三个层次:

1。课前预习阅读。预习课文时。要准备一张纸、一支笔。将课本中的关键词语、产生 的疑问和需要思考的问题随手记下。对定义、公理、公式、法则等。可以在纸上进行简单的 复述。推理。重点知识可在课本上批、划、圈、点。这样做。不但有助于理解课文。还能帮 助我们在课堂上集中精力听讲。有重点地听讲。

2。课堂阅读。预习时。只对所要学的教材内容有一个大概的了解。不一定都已深透理 解和消化吸收。 因此有必要对预习时所做的标记和批注。 结合老师的讲授。 进一步阅读课文。 从而掌握重点、关键。解决预习中的疑难问题。

3。课后复习阅读。课后复习是课堂学习的延伸。既可解决在预习和课堂中仍然没有解 决的问题。又能使知识系统化。加深和巩固对课堂学习内容的理解和记忆。一节课后。必须 先阅读课本。 然后再做作业; 一个单元后。应全面阅读课本。 对本单元的内容前后联系起来。 进行综合概括。写出知识小结。进行查缺补漏。

(7)多想

主要是指养成思考的习惯。学会思考的方法。独立思考是学习数学必须具备的能力。 在学习时。要边听(课)边想。边看(书)边想。边做(题)边想。通过自己积极思考。 深刻理解数学知识。归纳总结数学规律。灵活解决数学问题。这样才能把老师讲的、课本上 写的变成自己的知识。

(8)多做

主要是指做习题。学数学一定要做习题。并且应该适当地多做些。做习题的目的首先是 熟练和巩固学习的知识; 其次是初步启发灵活应用知识和培养独立思考的能力; 第三是融会 贯通。把不同内容的数学知识沟通起来。在做习题时。要认真审题。认真思考。应该用什么 方法做?能否有简便解法?做到边做边思考边总结。通过练习加深对知识的理解。

(9)多问

怎样才能发现和提出问题呢?第一。 要深入观察。 逐步培养自己敏锐的观察能力; 第二。 要肯动脑筋。。发现问题后。经过自己的独立思考。问题仍得不到解决时。应当虚心向别人 请教。向老师、同学、家长。向一切在这个问题上比自己强

九年级数学复习资料

知识点1:一元二次方程的基本概念

1、一元二次方程3x2+5x-2=0的常数项是-2。

2、一元二次方程3x2+4x-2=0的一次项系数为4。常数项是-2。

3、一元二次方程3x2-5x-7=0的二次项系数为3。常数项是-7。

4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。

知识点2:直角坐标系与点的位置

1、直角坐标系中。点A(3。0)在y轴上。

2、直角坐标系中。x轴上的任意点的横坐标为0。

3、直角坐标系中。点A(1。1)在第一象限。

4、直角坐标系中。点A(-2。3)在第四象限。

5、直角坐标系中。点A(-2。1)在第二象限。

知识点3:已知自变量的值求函数值

1、当x=2时。函数y=的值为1。

2、当x=3时。函数y=的值为1。

3、当x=-1时。函数y=的值为1。

知识点4:基本函数的概念及性质

1、函数y=-8x是一次函数。

2、函数y=4x+1是正比例函数。

3、函数是反比例函数。

4、抛物线y=-3(x-2)2-5的开口向下。

5、抛物线y=4(x-3)2-10的对称轴是x=3。

6、抛物线的顶点坐标是(1。2)。

7、反比例函数的图象在第一、三象限。

知识点5:数据的平均数中位数与众数

1、数据13。10。12。8。7的平均数是10。

2、数据3。4。2。4。4的众数是4。

3、数据1。2。3。4。5的中位数是3。

知识点6:特殊三角函数值

1.cos30°=。

2.sin260°+cos260°=1。

3.2sin30°+tan45°=2。

4.tan45°=1。

5.cos60°+sin30°=1。

知识点7:圆的基本性质

1、半圆或直径所对的圆周角是直角。

2、任意一个三角形一定有一个外接圆。

3、在同一平面内。到定点的距离等于定长的点的轨迹。是以定点为圆心。定长为半径的圆。

4、在同圆或等圆中。相等的圆心角所对的弧相等。

5、同弧所对的圆周角等于圆心角的一半。

6、同圆或等圆的半径相等。

7、过三个点一定可以作一个圆。

8、长度相等的两条弧是等弧。

9、在同圆或等圆中。相等的圆心角所对的弧相等。

10、经过圆心平分弦的直径垂直于弦。

知识点8:直线与圆的位置关系

1、直线与圆有公共点时。叫做直线与圆相切。

2、三角形的外接圆的圆心叫做三角形的外心。

3、弦切角等于所夹的弧所对的圆心角。

4、三角形的内切圆的圆心叫做三角形的内心。

5、垂直于半径的直线必为圆的切线。

6、过半径的外端点并且垂直于半径的直线是圆的切线。

7、垂直于半径的直线是圆的切线。

8、圆的切线垂直于过切点的半径。

九年级上册数学复习资料篇二

一、轴对称与轴对称图形:

1.轴对称:把一个图形沿着某一条直线折叠。如果它能够与另一个图形重合。那么就说这两个图形关于这条直线对称。两个图形中的对应点叫做对称点。对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠。直线两旁的部分能够互相重合。那么这个图形叫做轴对称图形。这条直线就是它的对称轴。

注意:对称轴是直线而不是线段

3.轴对称的性质:

(1)关于某条直线对称的两个图形是全等形;

(2)如果两个图形关于某条直线对称。那么对称轴是对应点连线的垂直平分线;

(3)两个图形关于某条直线对称。如果它们的对应线段或延长线相交。那么交点在对称轴上;

(4)如果两个图形的对应点连线被同一条直线垂直平分。那么这两个图形关于这条直线对称。

4.线段垂直平分线:

(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;

②到一条线段两个端点距离相等的点。在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点。并且这一点到三个顶点的距离相等。

5.角的平分线:

(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.

(2)性质:①在角的平分线上的点到这个角的两边的距离相等.

②到一个角的两边距离相等的点。在这个角的平分线上.

注意:根据角平分线的性质。三角形的三个内角的平分线交于一点。并且这一点到三条边的距离相等.

6.等腰三角形的性质与判定:

性质:

(1)对称性:等腰三角形是轴对称图形。等腰三角形底边上的中线所在的直线是它的对称轴。或底边上的高所在的直线是它的对称轴。或顶角的平分线所在的直线是它的对称轴;

(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;

(3)等边对等角:等腰三角形的两个底角相等。

说明:等腰三角形的性质除“三线合一”外。三角形中的主要线段之间也存在着特殊的性质。如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;

③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。

判定定理:如果一个三角形的两个角相等。那么这两个角所对的边也相等(简称:等角对等边)。

7.等边三角形的性质与判定:

性质:(1)等边三角形的三个角都相等。并且每个角都等于60°;

(2)等边三角形具有等腰三角形的所有性质。并且在每条边上都有“三线合一”。因此等边三角形是轴对称图形。它有三条对称轴。而等腰三角形(非等边三角形)只有一条对称轴。

判定定理:有一个角是60°的等腰三角形是等边三角形。

说明:等边三角形是一种特殊的三角形。容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等。

二、中心对称与中心对称图形:

1.中心对称:把一个图形绕着某一个点旋转180°。如果它能够和另外一个图形重合。那么就说这两个图形关于这个点对称或中心对称。这个点叫做对称中心。这两个图形中的对应点叫做关于中心的对称点。

2.中心对称图形:在平面内。一个图形绕某个点旋转180°。如果旋转前后的图形互相重合。那么这个图形叫做中心对称图形。这个点叫做它的对称中心。

3.中心对称的性质:(1)关于中心对称的两个图形是全等形;

(2)在成中心对称的两个图形中。连接对称点的线段都经过对称中心。并且被对称中心平分;

(3)成中心对称的两个图形。对应线段平行(或在同一直线上)且相等。

篇3:九年级数学学习方法

1.反思解题本身是否正确

由于在解题的过程中,可能会出现这样或那样的错误,因此在解完一道题后就很有必要审查自己的解题是否混淆了概念,是否忽视了隐含条件,是否特殊代替一般,是否忽视特例,逻辑上是否有问题,运算是否正确,题目本身是否有误等。这样做是为了保证解题无误,也是解题后最基本的要求,必须真正认识到解题后思考的重要性。

2.反思结论或性质在解题中的作用

有些题目本身可能很简单,但是它的结论或做完这道题目本身用到的性质却有广泛的应用,如果仅仅满足于解答题目的本身,而忽视对结论或性质应用的思考、探索,那就可能会“拣到一粒芝麻,丢掉一个西瓜”。一道题中本身必然包含了具体的数学知识和方法,要通过这道题把本题所蕴涵的知识和方法提炼出来,总结归纳。像函数,研究的不外乎定义域、值域、单调性、最值等。每做一个题就可以把这些东西复习一下,这样才能对得起你做的题。

3.反思有无其它解题方法

对于同一道题,从不同的角度去分析研究,可能会得到不同的启示,从而引出多种不同的解法,当然,我们的目的不在于去凑几种解法,而是通过不同的观察侧面,使我们的思维触角伸向不同的方向、不同层次,发展学生的发散思维能力。例如对函数Y=(X^2-1)/(X^2+1)求值域,那么我们做了判别式法后,还有哪些方法可以解决此问题呢?比如反函数法、换元法、分离变量法。把这些方法想到了,最后一步就是拿出你的数学财富本,把这几种方法总结一下,并思考哪种数学模型的求值域可以用这种方法。

篇4:九年级数学学习方法

数学被誉为科学的皇后,在中考中数学成绩的好坏往往是成功与否的关键因素。

想要学好初中数学首先要过的是心理关。任何事情都有一个由量变到质变的循序渐进的积累过程。刚刚进入初一的同学经常会感到刻苦努力学习了一阵,收效甚微,便垂头丧气,认为自己天生不是学数学的料;或者由于一次考试的失败,丧失了对数学的信心。这些都是初中数学学习的弊端,学数学要有决心,信心,更要有一套适合自己的有效学习方法。

学习数学应该按照五个步骤进行:

一预习

对于理科学习,预习是必不可少的。我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。

二听讲

这一环节最为重要,因为老师把知识的精华都浓缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。

三复习

体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。

四作业

认真完成老师留的习题,适当挑选一些课外习题作为练习,但切忌一味追求偏题,怪题,更不要打“题海战术”。

五总结

这一步是为了更好的掌握所学知识。在学完一段知识或做了一道典型题后可总结:总结专题的数学知识;总结自己卡壳的地方;总结自己是怎么错的,错在哪里,总结题目的“陷阱”设在哪里及总结自己或他人的想法。

篇5:7年级数学有效学习方法

一、主动预习

预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

二、主动思考

很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。

主要原因还是听课过程中不思考惹的祸。除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。

靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!

三、善于总结规律

解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:

1.本题最重要的特点是什么?

2.解本题用了哪些基本知识与基本图形?

3.本题你是怎样观察、联想、变换来实现转化的?

4.解本题用了哪些数学思想、方法?

5.解本题最关键的一步在那里?

6.你做过与本题类似的题目吗?在解法、思路上有什么异同?

7.本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?

把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,孩子解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。

篇6:7年级数学有效学习方法

一、预习

学生们往往不善于预习,常使预习流于形式。要求同学们在预习时应做到:

(1)粗读。先粗略浏览教材的有关内容,掌握本节知识的概貌。

(2)细读。对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着疑问去听课。方法上可采用随课预习或单元预习。可根据老师列出的提纲,有的放矢地进行预习,就能取得较好效果。实践证明,养成良好的预习习惯,能使被动学习变为主动学习,同时能逐渐培养你们的自学能力。

二、听课

在听课方面同学们要处理好“听”、“思”、“记”的关系。

1.“听”是直接用感官接受知识。

同学们在听课的过程中应注意:(1)听每节课的学习要求;(2)听知识引入及知识形成过程;(3)听懂重点、难点剖析(尤其是预习中的疑点);(4)听例题解法的思路和数学思想方法的体现;(5)听课后小结。小结往往是老师一节课的点睛之处,不可小觑。

2. “思”是指积极地思维。

没有思维,就发挥不了学生的主体作用。在思维时,同学们应注意:(1)多思、勤思,随听随思;(2)深思,即追根溯源地思考,善于大胆提出问题;(3)善思,由听和观察去联想、猜想、归纳;(4)树立批判意识,学会反思。可以说“听”是“思”的基础,“思”是“听”的深化,是学习方法的核心和本质,会思维才会学习。

3.“记”是指课堂笔记。

初一学生一般不会合理记笔记,通常是老师黑板上写什么同学们就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此同学们在作笔记时要注意以下几个问题:(1)记笔记要服从听讲,要掌握好记录时机;(2)记要点、记疑问、记解题思路和方法;(3)记小结、记课后思考题。要明确“记”是为“听”和“思”服务的。(4)要把重要及补充的内容记在书本上,便于今后复习。

如何听课是学习方法中最重要的部分,还要结合不同的授课内容进行相应的调整。

三、课后先复习巩固再完成作业

初一同学在课后往往急于完成书面作业,忽视必要的巩固、记忆、复习,以致出现照例题模仿、套公式解题的现象,为交作业而做作业,起不到作业的练习巩固、深化理解知识的.应有作用。因此在课后,同学们要做到先复习教材内容,结合笔记记录的重点、难点,回顾课堂老师讲授的知识、方法,同时记住公式、定理(记忆方法有类比记忆、联想记忆、直观记忆等),然后独立完成作业,最后再反思。

在作业书写方面也应注意:书写格式要规范、条理要清楚。同学们要加强如何将文字语言转化为符号语言、如何将推理思考过程用文字书写表达、如何正确地根据已知条件画出图形能力的锻炼。刚开始学时,可有意识地模仿老师,认真训练,养成良好的书写习惯,打下坚实的基础,这对今后的学习和工作都十分重要。

四、小结或总结方法

在进行单元小结或学期总结时,初一同学容易依赖老师,习惯于让老师带着复习总结,这样不好。从初一开始就应该学会自己总结。老师一般给出复习总结的途径,同学们要做到;

一看:看书、看笔记、看习题。通过看,回忆、巩固所学内容。

二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点。

三做:在此基础上有目的、有重点、有选择地解一些不同档次、类型的习题,通过解题再反馈,发现问题、解决问题。最后归纳出各种题型的解题方法,做到举一反三,触类旁通。应该说学会总结是数学学习的最高层次。学生总结应与老师总结相结合,才能向更高层次发展。

任何一种学习方法不是人人都适用的,同学们要根据自已的具体情况,接受老师的指导和同学的帮助。尤其是对数学学习感到困难的同学,应该争取更多的机会得到帮助,使自己养成良好的学习习惯,掌握灵活的学习方法,学会读书,热爱读书,这正是提高学习成绩的关键。

篇7:7年级数学有效学习方法

课前会预习是指利用上课前的5到10分钟将这节课要讲的内容大致的浏览一遍,重点要看什么内容呢?本次课程与上一节课程的联系,本节课标红或者其他颜色的内容一般都是重难点内容,要先熟悉以下,例题简单看一遍,试着去理解例题的解题思路和方法,看一道课后练习题,尝试着比照例题是否能做出来,标注出自己预习时不理解的地方。将这几点做完以后基本上就达到了预习的效果了。

课上会学习就是指学生要明白每节课的前20分钟才是整节课程的精华所在,学生只要保证在这20分钟之内能够全身心的投入认真听讲,认真练习,积极回答问题跟着老师的节奏走就能够将整节课的80%的内容学会掌握,而剩下的时间因为前20分钟的认真学习也会变得轻松自如。

课下会复习就是指保质保量地完成老师的作业。作业能够很好的检测自己的学习效果,最好能在学校就把自己的作业做完,因为学校里面有老师和同学,自己不会可以寻求帮助。

会了做总结就是指如果这个章节你掌握得很好了,那么就需要将这个章节的知识点和类型题进行归纳整理,形成系统的知识。

错了做专题就是指如果在某个章节的某些类型题总是错,或者出错率很高的情况出现,那就需要进行专题训练了。至于专题的内容就需要找老师进行提供了,或者家长有这个能力的话也可以自己在家里去做这个工作。

篇8:有效的数学学习方法

有效的数学学习方法

1、概念的学习方法

数学中有许多概念,如何让学生正确地掌握概念,应该指明学习概念需要怎样的一个过程,应达到什么程度。数学概念是反映数学对象本质属性的思维形式,它的定义方式有描述性的,指明外种延的,有种概念加类差等方式。一个数学概念需要记住名称,叙述出本质属性,体会出所涉及的范围,并应用概念准确进行判断。这些问题老师没有要求,不给出学习方法,学生将很难有规律地进行学习。

下面我们归纳出数学概念的学习方法:

(1). 阅读概念,记住名称或符号。

(2). 背诵定义,掌握特性。

(3). 举出正反实例,体会概念反映的范围。

(4). 进行练习,准确地判断。

2、公式的学习方法

公式具有抽象性,公式中的字母代表一定范围内的无穷多个数。有的学生在学习公式时,可以在短时间内掌握,而有的学生却要翻来覆去地体会,才能跳出千变万化的数字关系的泥堆里。教师应明确告诉学生学习公式过程需要的步骤,使学生能够迅速顺利地掌握公式。

我们介绍的数学公式的学习方法是:

(1). 书写公式,记住公式中字母间的关系。

(2). 懂得公式的来龙去脉,掌握推导过程。

(3). 用数字验算公式,在公式具体化过程中体会公式中反映的规律。

(4). 将公式进行各种变换,了解其不同的变化形式。

(5). 将公式中的字母想象成抽象的框架,达到自如地应用公式。

3、定理的学习方法

一个定理包含条件和结论两部分,定理必须进行证明,证明过程是连接条件和结论的桥梁,而学习定理是为了更好地应用它解决各种问题。

下面我们归纳出数学定理的学习方法:

(1). 背诵定理。

(2). 分清定理的条件和结论。

(3). 理解定理的证明过程。

(4). 应用定理证明有关问题。

(5). 体会定理与有关定理和概念的内在关系。

有的定理包含公式,如韦达定理、勾股定理、正弦定理,它们的学习还应该同数公式的学习方法结合起来进行。

数学知识点

基数和序数的区别

一、意思不同

基数是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。序数是在基数的基础上再增加一层意思。

二、用处不同

基数可以比较大小,可以进行运算。

例如:

设|A|=a,|B|=β,定义a+β=|{(a,0):a∈A}∪{(b,1):b∈B}|。另,a与β的积规定为|A_B|,A×B为A与B的笛卡儿积。

序数,汉语表示序数的方法较多。通常是在整数前加“第”,如:第一,第二。也有单用基数的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。

三、写法

基数:1、2、3

序数:第1、第2、第3

数学教学心得

不知不觉这一学期即将过去,通过对教学的实践,对学生学情的掌握,以及对“精讲多练”教学要求的认识,我逐步适应了这个层次学生的接受能力,学生也慢慢适应了我的这种教学模式。这是对我的一个检验,也使得我对教学有了更深层次的认识,为以后的教学做更充足的准备。以下是我在教学过程中的一些认识和感想:

一、根据学生学情教学

在教学中,我们常常把自己学习数学的经历作为选择教学方法的一个重要参照,我们每一个人都做过学生,我们每一个人都学过数学,在学习过程中所品尝过的喜怒哀乐,紧张、痛苦和欢乐的经历对我们今天的学生仍有一定的启迪。

但是,在开始的上课过程中,我常常看到学生茫然的眼神,伏案会周公的情形,以及一声声的“老师,我听不懂!”让我的内心觉得非常的不安,我是不是讲的太难了?太艰涩难懂了?回头想想,发现自己是以以前自身作为学生的情况来考虑教学,并没有更多的考虑现在学生的情况。这时候,我认识到我们已有的数学学习经历还不够给自己提供更多、更有价值、可用作反思的素材。这时候就应该站在学生的角度,从学生的观点出发,参考并制定适合他们的教学方法,每个学生的情况都未必相同,理应先考虑大多数学生的学习情况,然后可以适当的进行针对性的备课与教学。

二、备课小组组内交流探讨

这一年来通过与同事和学生代表交流,一致认为不应该急于求成赶进度,应该将学生的基础夯实,并将初中的部分相关知识点融入到课堂教学中。新课程对教学过程的要求是用生动的课堂过程激发学生的对数学的兴趣,让学生理解所学的基本知识点,把握学生在一节课内的学习成果,加强学生对解题过程的理解,使学生掌握自主探索的能力最后才是让学生对知识点的应用。

通过对教学过程的探讨与交流,我们高一备课组成员达成对“精讲多练”教学要求的共识,在今后的教学过程中,力争做到精讲多练,更好地提高课堂教学的有效性。

三、认真听取学生对数学课的意见和建议

由于在课堂教学过程中,第一周的学生情况不是很好,上课睡觉的学生大有人在,作业完成情况也不乐观,解题格式不清楚,概念混淆等情况时有发生。因此,我经常把他们对数学课的感受以及意见和建议都写在纸条上交上来(无记名方式),我在阅读他们的意见和建议的过程中,发现了许多自身的不足和学生的基本情况。

1、讲多练少。这一点在之后的教学过程中已经逐步改善。

2、课堂例题应以课本为主,出题要有针对性,还要从易到难逐步递进。

3、题目讲解、分析要清晰明了,步骤要分明。这方面在听取多位老教师讲课后,大为改观,尤为体现在作业完成情况上,解题格式明显清晰许多。

4、上课互动性的增强。在课堂中,对学生完成课堂练习的情况进行分析,分析学生的解题情况,通过提问其他学生,让全班学生帮助分析错题塬因,做到讲、练、评的有效结合。

在这__届高一学生中,学生的基础普遍较差,所以要耐心加细心,不能太急于求成。每次备课、上课前都应先考虑上一节课学生的掌握情况进行备课、教学。并且在每次尽量将相关的初中知识点进行复习记忆,帮助学生巩固初中知识。

四、对学生的要求及反馈

针对学生的上课表现以及课后作业情况,在第二周的时候我明确给学生提出了以下三个要求。

1、课前必须要预习新课内容。做好预习工作是学好这堂课的先决条件,没有预习,就不知道这节课所要上的内容是什幺,自己所不会的是什么,更不清楚新课中的重点和难点在哪了。

2、上课时必须准备一本数学专用的笔记本,用来做课堂笔记以及课堂练习所用。上课要做到动脑、动手、动笔,只有多动手做题,理解解题过程,才能更加有效的将知识点吸收、理解和应用,才能更好的记忆有关知识点。

3、课后及时完成复习,认真的对教材中知识要点进行梳理,并且尽量独立自主地完成老师当天布置的练习和作业,通过练习巩固基础。多做题,从中发现自己的不足和缺漏是学好数学的重要方法。

篇9:高考数学有效学习方法

为了学好高中数学,首先就要明白数学及数学学习的重要性,从而热爱数学,有强烈的愿望去学好数学。“知之者不若好之者,好之者不如乐之者。”当你能以学习数学为爱“好”,为“乐”事的时候,你就会涌动幸福的体验:与“数”奋斗,其乐无穷。

数学家华罗庚教授在“大哉数学之为用”,一文中精采地叙述了数学的各种应用:宇宙之大,粒子之微,火箭之速,化工文巧,地球之变,生物之谜,日用之繁等各个方面,无处不有数学的重要贡献。他指出:数学是一切科学得力的助手和工具。它有时由于其它科学的促进而发展,有时也先走一步,发展,然后再获得应用。任何一门科学缺少了数学这一工具便不能确切地刻划出客观事物变化的状态,更不能从已知数据推出来知的数据来,因而就减少了科学预见的可能性,或者减弱了科学预见的精确度。

中国科学院院士、数学家王梓坤在《今日数学及其应用》一文中指出:“数学与人类文明同样古老,有文明就必须有数学,缺乏数学不可能有科学的文明,数学与文明同时并存以至千古。”……近现代世界史证实:“国家的繁荣昌盛,关键在于高新科技的发达和经济管理的高效率”;“高新科技的基础是应用科学,而应用科学的基础是数学。

”这一历史性结论充分说明了数学对国家建设的重要作用。其次,由于计算机的出现,今日数学已不仅是一门科学,还是一种普适性的技术:从航天到家庭,从宇宙到原子,从大型工程到工商管理,无一不受惠于数学技术。因而今日的数学兼有科学与技术的两种品质,这是其他学科所少有的。数学对国家的贡献不仅在于国富,而且还在于民强。数学给予人们的不只是知识,更重要的是能力,这种能力包括直观思维、逻辑推理、精确计算机准确判断。

因此,数学科学在提高民族的科学和文化素质中处于极为重要的地位。“学科的强大生命力在于对社会进步的贡献,数学也不例外。数学的贡献在于对整个科学技术(尤其是高新科技)水平的推进与提高,对科技人才的培养和滋润,对经济建设的繁荣,对全体人民的科学思维与文化素质的哺育,这四方面的作用是极为巨大的,也是其他学科所不能全面比拟的。”

正因为数学如此重要,所以国家把数学规定为高中的一门主要课程。一个人从小学到高中,要学习十二年数学。高中毕业后升入大学继续深造,无论是理工科还是文史类大学,都还要继续学习数学。今年春夏sars肆虐,中考取消了许多科目,独独保留了“语、数、外”;高考几十年改革改来改去,“语、数、外”都是必考内容的“三”。

两院院士,中国当代“毕昇”、国家科技大奖获得者王选教授曾说:我们挑人,挑一个计算机优秀的,将来培养成一个“将才”;挑一个数学非常优秀的,将来可以培养成“帅才”。数学,已经成了二十一世纪高新科技人才的通行证。

高中阶段的数学学习,要学习代数、几何的基础知识和概率统计、微积分的初步知识,掌握基本技能和基本思想方法,培养自己的思维能力、运算能力、空间想象的能力、解决问题的能力以及创新的意识,陶冶良好的个性品质和学习习惯。数学学习对于发展高中生的思维品质和思维水平极其重要。要想使自己更聪明,必须学数学;要想将来成为有用人材,必须学好数学;要想为终身事业打好基础、夺取主动,必须学好数学。

高三数学的做作业的注意事项三

1、先看书后作业,看书和作业相结合。只有先弄懂课本的基本原理和法则,才能顺利地完成作业,减少作业中的错误,也可以达到巩固知识的目的。

2、注意审题。要搞清题目中所给予的条件,明确题目的要求,应用所学的知识,找到解决问题的途径和方法。

3、态度要认真,推理要严谨,养成“言必有据”的习惯。准确运用所学过的定律、定理、公式、概念等。作业之后,认真检查验算,避免不应有的错误发生。

4、作业要独立完成。只有经过自己动脑思考动手操作,才能促进自己对知识的消化和理解,才能培养锻炼自己的思维能力;同时也能检验自己掌握的知识是否准确,从而克服学习上的薄弱环节,逐步形成扎实的基础。

5、认真更正错误。作业经老师批改后,要仔细看一遍,对于作业中出现的错误,要认真改正。要懂得,出错的地方,正是暴露自己的知识和能力弱点的地方。经过更正,就可以及时弥补自己知识上的缺陷。

6、作业要规范。解题时不要轻易落笔,要在深思熟虑后一次写成,切忌写了又改,改了又擦,使作业涂改过多。书写要工整,解题步骤既要简明、有条理,又要完整无缺。作业时,各科都有各自的格式,要按照各学科的作业规范去做。

7、作业要保存好,定期将作业分门别类进行整理,复习时,可随时拿来参考。

高三数学的上课建议四

1、课前准备好上课所需的课本、笔记本和其他文具,并抓紧时间简要回忆和复习上节课所学的内容。

2、要带着强烈的求知欲上课,希望在课上能向老师学到新知识,解决新问题。

3、上课时要集中精力听讲,上课铃一响,就应立即进入积极的学习状态,有意识地排除分散注意力的各种因素。

4、听课要抬头,眼睛盯着老师的一举一动,专心致志聆听老师的每一句话。要紧紧抓住老师的思路,注意老师叙述问题的逻辑性,问题是怎样提出来的,以及分析问题和解决问题的方法步骤。

5、如果遇到某一个问题或某个问题的一个环节没有听懂,不要在课堂上“钻牛角尖”,而要先记下来,接着往下听。不懂的问题课后再去钻研或向老师请教。

6、要努力当课堂的主人。要认真思考老师提出的每一个问题,认真观察老师的每一个演示实验,大胆举手发表自己的看法,积极参加课堂讨论。

7、要特别注意老师讲课的开头和结尾。老师的“开场白”往往是概括上节内容,引出本节的新课题,并提出本节课的目的要求和要讲述的中心问题,起着承上起下的作用。老师的课后总结,往往是一节课的精要提炼和复习提示,是本节课的高度概括和总结。

8、要养成记笔记的好习惯。是一边听一边记,当听与记发生矛盾时,要以听为主,下课后再补上笔记。记笔记要有重点,要把老师板书的知识提纲、补充的课外知识、典型题目的解题步骤和课堂上没有听懂的问题记下来,供课后复习时参考。

小学数学三个有效的学习方法

最有效的学习方法

电子商务的有效学习方法

编程的有效学习方法

九年级数学怎么学

计算机基础知识的有效学习方法

最有效高三学生的数学学习方法精髓总结

九年级数学知识点

九年级数学知识点归纳

九年级数学说课稿

九年级数学有效的学习方法(精选9篇)

欢迎下载DOC格式的九年级数学有效的学习方法,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档