数学比和比例的知识点总结

时间:2022-11-29 15:21:58 作者:想吃肉桂卷 其他工作总结 收藏本文 下载本文

“想吃肉桂卷”通过精心收集,向本站投稿了15篇数学比和比例的知识点总结,以下是小编精心整理后的数学比和比例的知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

篇1:数学比和比例的知识点总结

数学比和比例的知识点总结

知识点一: 比和比例的联系与区别

知识点二:比和分数、除法的联系

知识点三:求比值和化简比

知识点四:正比例和反比例的意义和判断方法

1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例的关系式:y x=k (一定)

2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:xy =k (一定) 3、判断正、反比例的方法:一找二看三判断

(1) 找变量:分析数量关系,确定哪两种量是相关联的量。

(2) 看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3) 判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例

知识点五:用比例知识解决问题

1、按比例分配问题

(1) 按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。

(2) 解题方法

一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少。

归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量÷总份数=平均每份的量(归一)”,再用“一份的量各部分量所对应的份数”,求出各部分的量。 用比例知识解答:首先设未知量为。再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x 的比例式,再解比例求出x 。

2、用正、反比例知识解答应用题的.步骤

(1)分析数量关系。判断成什么比例。(2)找等量关系。如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。(3)解比例式。设未知数为x ,并代入等量关系式,得正比例式或反比例式。(4)解比例。(5)检验并写出答语。

精讲典型题

例题1填空

(1) 一项工程,甲单独做要4天,乙单独做要5天完成,甲和乙的工作效率比是:

(2) 把2米:4厘米化成最简单的整数比是(),比值是()。

分析:(1)要求甲乙的工作效率比,关键是要根据工作总量和工作时间求出甲、乙的工作效率,即用14:15=5:4;(2)为了简便,化简比和求比值时可以都用前项除以后项,但要注意结果的区别。由于单位不统一,化简要先统一单位,即2米:4厘米=200厘米:4厘米=50:1=50。

解答(1)5:4

(2)50:1 50

(4)4.5与它的倒数的比是()

(5)()÷24=3

8=24:()=()%

(6)如果a 7=b ÷2(a 、b 都不为0) ,那么a :b =():()

(7)除数、被除数的比是1:3,被除数、除数、商的和是35,被除数是()

(8)一汽车工人加工一批零件,如下表

② 这批零件有()个

③ 表中两种量是否成比例:(),如果成比例成()比例

(10)判断一些生活中的实例。

①用煤的天数一定,每天用煤量与总用煤量()比例。

②一本书的页数一定,已看的页数与没看的页数()比例

③三角形的面积一定,三角形的底与高()比例。

2 判断题

(1)化简比的结果是一个商,可以使小数、分数或整数。()

(2)走同一段路,甲用15小时,乙用14小时,甲、乙的速度之比是5:4。()

(3)在一个比例里,如果两个外项互为倒数,那么两个内项也互为倒数。()

(4)一条道路,已修的米数和未修的米数成反比例。()

3 选择题

(1)k +5x =y ,且x 和y 都不为0,当k 一定时,x 和y 成()比例。

A. 成正比例 B. 成反比例 C. 不成比例

(2)杭州西湖南北长3.3km ,东西宽2.8km 。南北长和东西宽的比是()。

A.33km :28km B.3.3. :2.8 C.33:8

(3)一个三角形,三个内角的度数比是1:4:5,这个三角形是()

A. 锐角三角形 B. 直角三角形 C. 钝角三角形

(4)在比例尺距离是()。

A.0.2km B.2km C.20km

4. 解决问题。

(1)药液与水的比是1:1500,如果倒入药液20.5g ,需要加多少克水呢?

(2)从儿童节那天开始,亮亮前七天看书210页,照这样计算,这个月亮亮一共看书多少页?

(3)如果用边长30cm 的方砖给一个房间铺地,需要100块。如果改用边长50cm 的方砖铺地,需要多少块? 1100000的地图上,量得A 、B 两地的距离是2cm ,那么A 、B 两地的实际

篇2:小升初数学比和比例知识点

小升初数学比和比例知识点

1比和比例:

比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括: 比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个.

2.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。

比的性质用于化简比。

比表示两个数相除;只有两个项:比的前项和后项。

比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

3.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。

4.比和比例的区别

(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。 如:a:b 这是比 比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。 a:b=3:4 这是比例。

(2)比的基本性质和比例的基本性质意义不同、应用不同。比的性质: 比的前项和后项都乘或除以一个不为零的数。比值不变。比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。 比例的性质用于解比例。联系: 比例是由两个相等的比组成。

5比和比例的意义

比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。 而且,比号没有括号的含义 而另一种形式,分数有括号的含义!

6比和比例的联系:

比和比例有着密切联系。 比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。 比例是由比组成的,如果没有两种量的比,比例就不会存在。比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。 如果两个比相等,那么这两个比就可以组成比例。成比例的两个比的比值一定相等。

小学数学长方体和正方体知识点

1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。

2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3、长方体的棱长总和=(长+宽+高)×4??? 正方体的棱长总和=棱长×12

4、表面积:长方体或正方体6个面的总面积叫做它的表面积。

5、长方体的表面积=(长×宽+长×高+宽×高)×2?? S=(ab+ah+bh)×2

正方体的表面积=棱长×棱长×6?? 用字母表示:S=

6、表面积单位:平方厘米、平方分米、平方米? 相邻单位的进率为100

7、体积:物体所占空间的大小叫做物体的体积。

8、长方体的体积=长×宽×高??? 用字母表示:V=abh?? 长=体积÷(宽×高)宽=体积÷(长×高)

高=体积÷(长×宽)

正方体的体积=棱长×棱长×棱长?? 用字母表示:V= a×a×a

9、体积单位:立方厘米、立方分米和立方米? 相邻单位的进率为1000

10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高 V=Sh

11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;

把低级单位聚成高级单位,用低级单位数除以进率。

12、容积:容器所能容纳物体的体积。

13、容积单位:升和毫升(L和ml) 1L=1000ml? 1L=1000立方厘米?? 1ml=1立方厘米

14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。

小学数学0的含义是什么

1、没有任何东西

2、数轴的前点(原点)

3、可以表示分界

4、可以表示起点

5、可以起到占位作用

篇3:小升初考试数学知识点复习:比和比例

小升初数学知识点复习:比和比例

1.比的意义和性质

(1)比的意义

两个数相除又叫做两个数的比。

“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质

比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

(3)求比值和化简比

求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

(4)比例尺

图上距离:实际距离=比例尺

要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

(5)按比例分配

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

2、比例的意义和性质

(1)比例的意义

表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的性质

在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。

(3)解比例

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。

3、正比例和反比例

(1)成正比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)

(2)成反比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×y=k(一定)

篇4:比、比例、比例尺的知识点

关于比、比例、比例尺的知识点

1.比的意义和性质

(1) 比的意义

两个数相除又叫做两个数的比。 “:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。 同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。 比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的.后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

(3) 求比值和化简比

求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

几种比的化简方法:

①整数比化简,比的前项和后项同时除以它们的最大公约数。

②小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简。

③分数比化简,一般先把比的前项、后项同时乘以分母的最小公倍数,使它成为整数比,再用第一种说法化简。

④也可以用求比值的方法化简,求出比值后再写成比的形式。

(4)比例尺

图上距离:实际距离=比例尺

要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

(5)按比例分配

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。 2 比例的意义和性质

(1) 比例的意义

表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的性质

在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。

(3)解比例

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。

篇5:比和比例题型总结

比和比例题型总结

比例与比例尺题型分类

比和比例的有关概念

填空题

1.( )叫做比。

2.( )叫做比例。

3.写一个能与:组成比例的比( )。

3

4

135.甲数的是甲乙两数和的,甲乙两数的比是( )。 4513144.甲数×=乙数×60%,甲:乙=( : )。

6.在含糖25%的糖水中,糖与水的比是( )。

7.10克糖溶解在100克水中,糖和糖水重量的比是( )。

8.在一个比例里,两个外项的积是最小的质数,一个内项是0.5,另

一个内项是( )。

9.一个比例式,两个外项的和是37,差是13,比值是,这个比例

式可以是( )。

10.在一个比例式中,两个外项都是质数,它们的积是39,一个内项

是这个积的20%,这个比例式可以是( )。

判断题

1.因为甲数:乙数=25:23,所以甲数=25,乙数=23。( )

2.如果a×3=b×5,那么a:b=5:3。 ( )

3.半径与直径的比是1:2 ( )

56

4.甲地到乙地,甲车要6小时,乙车要8小时,甲和乙的速度比

是3:4。( )

5.两个数相除的商又叫做两个数的比。 ( )

● 比例的基本性质

1.比例的基本性质是( )

2.在一个比例里,两个外项互为倒数,一个内项是最小的质数,另一

个内项是( )。

3.如果a×5=b×8,那么a:b=( )。

4.如果与互为倒数,那么a、b、c、d这四个数写成比例是

( )。

5.在一个比例式中,两个外项都是质数,它们的积是39,一个内项

是这个积的20%,这个比例式可以是( )。

16.在比例3:10=18:60中,如果第二项增加它的,那么第四项必须2

( ),比例仍然成立。 ( )

● 解比例

1、

badcχ25=1.214 3、6.5:χ=3.25:4 2、25:χ=:754

6 6、27:χ=15 4、=:χ 5、0.8=χ:

11810142359

7、4=

23χ2515 3=0.5:5 9、=χ: 8、χ:4196

12 11、10、:χ=3:

13、13:7=3431141=:χ 12、=χ:15 105496χ21112 14、6:χ=1:50% 15、=χ:14365

比例尺的概念

填空题

1.( )和( )的比叫做比例尺。

2.比例尺=( ):( ),比例尺实际上是一

个( )。

3.用图上距离5厘米,表示实际距离200米,这幅图的比例尺是

( )

A. 5:200 B.1:4000 C.5:20000 D.1:4000厘米

4.一幅图的比例尺是1:200,改成线段比例尺是( )

5.在1的图纸上,一个正方形的面积为16平方厘米,它的实际面 1000

积是( )平方米。

判断题

1.所有的比例尺的前项都是1( )

2.一幅图的比例尺应根据图纸的大小来确定( )

3.一幅地图的比例尺是1:3000000米

比例尺的应用

1、在一幅地图上,测得甲、乙两地的图上距离是13厘米,已知甲乙两地的实际距离是780千米。

(1)求这幅图的比例尺,并用线段图表示。

(2)在这幅地图上量得A、B两城的`图上距离是5厘米,求A、B两城的实际距离。

2、在一幅比例尺为1:500的平面图上量得一间长方形教室的长是3厘米,宽是2厘米。

(1)求这间教室的图上面积与实际面积。

(2)写出图上面积和实际面积的比。并与比例尺进行比较,你发现了什么?

3.一个长方形机件长4.5毫米,宽2.4毫米,按8:1的比例尽画在图纸上,长和宽各应画多长?

4..在比例尺是1:4000000的地图上量得甲、乙两地的距离是30厘米。两列火车同时从甲、乙两地相对开出。已知甲车每小时行65千米,乙车每小时行55千米,几小时后两车才能相遇?

--

5..有两列火车同时从甲、乙两地相对开出,慢车每小时行70千米,快车每小时比慢车多行10千米,4小时后两车行全程的2/3。在比例尺是1:10000000的铁路运行图上,甲、乙两地之间的图上距离是多少厘米?

6.在一幅比例尺是1:5000000的地图上,

比和比例题型总结量A B两地的距离是2.2厘米,在另外一幅比例尺是1:2000000的地图上,A B两地的距离是多少?

篇6:比和比例

申晋良

教学目标:

1、使学生理解比的意义和性质,掌握 求比值和化简比的方法。

2、理解按比例分配的意义,会解答按比例分配应用题。

3、理解比例的意义和性质,掌握解比例的方法。

4、使学生理解比例尺的意义,会求平面图的比例尺或根据比例尺求图上距离、实际距离。

5、理解正比例和反比例的意义,掌握判断两种量是否成正比例活泛比例的方法,会解答最基本的正比例、反比例应用题。

教学重点:

1、比例的意义和基本性质。

2、正比例和反比例的意义。

教学难点:

理解正反比例的意义。

第一课时

3.27

教学目标:在学习除法的基础上,学习比的意义。

教学重点:理解比的意义并能正确写出笔,直到比与除法、分数之间的关系。

教学难点:理解比的意义。

教学过程:

一、复习准备

列式解答下面各题

我们班男生4人,女生12人,女生人数是男生人数的几倍?男生是女生的几分之几?

学生回答

提问:你还能说出两种量相除的事例。学生举例。

二、新授

(一)揭示比的意义

1、男生是女生的几分之几? 4÷12,可以说成男生和女生人数的比是4比12。

2、女生是男生的几倍?12÷4,可以说成女生和男生的比是12比4。

强调谁和谁比。试着把同学们自己说的关系用比来表示。

3、总结:比的意义:两个数相除又叫两个数的比。

(二)、学习比的各部分名称

1、12 : 4

前项 比号 后项

2、求比值

提问如何求比值?前项除以后项

(三)、比与分数、除法之间的关系

1、分组讨论

2、交流汇报

三巩固练习

1、把下面各比用分数表示出来。

17∶8 4∶1 20∶10

2、满载抗洪救灾物资的货车3小时行270千米,汽车5小时行200千米,你能说出几个比吗?

四、作业 数学书59页1题

五、板书、比的意义

两个数相除又叫两个数的比。

6 ∶ 5

前项 比号 后项

第二课时

3.29

教学目标:学习比的性质并运用性质化简比。

教学重点:学习化简比的方法

教学过程:

一、复习

1、什么叫比?

2、比与分数、除法的关系?

二、新授

(一)、学习比的性质

出示:20∶5 8∶2 16∶4 4∶1

10∶2 25∶5 20∶4 5∶1

1、读出比来。

2、计算比值:你们发现了什么?

3、小组交流(1)这些比的前项和后项是怎么变化的?

(2)总结比的性质

(二)、化简比

提问:你们说出几个比来?要求说得和别人的不一样。

有:小数比、分数比、百分数比、整数比

师:刚才打家举的例子,有的不是最简单的整数比,你能化简比吗?

1、小组学习:

2、交流汇报:说说你是怎么化简的?

3、总结化简方法。

三、巩固练习

1、填空

15∶5 =3∶ 28∶12 = ( )∶3

1∶4= ( )∶8 12.5∶10= 5∶( )

2、化简比

65 ∶40 75∶15 0.35∶1.26 4/5∶1/3

3、2:25化成后项是100

4、9.6:3X=8

四、作业

数学书60页5、6、8、9题

五、板书: 化简比

20∶35=4∶7

0.75∶0.5=3∶2

3.30 科任月考

3.31 语树英月考

第三课时

4.3

教学目标:复习比的意义和化简比。

教学重点:达到熟练化简比

教学过程:

一、复习

1、直接化简比

出示:10∶5 0.5∶0.1 2/3∶2/3

2、口算比值

75∶15 1000∶125 100∶4

2∶5 2/3∶2/3 1∶5

二、应用

1、满载救灾物资的货车3小时行270千米,汽车5小时行200千米,你能说出几个比来吗?并化简比、求出比值。

2、甲拖拉机3.5天耕地23.1公顷,乙拖拉机2.25天耕地1.7公顷。

写出甲、乙两台拖拉机耕地时间的最简单的整数比。

写出甲、乙俩台拖拉机工作效率的最简单的整数比。

3、求比值并化简比

18∶63 0.75∶0.25 9.9∶1.21 3.6∶4.8

第四课时

4.4

教学目标:1.使学生理解比例的意义。

2.使学生能应用比例尺的知识求平面图的比例尺,以及根据比例尺求图上距离和实际距离。

3.培养学生分析问题、解决问题的能力和创新能力。

教学重点:理解比例尺的意义。

教学难点:根据比例尺求图上距离和实际距离。

教学过程:

一、复习:

1. 将比改为除法算式

5/3 A/B X:9 31:X

2. 说出比值

3:900

3. 求未知项

4. 导入新课:刚才我们复习了有关比的知识,这些知识与我们的实际生活有什么联系呢?我们就一起来研究有关比的知识在实际生活中的应用。

二、探索、学习新知识:

1、学校要举行运动会,操场长80米,宽40米,你能按实际距离画在16厘米的正方形纸上吗?该怎么办?

2、在平面图上,可以用多长来表示实际的长和宽呢?

3、小组设计,看看长和宽都缩小了多少倍?

4、讨论什么叫比例尺?

这四个比的前项代表什么?(图上距离),后项代表什么?(实际距离),我们把这样的比,叫比例尺。

齐读:比例尺是图上距离与实际距离的比,化简后得到最简整数比。

比例尺怎样求:(看上述四个比例式得出):

图上距离实际距离=比例尺

5、理解比例的意义。

三 、巩固练习:

(1).甲、乙两座城市相距120千米,在地图上量得两城市的距离是4厘米。求这幅地图的比例尺。

(2).学校里修建运动场,在设计图上用25厘米长线段来表示操场的实际长度150米。求图上距离和实际距离的比。

(3).一张中国图,图上4厘米表示实际距离1040千米,求这幅地图的比例尺?

(4).一张紧密图纸中,图上1厘米表示实际1毫米,求这幅精密图纸的比例尺?

(观察精密零件如果要画在图纸上,怎么办?(放大)。那这幅精密图纸的比例尺会求吗?

上述四题分层练习,后讲评。

比较(3)、(4)两题的比例尺有什么不同?

教师小结:一般把缩小图的比例尺写成前项是1的比,而把放大图的比例尺写成后项是1的长。

比例尺有多少种表示方法?让生说一说

(常见的有:比的形式 分数的形式 线段形式)

四、总结:通过这节课的学习,你有什么收获?

五、作业:

六、板书: 比例尺

图上距离∶实际距离=比例尺

第五课时

4.5

教学目标:1、运用比例尺求实际距离或图上距离。

2、培养学生分析问题、解决问题的能力和创新能力。

教学重点:能够根据比例尺求实际距离或图上距离的方法。

教学过程:

一、复习准备

1、什么叫比例尺?

2、求比例尺?

二、运用比例尺解决问题:

根据比例尺的关系式,求实际距离。

(1).出示例2 在比例尺是130000000的地图上,量得上海到北京的距离是3.5厘米。上海到北京的实际距离大约是多少千米?

(学生独立解答,同时抽一生板演)

解:设上海到北京的实际距离为x厘米,

105000000厘米=1050千米。

3.5∶x=1∶3000000

x=1050

答:上海到北京的实际距离大约是1050千米。

(2)学习例3:

1、独立学习完成

2、交流汇报。

(3)认识线段比例尺

三、.巩固练习

1. 1. 在一幅比例尺是16000000的地图上,量得一座城市和海港的距离是8厘米。这个城市离海港有多少千米?

2. 2. 在150000000的地图上,量得一条铁路从起点到终点的长是2.8厘米。这条铁路长多少千米?

先让学生独立解答,后讲述。

四、回顾总结:

今天你又有那些收获?已知图上距离和比例尺求实际距离时,应注意那些事项?

五、作业:

板书:

比例尺

图上距离实际距离=比例尺

例2解:设上海到北京的实际距离为x厘米,

105000000厘米=1050千米。

3.5∶x=1∶3000000

x=1050

答:上海到北京的实际距离大约是1050千米

第六课时

4.7

教学目标:使学生理解按比分配的意义,使学生掌握解答方法〉

教学重点:理解按比分配的意义。

教学过程:

一、复习引入

1、同学们,你们分过东西吗?如果请你们帮助老师分一分包里的东西,大家像一项都要知道什么?

2、下面分一分我们学校的这块卫生区,学校卫生区有200平方米,平均分给5个班,每隔半分得多少平方米?

列式计算

(1) 如果六年级负责三份,分多少平方米?

(2) 五年级负责两份,分多少平方米?

3、变形:如果我们把这块卫生区看作单位1,这道题可以这样叙述:学校有一块2000平方米的卫生区六年级负责其中的3/5,五年级负责2/5.个负责多少平方米?

二、新授

学校有一块200平方米的卫生区,分给六年级和五年级,他们负责的面积的比是3:2,两个班各负责多少平方米?

利用旧知识解决问题

1、分组讨论学习

2、交流汇报

3+2=5

200*3/5=120平方米

200*2/5=80平方米

3、确定解题思路

(1) 确定总分数

(2) 把比转化成分数。

(3) 求一个分数的几分之几十多少?

三、总结

四、练习

1、学校科技组、英语组运动队共33人它们之间的比是1:2:3

每个组各有多少人?

2、讨论:甲乙丙三个修路队和修一条长200千米的公路,已知甲修了50千米,乙丙两队的比是2:3,丙队修多少米?

3、选择:长方形州长14米,长与宽的比是6:1长与宽各多少米?

(1)6+1=7 (2)6+1=7

14*6/7=12 14/2=7

14*1/7=2 7*6/7=6

7*1/7=1

五、作业:数学书66业1、2、3题

六、板书: 按比分配

第七课时

4.7

教学目标:深化对按比分应用题地掌握,能够熟练解答应用题。培养学生认真审题的良好习惯。

教学重点:达到熟练解决此类应用题。

教学过程:

一、复习铺垫

1、请你说说上节课我们所学内容的解题思路。

2、口答:小兰家养了24 只.......,公.......和母.......只数的的比是1:5,

公.......和母.......各有多少只?

二、新授

(一)、出示:建筑工地上混凝土使用沙子、水泥和石子配制而成的。沙子、水泥、石子重量的比是3:2:5。要配制12吨这样的混凝土,需要沙子、水泥、石子个多少吨?

1、独立完成。

2、检查汇报:把你的列式和想法说给大家听一听。

3、追问:你为什么这样做?

4、你怎么验证这道题是正确的?

(二)、继续研究

希望小学把508本图书按照六年级三个班的人数分配分配给每个班,一班有40,二班有42人,三班有45人,三个班各得图书多少本?

1、分组学习

2、讨论汇报。

三、巩固练习

1、一个长方体,长、宽、高的比是3:2:1。棱长总和是48 厘米,这个厂房体积是多少立方厘米?

2、蓝田纺织厂把库存原料按照2:4:3分配给甲、乙、丙三个车间,已知甲车间得到54吨原料,这个厂一共有原料多少吨?两车间分到原料多少吨?

四总结:

五、作业:数学书67业7、8、9题

六、板书: 按比分配

例2 建筑工地上的混凝土使用沙子、水泥、石子配制而成的。沙子、水泥、石子重量的比是3:2:5。要配制12吨这样的混凝土,需要沙子、水泥、石子个多少吨?

3+2+5=10

12*3/10=3.6

12*5/10=6

12*2/10=2.4

4.10 看电影

第八课时

4.11

教学目标:在已有的知识基础上理解比例的意义。知道什么是比例。

教学重点:理解比例的意义。

教学过程:

一、复习铺垫

请同学们任意说出几个比来,并求比值。

二、新授

1、求下面各比得比值你发现了什么?

4:3.2 1/3:2/5 6:24

12:4 0.6:0.2 9:15

0.2:0.8 5:6 3:5

学生计算,讨论其规律。

2、这些比值相等的比写成等式形式

3、理解比例的意义(像这样的式子我们把他叫比例)。

4、提问:你说一说什么叫比例?(表示两个比相等的式子叫做比例)

5、小结:、想一想根据什么判断两个比是否成比例?

6、学习比例的外项、内项

7、学习比例的基本性质

三、巩固练习

1、判断是否成比例

21:14和9:6

3:0.6和1:0.2

9/12和12/15

4/5:5和8:15

2、练习的4、5题

四、作业:数学书71页2、3、6、7题

五、板书: 比例

3:5=9:15

12:4=0.6:0.2

1/3:2/5=5:6

表示两个比相等的式子叫做比例。

篇7:六年级数学比和比例教案

六年级数学比和比例教案

六年级数学比和比例教案

教学目标

1.理解比和比例的意义及性质.

2.理解比例尺的含义.

教学重点

整理比和比例、求比值及比例尺.

教学难点

正、反比例概念和判断及应用.

教学步骤

一、基本训练.

43-27

5.65+0.5 4.8÷0.4 1.25÷ 100×1%

0.25×40  2-

二、归纳整理.

(一)比和比例的意义及性质.

1.回忆所学知识,填写表格【演示课件“比和比例”】

2.分组讨论:

比和分数、除法有什么联系?

比的基本性质有什么作用?比例的基本性质呢?

3.总结几种比的化简方法.【继续演示课件“比和比例”】

前项

∶(比号)

后项

比值

除法

分数

(1)整数比化简,比的前项和后项同时除以它们的最大公约数.

(2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.

(3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.

(4)用求比值的方法化简,求出比值后再写成比的形式.

解比例:12 :x=8 :2

4.巩固练习.

(1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?

(2)甲数除以乙数的商是1.4,甲数和乙数的比是多少?

(3)解比例: ∶ =8∶2

(二)求比值和化简比.【继续演示课件“比和比例”】

1.求比值:4∶

化简比:4∶

2.比较求比值和化简比的区别.

一般方法

结果

求比值

根据比值的意义,用前项除以后项

是一个商,可以是整数、小数或分数

化简比

根据比的基本性质,把比的前项和后项都乘以或者除以相同的数(零除外)

是一个比,它的前项和后项都是整数

3.巩固练习.

(1)求比值.

45∶72  ∶3

(2)化简比.

∶  0.7∶0.25

(三)比例尺.【继续演示课件“比和比例”】

1.出示中国地图.

教师提问:

(1)这幅地图的比例尺是多少?(比例尺是 )

(2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

(3)比例尺除了写成 ,以外,还可以怎样表示?

2.巩固练习.

在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?

在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

(四)正比例和反比例.【继续演示课件“比和比例”】

1.回忆正、反比例意义.

2.巩固练习.

(1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.

①收入一定,支出和结余

②出米率一定,稻谷的重量和大米的重量.

③圆柱的侧面积一定,它的底面周长和高.

(2)木料总量、每件家具的用料和制成家具的件数这三种量

当( )一定时,( )和( )成正比例;

当( )一定时,( )和( )成正比例;

当( )一定时,( )和( )成反比例.

(3)如果 =8 , 和 成( )比例.

如果 = , 和 成( )比例.

(4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?

三、全课小结.

这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的

问题?

四、课堂练习.

1.填空.

(l)根据右面的线段图,写出下面的比.

①甲数与乙数的比是( ). 甲数:

②乙数与甲数的比是( ). 乙数:

③甲数与甲乙两数和的比是( ).

④乙数与甲乙两数和的比是( ).

(2)( )24= =24 ∶( )=( )%.

(3) ∶6的`比值是( ).如果前项乘上3,要使比值不变,后项应该( ).如果前项和后项都除以2,比值是( ).

(4)把(1吨):(250千克)化成最简整数比是( ),它的比值是( ).

(5) 与3.6的最简整数比是( ),比值是( ).

(6)如果a×3=b×5,那么a∶b=( )∶( ).

(7)如果a∶4=0.2∶7,那么a=( ).

(8)把线段比例尺  改写成数值比例尺是( ).

(9)甲数乙数的比是4∶5,甲数就是乙数的( ).

(10)甲数的 等于乙数的 ,甲乙两数的比是( ).

2.选择正确答案的序号填在( )里.

(1)1克药放入100克水中,药与药水的比是( ).

①1∶99 ②1∶100 ③1∶101 ④100∶101

(2)一项工程,甲队单独做要10天,乙队单独做要8天.甲队和乙队工作效率的最简整数比是( ).

①10∶8 ② 5∶4 ③4、∶5 ④  ∶

(3)在下面各比中,与 ∶ 能组成比例的是( ).

①4∶3 ②3∶4 ③ ∶3 ④ ∶

(4)有一无,某班的出勤率是90%,出勤人数和缺勤人数的比是( ).

①9∶10 ②10∶9 ③1∶9 ④9∶1

(5)在一幅地图上用1厘米的线段表示5千米的实际距离,这幅地图的比例尺是( ).

①1∶5 ②1∶5000 ③1∶500000

(6)用3、5、9、15这四个数组成的比例式是( ).

①15∶3=5∶9 ②3∶15 ③15∶9=5∶3 ④9∶3=5∶15

(7)在比例尺 的地图上,2厘米表示( ).

①0.4千米 ②4千米 ③40千米

(8)大小两圆半径的比是3∶2,它们的面积的比是( ).

①3∶2 ②6∶4 ③9∶4

五、布置作业.

1.化简下面各比.

0.12∶56  ∶

2.写出两个比值都是3的比,并组成比例

3.写出一个比例,使它两个内项的积是12.

4.如图是用1∶20的比例尺画的一个机器零件的截面图,量出图中两个圆的半径,并计算这个零件截面的实际面积.

六、板书设计

比和比例

篇8:小升初数学比和比例复习题

1、一种盐水,盐的质量是水的25% ,现有5克盐,要配制这种盐水,需要加多少克水?

2、一种盐水,盐与水的质量比是1:4 ,现有5克盐,要配制这种盐水,需要加入多少克水?

3、从济南到郑州的公路长440千米,一辆中巴车2小时行了160千米,照这样计算,从济南到郑州需要多少小时?先说说路程和时间成什么比例,再用比例解。

4、文化路小学六年级征订《数学报》,一班订了25份,二班订了20份,一班比二班多花了100元。每份《数学报》多少元?

5、图书室有一个书架一共两层,上层数量与下层数量的比是5:6,从上层拿20本放到下层后,上、下两层的数量比是3:4。上、下两层书架一共有多少本书?

6、甲乙两辆汽车从两个城市相对开出,2小时后在距中点16千米处相遇,这时甲车与乙车所行的路程比是3:4,甲、乙两车的速度各是多少?

7、甲乙两车同时从两地相向而行,两小时相遇,已知两地相距180千米,甲乙的速度比是3:2,甲乙两车的速度各是多少?

8、上海到杭州的距离是144千米,在比例尺1:2000000的.地图上,上海到杭州是多少厘米?

9、天草服装厂3天加工女装1800套,照这样计算,要生产5400套,需要多少天?(用比例解)

10、“百大三联”有一批电脑,卖出总数的80%,又运来140台,这时电脑总数与原来总数的比是2:3,百大三联原来电脑多少台?

11、一辆汽车一次加油支付60元,行驶了300千米。现在要去800千米的某地接运一批货物回来,需要多少汽油费?

12、客车和货车同时从甲、乙两城中点处向相反方向开出,3小时后客车到达甲城,货车离乙城还有60千米,客车与货车的速度比是3:2,求甲、乙两城的距离。

13、火车用26秒的时间通过一个厂256米的隧道(即从车头进入车尾离开出口),这列火车又用16秒的时间通过了96米的隧道,求列车的长度。(用比例解答)

14、建一幢楼房,所占地是一个厂60米、宽45米的长方形,画在比例尺是1:1000的地图上,图上长方形的面积是多少平方厘米?

篇9:比例单元知识点总结

比例单元知识点总结

1、比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:3

2、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

3、比例的基本性质:在比例里,两个外项的积等于两个两个内向的积。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

4、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。例如:3:x=4:8,

解: 4x=3×8

x=6。

4、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)例如:

速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的.积(不一定)。

y=5x,y和x成正比例,因为:y÷x=5(一定)。

每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。

5、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)例如:

路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。

总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。

长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。

40÷x=y,x和y成反比例,因为:x×y=40(一定)。

煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。

6、比例尺

图上距离:实际距离=比例尺;

例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。

实际距离=图上距离÷比例尺;

例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。

图上距离=实际距离×比例尺;

例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)

图形的放大与缩小:图形的各边按相同的比放大或缩小。例:按2:1放大图形。

7、用比例解决问题:

例1:张大妈家上个月用了8吨水,水费是12.8元。李奶奶家用了十吨水,李奶奶家上个月水费是多少元?

因为每吨水的价钱一定,所以水费和用水的吨数成正比例,也就是说,两家水费和用水吨数的比值相等。

解:设李奶奶家上个月的水费是x元。

12.8 : 8=x : 10

8x =12.8×10

篇10:比例的知识点总结

比例的知识点总结

1.比例的意义和组成部分:表示两个比相等的式子叫做比例。组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

2.比例的基本性质:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

3.比和比例的区别

(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。

4.解比例:根据比例的基本性质,把比例转化成以前学过的方程,求比例中的未知项,叫做解比例。

5.成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的(一定)。

6.成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,他们的'关系叫做反比例关系。用字母表示x×y=k(一定)。

7.判断两种量成正比例还是成反比例的方法:先要看它们的变化规律,关键是看这两个相关联的量中相对的两个数的比值(商)一定还是乘积一定,如果商一定,就成正比例;如果乘积一定,就成反比例。

8.比例的应用

(1)比例尺的意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。图上距离=比例尺实际距离

(2)比例尺的分类:数值比例尺和线段比例尺。(数值比例尺的前项和后项单位要一样,一般是厘米。而线段比例尺的前项和后项单位不一样,比如课本54页

做一做的那个,它表示图上1厘米相当于实际距离600米。)

缩小的比例尺和放大的比例尺。(缩小的比例尺比如1︰300000,放大的比例尺比如2︰1)

(3)要会求比例尺:根据比例尺的意义,写出图上距离︰实际距离的比,单位化成一样并化简,一般要写成前项或后项是1的比。

(4)会根据比例尺、图上距离、实际距离三者之间的关系来求图上距离和实际距离。会用比例尺来画图。(请认真复习课本第54到58页的例题和练习) 相关方法:实际距离×比例尺=图上距离 图上距离÷比例尺=实际距离 图上距离÷实际距离=比例尺

(5)图形的放大与缩小:按照比例尺把图形的各边相应缩小或放大,所得的图形只是大小发生了改变(这里的大小指的是边长的长短),形状还是与原来相同。

9.用比例解决问题:

(1)先在题中找到两种相关联的量,并判断这两种相关联的量成什么比例关系。有些题目中的两个数量直接可以用正、反比例的公式去判断,比如单价一定,总价和数量肯定成正比例关系。还比如路程一定,速度和时间成反比例。有些题目中的两个数量还可以根据数量的变化规律来判断,比如课本第64页的第5题,修一条水渠,每天工作6小时要修12天完成,每天工作8小时要修完的天数肯定要少于12天,因为水渠的长度不变,每天工作的时间越长最后完成的天数会相应的减少,所以每天工作的时间和天数这两个数量符合反比例关系的变化规律,一个变大,另一个反而变小,因此它们成反比例关系。

(2)判断好成什么比例关系后,就可以根据公式写出比例(方程),再解比例把问题解决。在写正比例关系方程的时候等号左右两个比一定要意思相一致,比如前面一个比是路程比速度,那么后面那个比也要路程比速度。另外两个比的单位名称也要一致,比如前面的比单位名称是厘米比米,那么后面那个比单位名称也要厘米比米。

(3)用比例解决问题的题目都是我们以前会做的应用题,只是现在用比例的方法来解决。所以请大家一定要善于总结和反思,把自己不会做的题目或者经常要做错的题目抄在笔记本里,分析一下自己为什么会做错,不懂的地方要多问问其他同学,要经常性的去读一读,想一想,做一做,一定要把它们牢记在脑子里。

所以请把单元复习题里做错的应用题认真的进行反思,再去做做,并记住!

篇11:六年级下册数学比例知识点

六年级下册数学比例知识点

1、比的意义

(1)两个数相除又叫做两个数的比

(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。

(5)比的后项不能是零。

(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

3、求比值和化简比:

求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

4、按比例分配:

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

5、比例的意义:表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。

7、比和比例的区别

(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。

8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示x/y=k(一定)

9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×y=k(一定)

10、判断两种量成正比例还是成反比例的方法:

关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。

11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

12、比例尺的分类

(1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺

13、图上距离:

图上距离/实际距离=比例尺

实际距离×比例尺=图上距离

图上距离÷比例尺=实际距离

14、应用比例尺画图的步骤:

(1)写出图的名称、

(2)确定比例尺;

(3)根据比例尺求出图上距离;

(4)画图(画出单位长度)

(5)标出实际距离,写清地点名称

(6)标出比例尺

15、图形的放大与缩小:形状相同,大小不同。

16、用比例解决问题:

根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。

17、常见的数量关系式:(成正比例或成反比例)

单价×数量=总价

单产量×数量=总产量

速度×时间=路程

工效×工作时间=工作总量

18、已知图上距离和实际距离可以求比例尺。

已知比例尺和图上距离可以求实际距离。

已知比例尺和实际距离可以求图上距离。

计算时图距和实距单位必须统一。

19、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

答:每天播种的公顷数×天数=播种的总公顷数

已知播种的总公顷数一定,就是每天播种的公顷数和要用的天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。

小学数学mm是什么单位

mm指毫米,是长度单位。长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。其国际单位是“米”,符号是“m”。常用单位有毫米、厘米、分米、千米、米、微米、纳米等等。长度单位在各个领域都有重要的作用。

mm也是降雨量单位。降雨量是指在一定时间内降落到地面的水层深度,单位用毫米表示。通常说的小雨、中雨、大雨、暴雨等,一般以日降雨量衡量。例如:小雨指日降雨量在10毫米以下,暴雨降雨量为50至99.9毫米,特大暴雨降雨量在250毫米以上。

小学数学三角形 常考题型

(1)什么是三角形?

有三条线段围成的图形叫三角形。

(2)什么是三角形的边?

围成三角形的每条线段叫三角形的边。

(3)什么是三角形的顶点?

每两条线段的交点叫三角形的顶点。

(4)什么是锐角三角形?

三个角都是锐角的三角形叫锐角三角形。

(5)什么是直角三角形?

有一个角是直角的三角形叫直角三角形。

(6)什么是钝角三角形?

有一个角是钝角的三角形叫钝角三角形。

(7)什么是等腰三角形?

两条边相等的三角形叫等腰三角形。

(8)什么是等腰三角形的腰?

有等腰三角形里,相等的两个边叫做等腰三角形的腰。

(9)什么是等腰三角形的顶点?

两腰的交点叫做等腰三角形的顶点。

(10)什么是等腰三角形的底?

在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。

(11)什么是等腰三角形的底角?

底边上两个相等的角叫等腰三角形的底角。

(12)什么是等边三角形?

三条边都相等的三角形叫等边三角形,也叫正三角形。

(13)什么是三角形的高?什么叫三角形的底?

从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。

(14)三角形的内角和是多少度?

三角形内角和是180°.

篇12:六年级数学下册比例知识点

1、理解比例的意义和基本性质,会解比例。

2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7、比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:3

8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

10、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

11、正比例和反比例:

(1)、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)

例如:①、速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②、圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③、圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④、y=5x,y和x成正比例,因为:y÷x=5(一定)。

⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。

(2)、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)

例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。

②、总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。

③、长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。

④、40÷x=y,x和y成反比例,因为:x×y=40(一定)。

⑤、煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。

12、图上距离:实际距离=比例尺;

例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。

13、实际距离=图上距离÷比例尺;

例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。

14、图上距离=实际距离×比例尺;

例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)

比和比例的区分知识点

1、比的意义和性质

(1) 比的意义:两个数相除又叫做两个数的比。

“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质 比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

(3) 求比值和化简比 求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

(4)比例尺 图上距离:实际距离=比例尺

要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

(5)按比例分配 在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

2、比例的意义和性质

(1) 比例的意义 表示两个比相等的式子叫做比例。 组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的性质 在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。

(3)解比例

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。

3、正比例和反比例

(1) 成正比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)

(2)成反比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)

篇13:六年级数学下册比例知识点

1、一辆汽车从甲地到乙地,前3小时行了156千米,照这样速度,从甲地到乙地共需8小时,甲、乙两地相距多少千米?

2、工程队修一条公路,计划每天4.5千米,20天完成,实际每天修6千米,实际几天可修完?

3、200克的海水可以晒出6克盐。照这样计算,6吨海水可以晒出盐多少吨?

4、同学们做操,每行站20人,正好站18行,如果每行多站4人,要站多少行?

5. 有一堆煤,每天烧5吨,可以烧180天,如果每天烧4.5吨,可以烧多少天?

6. 一辆汽车3次可运货物450吨,照这样计算,再运4次,一共可运货物多少呢?

7. 学校食堂用方砖铺地,如果用面积为9dm2的方砖,需要48块。如果改用面积为16dm2的方砖,需要多少块?

篇14:六年级数学下册比例知识点

练习1、两个铁环滚过同一段距离,一个转了50圈,另一个转了40圈,如果一个铁环的周长比另一个铁环的周长少44厘米,这段距离是多少米?

练习2、小明家到学校3.5千米,通常他总是步行上学,有一天他想锻炼身体,前1/3的路程快跑,速度是步行速度的4倍,后一段路程慢跑,速度是步行速度的2倍,这样比平时早35分钟到校,小明步行速度是多少?

练习3、如图,甲、乙两人分别从A、B两地同时同向而行,经过4小时15分钟,甲在C处追上乙,这时两人共行了41千米,如果乙从A到B再到C那样走,则他还要用1小时45分,A、B两地相距多少千米?

练习4、甲种糖每千克10.8元,乙种糖每千克14.8元,把这两种糖混合后,售价为每千克12.3元,求甲、乙两种糖的重量比.

练习5、洗衣机厂计划20天内生产洗衣机1600台,生产了5天后,由于技术改进了,效率提高了25%,完成计划要用多少天?

篇15:比和比例说课稿

加强知识的内在联系,形成良好的数学认知结构。

数学的复习过程,其实就是学生的知识不断重组,并形成良好的认知结构的过程。在此过程中,学生的自主整理和构建知识网络的能力就显得特别重要。毕业班的复习课注重帮助学生把分散在各年级、各章节中有关的数学知识上下串联,左右沟通起来。理清知识体系要充分调动学生的主动性和积极性,要让学生自己动手动脑,教师的作用主要是引导、帮助、点拨和补充。

《比和比例》属于概念课,为了让学生对比和比例的知识形成整体的认识,又能把握住知识之间的联系和区别,达成触类旁通,一举多得,我将比和比例的知识进行对比复习,深化基本概念。《比和比例》这部分内容概念较多,而且这些概念之间有联系也有区别,学生容易混淆,上课之前,我是这样备课的:把各知识点用表格列出来(比和比例的意义、各部分名称、比和比例的基本性质;化简比和求比值;比和分数及除法的关系)。

通过列表的方式使学习的知识系统化,并分别从区别和联系两个方面对这些概念进行比较,也明确了各知识点的共性和个性,从而达到学生对知识的理解,更重要的是渗透了学生对各类信息的整合、梳理,培养了科学的学习方法,让学生学会学习。为了让学生对比和比例的知识形成整体的认识,又能把握住知识之间的联系和区别,达成触类旁通,一举多得,我将比和比例的知识对比复习,深化基本概念。

基于上述考虑,我在设计比和比例这节复习课时考虑了一下几个环节。

1、问学生“关于比和比例我们已经知道了些什么?”

当问学生“关于比和比例我们已经知道了些什么?”时,同学们讲了很多,同时也深深感到这些知识点如果这样处理的话会显得零乱、无序、缺乏系统化,这一环节的处理旨在激发学生“自主萌生出整理知识,梳理结构”的需求。

2、在此基础上以小组为单位展开学习

学生在明确了学习要求之后学习的愿望得到了满足,学生学习方向明确,学习要求具体,认知冲突相对集中,这样学生的兴趣浓厚了,每一位学生有了具体的任务,避免了小组学习只搞形式学生无事可干的尴尬局面。

但是在这样设计这节课之前我也重点权衡了一组矛盾,也就是学生将知识图表化的过程需要较长的一段时间,如果把这一过程放在课堂上的话可能会“浪费”很多时间,具体的练习就会很少,甚至没有。但是如果放在课前去完成的话,学生的整理只是把概念抄一抄而已,还是缺乏知识的系统化。所以我决定还是把这个过程放在课堂上去完成,因为我想作为一节复习课我不仅仅是一些题海战术,而是应该给学生数学思想和方法,这才是学生一生都受用的。

3、把概念的整理和具体的题目结合起来,让学生感受概念在数学问题中的重要性。

我要求学生整理概念的同时,还同步练习一些具体的概念的应用题目和学生平时作业中容易混淆和错误的题目。比如在复习到比的化简和求比值这部分知识时,首先针对学生结果容易混淆的情况加以提问。

(1)什么是求比值,然后问那么求比值的结果应该是什么?什么是化简比,那么化简比的最后结果应该是什么?通过这样的对比提问和相应的练习,解决了学生容易混淆的问题,也使学生进一步感受到概念的重要性,只有很好的理解和掌握了概念,才能更好的解决知识。

反思这节课的教学,我想,在以后的教学过程中要注意把握好如下三个问题:

1、由于比和比例这部分知识概念比较多,概念之间的联系也比较复杂,因此在整理概念时,不仅要求学生进行网络式的整理,还要分析概念间的相互联系和具体的题目练习,因此在时间上比较紧。教学时要注意调配时间。由于是复习课,概念较多,使到在练习中的时间不够,有小部分基础较差的学生在练习中没有完成。其实有些补充题的设计,能利用书本上的习题,这样可以较好的避免重复的练习。

2、对学生整理概念的实际水平估计还是有些不足,()在以后的教学中应更好的做好备好学生这一头,这样能更好的有针对性的设计好教学环节。适度把握留给学生自主的时间和空间。学生活动时间和空间不足,可能使活动流于形式没在实效;学生活动时间与空间过广,可能又使学生无所适从或由于难度较大而不能有效解决。

3、复习课的提问要区别于新授课,提问要注意广度,如:在问学生“什么是比”时,如果改为直接问:你能回顾出以前学过的比的哪些知识?但自己问的范围很狭小,如果是那样问,学生的回忆搜索就被打开了,也许学生不仅能想到比,想到比值,还能想到比的各部分名称,还能想到比的基本性质。

4、平时的教学中,应尽可能多的展示概念和教学的发生过程,加强对概念的理解和联系。我们平时总是诉苦学生对知识的遗忘率为什么总是这么高,其实平时我们还是过多的采取了机械或照搬式的教学。概念复习课则在于选择合适的方法将相关概念系统化,学生能对之整体把握,进而形成清晰的认识。因此我觉得这“浪费”的时间是值得的,学生经过自己的努力而整理出来的知识体系,学生理解得更深刻,记忆得特别牢固,而且能有效地锻炼和培养学生的自学能力。

通过对这节课的教学,我意识到教师的教要以学生的发展为基准,把学生的学放到主要地位上来,真正的做到以学生为主体,让学生在教师的指导下自主构建知识的教学模式。让学生所学的知识能够形成一条条知识链,只有这样,学生才能更好的掌握和运用知识,或许只有这样才能让我们走出“学生学的知识为什么总是忘得那么快”这样一个迷惑。

小升初数学比和比例知识点

六年级下册数学比与比例练习题浙教版

高一数学知识点总结

小学数学知识点总结

高二数学知识点总结

初中数学知识点总结

数学知识点

小学数学知识点总结v

初二上册数学知识点总结

最全高一数学知识点总结

数学比和比例的知识点总结(共15篇)

欢迎下载DOC格式的数学比和比例的知识点总结,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档