比例和比例尺的概念的和复习教案

时间:2020-08-16 08:02:58 作者:猫本 教案 收藏本文 下载本文

“猫本”通过精心收集,向本站投稿了18篇比例和比例尺的概念的和复习教案,小编在这里给大家带来比例和比例尺的概念的和复习教案,希望大家喜欢!

篇1: 比例和比例尺的概念的和复习教案

比例和比例尺的概念的整理和复习教案

教学内容

教科书第27页第1~3题,练习六第1~3题.

教学目的

1.回顾本单元的知识,进一步理解比和比例的意义及它们之间的区别,能较熟练地解比例.

2.进一步理解成正、反比例的量的意义及它们之间的相同点及不同点,能正确判断两种相关联的量成什么比例.

3.使学生再一次经历将一些实际问题抽象成代数问题的过程,体会事物之间的联系和区别;根据知识间的联系,渗透整理复习的方法.

教具、学具准备

自制多媒体课件.

教学过程

一、整理

1.说一说你在本单元都学了哪些知识?

让学生在小组内你一言我一语地说,对本单元的`知识作一回顾,教师给足学生说的时间,再让每个小组派代表全班交流,教师随机把学生的发言(即各知识点)板书在黑板上.

2.完成知识结构图.

这些知识在我们的脑中比较零散,不便于记忆和运用,请大家用你认为好的方式对这些知识加以整理.分小组讨论整理.

3.用实物展示屏进行展示交流.

4.揭示课题:这节课复习前两部分的知识.

二、复习

1.下面式子中,哪个是比?哪个是比例?比和比例有什么区别?

3∶8 4∶9=12∶27 7∶32=35∶10 0.25∶0.8

2.比例的基本性质是什么?什么叫解比例?解下面的比例.

∶=x∶20    =

=    3.9∶4=2.6∶x

学生在练习本上练习,指名板演.学生练习后讲评.

3.什么叫比例尺?怎么求图上距离?怎么求实际距离?

课件出示:在一幅比例尺是1∶1000的地图上,量得南昌与北京的距离是20.5厘米,北京与南昌的实际距离是多少千米?

4.小山看一本《十万个为什么》.下表是每天看的页数与所需天数两种量相对应的数.

每天看的页数 3 5 8 10

所用的天数 40 24 15 12

表中两种量中相对应的数有什么规律?这两种量叫什么量?它们之间是什么关系?

5.课件出示:4个同学去买圆珠笔.下表是他们购买圆珠笔的枝数与总价两种量相对应的数.

购买圆珠笔的枝数 2 3 5 8

总价  0.50 0.75 1.25 2.00

表中两种量中相对应的数有什么规律?这两种量叫什么量?它们之间是什么关系?

6.说一说什么叫正比例关系?什么叫反比例关系?它们之间有什么联系和区别?

梳理判断两种量是否成正(反)比例的思考步骤:

(1)先找出三种量,其中两种相关联的量和一个定量;

(2)根据两种相关联的量之间的数量关系,列出关系;

(3)根据正(反)比例的意义,作出结论.

三、分层练习,巩固提高

1.填空.

(1)妈妈用10元钱可以买3千克鸡蛋,总价与数量的比是( ),比值是( ).

(2)汽车3小时行180千米,路程与时间的比是( ),比值是( ).

(3)因为14∶21与0.8∶1.2的比值都等于( ),所以可以组成比例,( )∶( )=( )∶( ).

(4)根据比例的基本性质,把6∶2=0.9∶0.3写成乘法形式是( )×( )=( )×( )

(5)一幅设计图上注明的比例尺是:

在这幅图上量得长8厘米的线表示实际( )米;图上表示实际距离400米的线段长( )厘米.

(6)观察表中总价与本数的关系,并填空.

数量(本) 2 3 5 6 8 9 10

总价(元) 0.9 1.35 2.35

2.选择正确答案的字母填入括号里.

(1)时间一定,所行路程与速度( ).

(2)正方体的体积和棱长( ).

(3)全班人数一定,出勤率和出勤人数( ).

(4)单价一定,总价与数量( ).

(5)一篇文章的总字数一定,每行的字数与行数( ).

A.成正比例关系 B.成反比例关系 C.不成比例

3.判断下面各题中两个变量是否成比例,成什么比例.

(1)xy=,x与y( )比例;x=,x与y( )比例.

(2)3a=b,a与b( )比例;=,b与a( )比例.

(3)x-y=18,x与y( )比例.

4.独立练习.

完成练习六第1~3题.

篇2:比、比例和比例尺的概念的和复习

教学内容:

教科书第70页的1~3题,练习十九的第1~3题。

教学目的:

1.使学生明确“比例”和“比”、“比值”等概念之间的联系和区别。

2.使学生进一步提高对比例、正比例、反比例的意义和判断的理解和掌握,培养学生的分析问题和解决问题的能力。

3.加深对比例尺的认识,会求比例尺、图上距离和实际距离。

教具准备:

投影仪、投影片、小黑板

教学过程:

一.复习“比”和“比例”

1.    复习整理

教师:请同学们举例说一说什么叫做比?什么叫做比例?比和比例有什么区别?

指出:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等,有四项。

2.练习

用小黑板出示下面的题让学生完成。

(1)五年级一班有男生24人,女生20人。五年级一班男生和女生人数的最简单的整数比是。

(2)五年级一班男生和女生人数的比是6:5,男生人数和全班人数的比是(),女生人数和全班人数的比是()

(3)五年级一班男生和女生人数的比是6:5,男生有24人,女生有()人。

二.复习解比例

1.完成第70页的第2题。然后让学生完成第2题的其余习题。

三.复习正比例、反比例

用投影逐一出示下面问题,让学生回答

1.什么叫成正比例的量和正比例关系?

2.什么叫做成反比例的量和反比例关系?

3.正比例和反比例有什么联系和区别?

学生回答,教师填写小黑板上的表。

正比例 反比例

共同点 1.    都有两种相关联的量

2.    一种量随着另一种量变化

不同点 1.变化方向相同,一种量

扩大或缩小,另一种量也

扩大或缩小。

2.相对应的每两个数的比

值(商)是一定的。 1.变化方向相反,一种量

扩大(缩小),另一种量反而

缩小(扩大)。

2.相对应的每两个数的积是

一定的

四.课堂练习

指导学生完成练习十九第1~3题。

1.      第1题,学生独立完成,集体订正。

2.      第2题,除第(2)、(7)题教师要提示外,其余各题由学生自己判断。

3.      第3题,教师向学生说明:这题要求图上长方形的长、宽和地基的实际面积。

创意作业:同桌二人说说比、比例、和比例尺之间的区别。

篇3:比、比例和比例尺的概念的和复习

比、比例和比例尺的概念的整理和复习

教学内容:教科书第35页的第l一3题,练习九的第l一3题。

教学目的:

1.使学生明确。比例”和“比”、“比值”等概念之间的联系和区别。,

2,使学生进一步提高对比例、正比例、反比例的意义和判断的理解和掌握,培养学生的分析问题和解决问题的能力。

3.加深对比例尺的认识,会求比例尺、图上距离和实际距离。

教具准备:投影仪、投影片、小黑板。

教学过程():

一、复习;;比”和“比例”

1.复习整理。

教师:这一单元我们学习了比例的知识,请同学们举例说一说什么叫做比?什么叫做比例?比和比例有什么区别?

随着学生的回答,教师板书如下表。

指出:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等,有四项:

2.练习。

用小黑板出示下面的题让学生完成。

(1)六年级一班有男生24人,女生20人。六年级一斑男生和女生人数的最简单的整数比是(             )。

(2)六年级一班男生和女生人数的比是6:5。男生人数和全班人数的比是(          ),女生人数和全班人数的比是(           )。

(3)六年级一班男生和女生人数的比是6:5。男生有24入,女生有(              )人。

二、复习解比例

1.完成第35页的第2题。

指名回答什么叫解比例,解比例要根据什么性质。

接着以     :     =l     :x为例,复习解比例的过程,使学生进一步明确:在解比例时,如果有带分数,要先把带分数化成假分数,然后利用比例的基本性质,把比例式变为含有未知数的等式来解。

然后让学生完成第2题的其余习题。

三、复习正比例、反比例

用投影片逐一出示下面问题,让学生回答。

1.什么叫成正比例的量和正比例关系?

2.什么叫成反比例的量和反比例关系?

3,正比例和反比例有什么联系和区别?

学生回答,教师填写小黑板上的表。

然后教师出示下面两个表,让学生根据表中两种量中相对应的数的关系,判断它们成什么比例,并说明理由。

使学生明确:要判断两个相关联的量是成正比例还是反比例,要看相对应的.两个数的商或积是不是一定,如果积一定说明这两个量成反比例,如果商一定说明这两个量成正比例。如第二个表,通过计算,可以看出上、下两个相对应的数的商一定,也就是说,这个三角形的高的   一定,因而高也一定,所以三角形的面积与底边成正比 例。

四、课堂练习

完成练习九的第1―3题。

1.第1题.学生独立完成,集体订正。在订正第(4)小题时,可以先让学生说说12的约数有哪?然后说出自己用选出的四个约数组成的比例是什么。教师把学生说出的比慎写出来。订正第(6)小题时,要注意检查学生是否把图上距离和实际距离的单位续一了。

2,第2题,除第(2)、(7)小题教师要提示外,其余各题由学生自己判断,第(2)行驶的路程

小题,教师可以先说明                          =周长,再让学生判断。第(7)小题,可以先让几个学生说说自己的体重和身高,教师把数据记下来,再让学生判断。使学生知道:人的体重和身高有一定的关系,一般人的体重是随着身高而增加的,但体重和身高不成正比例关系。

3.第3题,教师向学生说明:这题要求图上长方形的长、宽和地基的实际面积。

篇4:比例和比例尺

教学内容: 教材第111~112页比例的知识和比例尺的计算、“练一练”,练习二十一第9一14题,练习二十一后面的思考题。

教学要求:

1.使学生加深认识比例的意义和基本性质,能判断两个比能不能组成比例,能比较熟练地解比例。

2.使学生掌握比例尺的意义,能正确地进行有关比例尺的计算,培养学生运用知识的能力。

教学过程 :

一、揭示课题

在复习了比的知识后,这节课复习比例的知识和比例尺的计算。(板书课题)

二、复习比例知识

1.复习比例的意义。

(1)提问:上面的比能组成哪些比例?为什么?

什么叫做比例?(板书:比例:表示两个比相等的式子。)你能说出比例里各部分的名称吗?(板书各部分名称)

(2)学生练习。

让学生在练习本上任意写一个比和一个比例。指名一人口答所写的比和比例,老师板书。提问:比和比例有什么区别?说明:比和比例的意义不同,比表示两个数相除的关系.比例表示两个比的相等关系;组成比和比例的项不同,比只有两项,比例有四项。

2.复习比例的基本性质。

(1)提问:比例的基本性质是什么?(板书;比例的基本性质:外项的积等于内项的积。)请同学们按照比例的.基本性质,在课本第111页上根据O.4 :3=2 :15,写出内项积等于外项积的式子。追问:比例的基本性质和比的基本性质有什么不同?

(2)解比例。

学习比的基本性质有什么作用?(板书:解比例)做“练一练”第2题。指名四人板演,其余学生分两组,分别在练习本上做前两题和后两题。集体订正,选择两题让学生说一说第一步的依据。提问:大家总结一下解比例的过程。指出:解比例要先根据比例的基本性质,写成积相等的式子,再求出等式里未知的因数x。

三、复习比例尺计算

1.说明:应用比的知识或者解比例的方法可以计算比例尺的有关问题。(板书:比例尺)

2.复习比例尺的意义.

请同学们自己阅读第112页上关于比例尺的内容,进一步弄清什么是比例尺,比例尺有几种形式。提问:什么是比例尺?(板书:图上距离 : 实际距离=比例尺)比例尺有哪几种形式?谁来举一个数值比例尺的例子,并且说明它实际表示什么意思?(根据学生举例板书出一个比例尺,让学生说说图上距离是实际距离的几分之一,实际距离是图上距离的多少倍)

3.学生讨论、操作。

如果学校平面图的比例尺是l :1000,它表示什么意思?图上l厘米表示实际距离多少?你能画出线段比例尺来表示它吗?(让学生画在练习本上,然后交换检查)

4.做“练一练”第3题。

请同学们做“练一练”第3题。指名一人板演,其余学生做在练习本上。集体订正,让学生说说是怎样想的。指出:求图上距离或实际距离,可以先设未知数为x,再根据比例尺的意义列出比例,然后解比例求出结果,也可以根据比的前项和后项的倍数关系来求出结果。

四、综合练习

1.归纳复习内容。

让学生说―说本节课复习的具体内容。

2.做练习二十一第9题。

学生先自己思考,然后指名口答。

3.做练习二十一第ll题。

让学生写在练习本上。指名口答,老师板书。说说应怎样想。

4.做练习二十一第13题。

(1)做第(1)题。

指名板演,其余学生做在练习本上。集体订正。提问:怎样求一幅图的比例尺?

(2)讨论第(2)、(3)题。

提问:求出这幅图的比例尺后,下面两题可以怎样解答?

5.讨论练习二十一第14题。

让学生读题。这两题有什么相同和不同的地方?想一想,解答这两题应该有什么不同?(强调要注意份数与数量之间的对应关系)

五、讲解思考题

让学生读题。提问:如果照按比例分配问题思考,还需要知道什么条件?现在已知的比的条件怎样?你能应用比的基本性质,把这个比改写成甲数、乙数、丙数三个数的比吗?请大家课后先把这两个条件化成甲、乙、丙三个数的比,再自己试一试,求出三个数各是多少。

六、布置作业

课堂作业 ;练习二十一第12题(1)、(3)、(5),第13题(2)、(3),第14题。

家庭作业 :练习二十一第12题(2)、(4)、(6)。

篇5:比、比例、比例尺的知识点

关于比、比例、比例尺的知识点

1.比的意义和性质

(1) 比的意义

两个数相除又叫做两个数的比。 “:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。 同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。 比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的.后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

(3) 求比值和化简比

求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

几种比的化简方法:

①整数比化简,比的前项和后项同时除以它们的最大公约数。

②小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简。

③分数比化简,一般先把比的前项、后项同时乘以分母的最小公倍数,使它成为整数比,再用第一种说法化简。

④也可以用求比值的方法化简,求出比值后再写成比的形式。

(4)比例尺

图上距离:实际距离=比例尺

要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

(5)按比例分配

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。 2 比例的意义和性质

(1) 比例的意义

表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的性质

在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。

(3)解比例

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。

篇6:《比例的应用比例尺》教学设计

1、目标的定位

目标是教学的灵魂,是一切教学活动的出发点和归宿点,支配着教学的全过程,并规定着教与学的方向。准确把握教学目标是实现有效教学的前提与关键。在课堂设计时,我们应全面了解学生已有的知识经验以及对新知识掌握的情况等,准确把握教学的起点,制定切合学生实际的教学目标。

《比例尺》这课内容是在学生学习了比的知识、正反比例和图形的放缩的基础上学习的。是比的知识、正比例和乘除法意义的综合应用。依据教材和学生已有知识及年龄特点等来重新审视《比例尺》一课,我们不难发现,这部分内容不仅要使学生理解比例尺的意义、掌握求比例尺的方法,对数值比例尺与线段比例尺能进行转化,培养学生的读图、用图、绘图的能力,并发展学生的空间观念,更重要的是通过教学使学生认识到所学知识的价值所在。

值得关注的是:就数值比例尺而言,教材没有就方法比例尺专门的讲解,但是现实生活中有很多这样的例子,就是要学生在理解比的基础上“从不同角度去理解比例尺”,所以我把本节课的重点放在“理解比例尺的含义”上,其次才是计算比例尺,有了深刻的理解,计算自然水到渠成。这样来把握教材,教学起来得心应手,收到良好的效果。

2、创造性地使用教材

《比例尺》这一部分内容对学生来说比较陌生、抽象,难于理解,而且我觉得书中的练习和情境可能不太适合我们的学生,学生不一定会十分感兴趣,可能只是为了解题而解题。因此我仔细分析了教材的设计意图,同时又思考如何将这样一节概念教学恰到好处的与学生的生活实际联系起来。结合人教版教材,我对教材进行了取舍,创设了贴近我所教学生生活实际的题目,考虑线段比例尺和放大比例尺在实际生活中应用很广,因些我在把握教材的基础上,还把比例尺的相关内容拓展进来,从而拓宽和活化教材内容,增强学生对学习内容的亲切感,激发学生的求知欲。

一上课,我首先设计了一个脑筋急转弯题:“老师开车从濮阳到郑州用3个小时,可是有一只蚂蚁却只用5分钟就从濮阳爬到郑州,这是为什么?”,这里创设了情境,激发学生的学习兴趣,然后出示中国地图,让学生从地图中找出濮阳和郑州。接着,引导学生带着老师提出的三个问题进行自学:1、什么叫比例尺?2、怎样求比例尺?3、求比例尺时应注意哪些问题?这样,培养学生尝试学习和独立思考的能力。只要学生解决好这三个问题,本课的重难点也就解决了。最后提问:学习了比例尺,对我们有什么用处?使学生对今天所学知识有更深入地了解,并引出用比例尺解决问题。

这样,把问题情境与学生的生活紧密联系起来,不仅有利于学生理解问题情境中的数学问题,而且有利于学生体验到生活中的数学是无处不在的,培养学生的观察能力和初步解决实际问题的能力。

3、教学中的不足

在实际教学的过程,孩子们的热情似乎也挺高,反应也不错。像比例尺的概念挺好理解,把线段比例尺改写成数值比例尺也进行了板书,以及必要的练习。自以为这节课的内容也没有什么较大的难度,学生应该都能够接受。可反映到作业本上就不是那么回事了,求比例尺,应该是图上距离比实际距离,有变成实际距离比图上距离的。比例尺互化的格式有几个是创新的,可似乎这几种创新写法不是那么正确。为什么?把孩子叫到身边,我问他们:“我在板书的时候,你们仔细看了吗?”都齐刷刷地回答我看了。“看了怎么连写法都乱七八糟的。”孩子们个个无语,一个个冤枉的样子。

后来我冷静地想了想,可能是以下几个原因:首先对比例尺的接触较少,缩小的比例尺可能看到过,如地图等,放大的比例尺就比较少见。因此,会有一个错误想法,较小的数是图上距离,继而就出现了实际距离比图上距离的情况,其次为了集中孩子们的注意力,我在课堂上会比较注意口头交流,认为懂了可以不写,但实际上说跟写还真的是两回事,会说不一定会写。如果我们把图上距离1厘米等于实际距离20千米的线段比例尺改写成数值比例尺,会说20千米等于000厘米,因此写成数值比例尺是1:2000000。这样,学生在写的时候会觉得怎么写好呢?尽管有板书,但那也是走马观花,没有起到实质性的作用。看来以后在课堂上必要的写还真不能省。

篇7:比例尺第二次教案

比例尺(第二次教案)

比  例  尺  教  案   梁 旺 壮 教学内容:北师大版六年级下册第30--31页内容。 教学目标: 1、通过组织学生学习,使学生理解比例尺的含义,能正确说明比例尺所表示的具体意义。 2、结合具体情境,利用比例尺解决有关问题,提高学生的应用意识。 3、感受数学与日常生活的密切联系。 重点:比例尺的意义。 难点:运用比例尺求图上距离、实际距离。 教学具准备:多媒体、方格纸。 教学过程: 一、情景引入 同学们,这是我国的地图,我国的地图看上去像一只――?现在大家用手来画一画。我国只有这么大吗?(不是)哦,它是按照实际距离缩小到一定的程度而画成这幅平面图。那我们来画一画我们教室的平面图,好吗?   二、意义构建 出示:一间教室地面长8米,宽6米,请你在方格纸上画出这间教室的平面图。 1、请大家在方格纸上画出我们教室的平面图。(生画师巡视) 2、谁来说说是怎么画的? (学生的答案可能有:长方形长8厘米,宽6厘米;或者是长4厘米,宽3厘米。出示这两幅图) 这两幅图的什么相同?什么不同?(形状相同,大小不同) 同一间教室形状相同,大小不同,为什么呀!这就是我们今天要研究的一个----比例尺。比例尺难道它是一把尺?(不是)好啦,现在请同学打开课本30页,看看什么是比例尺?(教师巡视)   (1)大家都知道什么是比例尺了吗?(同桌交流后,请两三名回答) 图上距离:实际距离=比例尺(出示全体读一次)   (2)比例尺是一把实实的尺吗?(不是,是一个比)谁是前项谁是后项呀?那第一幅图的比例尺是?(请学生回答)   学生: ①8厘米:8米=8厘米:800厘米=8:800=1:100 ②6厘米:6米=6厘米:600厘米=6:600=1:100 (3)进一步确定比例尺,要注意单位及分数形式。 (4)第二幅图比例尺又是多少?(让学生算)。 师:为什么同一间教室画的`平面图大小却不一样呢?(比例尺)实际上也就是他们的什么不同?那么当实际距离一样的时候,什么决定图的大小? 师:第一幅图,1:100是什么意思?(同桌交流)第二幅图,1:200呢? 小结:什么是比例尺?我们应该注意什么? 三、实际运用 (一)基本运用   1、那我们在生活当中,还在哪些地方看到过比例尺?老师收集了一些资料。(出一幅地图,一架飞机图) 过程要求: (1)学生知道比例尺。 (2)说说图上距离、实际距离和比例尺。 (3)怎么求比例尺、图上距离和实际距离。 2、让学生独立完成课本第30页的第2题。完成之后让学生说一说,进一步理解比例尺。 3、课本第30页的第3题 (1)让学生说说自己计算的思路。 ①先测量房子上的长与宽。 ②再计算房子实际的长与宽。 ③最后计算房子的面积。 (2)动手操作、计算。  (3)请一位学生说出计算过程及结果。 (二)拓展延伸 笑笑家买了一个长5米的家具,请同学们算一下在客厅中能放得下吗?(小组交流) 四、课堂总结。 这一节课我们学习了什么内容?  

篇8:数学《比例尺》教案

数学《比例尺》教案

教学目标:

1.使学生理解比例尺的含义,能正确说明比例尺所表示的具体意义。

2.认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。

3.理解比例尺的书写特征。

教学重点:

比例尺的意义。

教学难点:

将线段比例尺改写成数值比例尺。

教学过程:

一、引入

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?

请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的'一种应用。今天我们就来学习这方面的知识。

二、教学比例尺的意义。

1.什么是比例尺(自学书上内容,学生交流汇报)

出示图例1

在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2.介绍数值比例尺

让学生看图。

我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。

3.介绍线段比例尺

还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。

4.介绍放大比例尺

出示图例2

在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。

篇9:高中地理比例尺教案

高中地理比例尺教案

高中地理比例尺教案

第一、说设计理念:

根据新课程标准,本课的设计理念是:

1、创设生动具体的教学情境,使学生在愉悦的情境中学习数学知识。

2、鼓励学生独立思考、自主探索和合作交流。

3、尊重学生的个体差异,满足多样化的学习需求。鼓励学生用不同的方法解决问题,提倡算法多样化,使每个学生都能找到适合自己的方法。

第二、说教材:

《比例尺》一课是苏教版教材六年级下册第三单元第  课时的内容。本节课是在学生理解和掌握比的意义和性质的基础上进行教学的。本课时的主要内容主要是教学比例尺的认识。比例尺表示图上距离和实际距离的比,因此可以把它理解为比的应用。但另一方面,图上距离和实际距离是成比例的,根据比例尺求图上距离或实际距离都可以列出比例式来求解。因此,教材把比例尺安排在比例教学之后教学。通过教学,使学生认识比例尺,知道比例尺有两种形式-----数值比例尺和线段比例尺,学会根据比例尺求图上距离或实际距离。本节知识为第一个例题。

课程标准要求:了解比例尺,知道比例尺是图上距离和实际距离的比。

基于以上认识,我制定以下教学目标:

1、知识目标:使学生理解比例尺的意义,学会求比例尺,图上距离和实际距离。

2、能力目标:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。

3、情感目标:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。

在吃透教材的基础上,我确定本节课的教学重点:

理解比例尺的概念,根据比例尺的意义求比例尺、实际距离和图上距离

难点:

从不同的角度理解比例尺的意义

为了更好的完成教学任务,发展学生能力,我课前准备了:一些比例尺不同的地图或本校、本地的平面图。

第三、说教法、学法:

教法:对于意义理解部分主要采用尝试法。对于应用比例尺相关计算时,主要采用引导发现法。

学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。

第四、说教学过程:

整个教学过程分为五大块。

第一大块:导入激趣

上课开始,教师给学生出示一把装在套中的尺子。问学生这可能是比例尺吗?学生的回答各不相同。此时,教师诡秘的笑笑,说,学完了这节课我们就知道了,这样给学生造成悬念,激发起学生的探究欲望。

接着借助成语:以_____当_____。让学生填空,学生可以天马行空,任意填写,这样和后面的比例尺不谋而合,为后面学习做好准备,为学生在意义建构和后面的计算做好思想方法上的准备。

第二大块:感受比例尺

在这一大块我安排了画画比比、再画再比两个环节。

第一个环节:画画比比

此处我设计情境:全市体育教学能手评选要在我们龙山小学举行。要求把我们龙山小学的操场平面图绘制出来。我们学校操场长100米,宽80米。我们该怎么办?这里,我是不做任何要求,让学生感觉无从下手,逼着学生去思考该怎么画?怎么画操场才能不变形?

这里给学生创设一个真实的生活情境,感受数学来源于生活,又回归生活,学生乐学、爱学、主动学。

最后让学生把操场平面图画在练习本上。

照样子画操场是同学们在美术课上再熟悉不过的举动,但以此为本节新授内容的开始,让学生不知不觉中体会到了比例尺。

教师挑选两幅作品,利用实物展台进行展示。

全班学生进行评价:

1、谁画的更像一点?

2、分析画的不像的原因可能是什么?

这里目的是让学生体会“长和宽缩小的比例不一样”会导致比例失调从而不像。

理解了上面的问题,问学生该怎么办?引导学生自己说出:算一算这两幅图的长和宽分别缩小了多少倍?然后,学生独立计算,展示计算过程。

这一切的一切都是教师在设计圈套,引着学生往里掉。学生在这个过程中仍会笑眯眯的接受着、享受着学习数学的快乐……

接着,教师进行点拨:从上面的计算结果来看画的不像的图是因为长和宽缩小的比例差距较大,所以比例失调,看上去画的不像。

实践出真知!让学生分析画的“像与不像”使学生真真正正的感受到了比例尺的作用,以此激发学生学习比例尺的兴趣。

第二个环节:再画再比

让学生想一想怎样画的.更像?引导学生说出:长和宽缩小的比例要保持相同就可以画得更像。然后课件展示准确的平面图。并提出问题:请你帮帮老师算一算长和宽分别缩小了多少倍?

通过学生计算,引导小结:当长和宽缩小的倍数相同时,操场的平面图就十分逼真!由此可见,为了能反映真实的情况,画图时必须有一个统一的标准,这个统一的标准就是比例尺。随机板书课题:比例尺

从画操场-------提出问题到“比比谁画的像”-------=分析问题再到“如何画的更像”--------解决问题。教师都是置学生于熟悉的生活背景下,感受并理解比例尺的意义,体现了数学的生活性。

第三大块:结合实际,理解比例尺

这里我设计了“说一说”“算一算”“辨一辨”三个层次。

第一个层次:说一说

首先告诉学生课件展示的长方形是按缩小100倍来画的,我们就说这幅图的比例尺是1:100.然后让学生来说一说比例尺1:100.表示什么?这里多指学生说,让不同层次的学生说,体现让不同的学生得到不同的发展。

接着再让学生说一说刚才的两幅图的长和宽的比例尺各是多少?分别表示什么?

引导小结:一幅图一般只有一个比例尺,当长和宽的比例尺不一样时,所画的操场就会失真。

再让学生用自己的话说说什么叫做比例尺?怎样计算比例尺?然后进行小结:图上距离与实际距离的比叫做比例尺;比例尺通常写成前项是1的比。

第二个层次:算一算

课件出示我校附近的平面图,菜市场距离我校的直线距离约300米,可在这幅图上只画了3厘米,这幅图的比例尺是多少?

让学生独立完成,交流你是怎么做的?结果是多少?做题时要注意什么?从这个比例尺上你能获取哪些信息?

比例尺是一个实用性很强的知识点,教师在帮助学生理解比例尺意义时,运用实例让学生“说一说”“算一算”,口脑并用,从多角度多方位理解比例尺的实际含义,为下面多种角度计算实际距离、图上距离打下知识准备。

第三个层次:辨一辨

出示地图,让学生找到地图中的比例尺,全班交流,引出:线段比例尺和数值比例尺。并充分让学生说一说这两种比例尺表示的意义。并会把线段比例尺改写成数值比例尺。

第四大块:实际应用

我设计了基本运用和拓展延伸两个层次的练习。

1、基本应用,我设计了三个基本的求比例尺的问题。目的是通过练习使学生更加明确比例尺概念的外延,加深对比例尺意义的理解。

2、拓展延伸,出示一张老师的照片,让学生猜测比例尺,然后讨论用什么方法求照片的比例尺。

通过练习,既使学生加深对比例尺的理解和运用,也让学生感受到数学与生活的联系。

第五大块:总结全课:

老师拿出一开始的拿的尺子,问学生这是比例尺吗?学生哈哈大笑。什么叫比例尺呢?它有什么用呢?这样照应了开头解开学生心中的疑团,也概括了这节课的主要内容。

第五、说板书设计:

板书反应出比例尺的产生过程,突出了比例尺的特点,便于学生回顾学习过程,启发学生总结学习内容。

篇10:纸币概念的复习

纸币概念的复习

概念是整个知识体系的基础,也是我们学好一门学科的前提.掌握好概念,不仅是要识记好,更重要的`要理解、吃透.在复习课中,要求学生一定要区分好概念、吃透概念、并掌握相关知识点之间的内在联系.

作 者:林艳秋  作者单位:周口市第三高级中学,河南,周口,466000 刊 名:考试周刊 英文刊名:KAOSHI ZHOUKAN 年,卷(期): “”(11) 分类号: 关键词: 

篇11:数学《比例尺》教学教案

教学内容:六年制小学数学第十二册课本第55页例1.例2.作业本第31(29)。

教学目标:1.使学生理解比例的意义。

2.使学生能应用比例尺的知识求平面图的比例尺,以及根据比例尺求图上距离和实际距离。

3.培养学生分析问题、解决问题的能力和创新能力。

教学重点:理解比例尺的意义。

教学难点:根据比例尺求图上距离和实际距离。

教具准备:多媒体课件一套。

教学过程:

一、问题的情景:

1. 出示邮票。问:你能同样大小的把它画在图纸上吗?

让同学们画一画,再拿出邮票的长,比一比,怎么样?

归纳:(同样长)得:图上的长和实际的长的比是1:1。

2. 教室的长是9米,你能同样长的画在图纸上吗?更大一些呢?

如果操场的长,整个中华人民共和国,能完全一样画在平面图上吗?(不能),想个什么方法(窍门)可画上去了?

3. 让生猜想:(出示学校平面图)图上操场的长和实际长的比,还会是1:1吗?大约是几比几?

4. 导入新课:人们在绘制地图和平面图时,往往因为纸的大小有限,不可能按实际的大小画在图纸上,经常需要把实际距离缩小一定的倍数以后再画成图。象手表等机器零件比较小,又得把实际长度扩大一定的倍数以后,才能画到图纸上去。这就.需要涉及到一种新的知识。也就是今天我们一起来研究比例尺的问题。

板书:比例尺

二、问题解决:

5. 一个教室长是9米,如果我们要画这个教室的平面图,为了看图和携带方便,就需要把实际距离缩小一定的`倍数后画在平面图上,缩小多少倍由你自己决定,你打算设计:用几厘米表示9米。请四人小组讨论并设计。

6. 小组回报设计方案,教师选择以下四种方案。

(1).用9厘米表示9米

(2).用4.5厘米表示9米

(3).用3厘米表示9米

(4).用1厘米表示9米

7. 说说以上方案是图上距离比实际距离缩小了多少倍?

算一算,每幅图 图上距离和实际距离的比。

(1).9厘米9米=9900=1100

(2).4.5厘米9米=4.5900=1200

(3).3厘米9米=3900=1300

(4).1厘米9米=1900

8. 这四个比的前项代表什么?(图上距离),后项代表什么?(实际距离),我们把这样的比,叫比例尺。

齐读:比例尺是图上距离与实际距离的比,化简后得到最简整数比。

比例尺怎样求:(看上述四个比例式得出):

图上距离实际距离=比例尺 或 图上距离

实际距离

9. 讨论汇报:上面四幅图,比例尺是多少图最大?

比例尺是多少图再小?为什么?

10. 练习:

(1).甲、乙两座城市相距120千米,在地图上量得两城市的距离是4厘米。求这幅地图的比例尺。

(2).学校里修建运动场,在设计图上用25厘米长线段来表示操场的实际长度150米。求图上距离和实际距离的比。

(3).一张中国图,图上4厘米表示实际距离1040千米,求这幅地图的比例尺?

(4).一张紧密图纸中,图上1厘米表示实际1毫米,求这幅精密图纸的比例尺?

(观察精密零件如果要画在图纸上,怎么办?(放大)。那这幅精密图纸的比例尺会求吗?

上述四题分层练习,后讲评。

11. 比较(3)、(4)两题的比例尺有什么不同?

教师小结:一般把缩小图的比例尺写成前项是1的比,而把放大图的比例尺写成后项是1的长。

12. 比例尺有多少种表示方法?让生说一说

(常见的有:比的形式 分数的形式 线段形式)

三、问题的应用:

根据比例尺的关系式,求实际距离。

(1).出示例2 在比例尺是130000000的地图上,量得上海到北京的距离是3.5厘米。上海到北京的实际距离大约是多少千米?

(学生独立解答,同时抽一生板演)

解:设上海到北京的实际距离为x厘米,

x=105000000

105000000厘米=1050千米。

答:上海到北京的实际距离大约是1050千米。

(2).分析讲述:

根据比例尺的计算公式,已知图上距离和比例尺求实际距离,用方程解。

(先设x,再根据比例尺的计算公式列出方程。)

(3).图上距离和实际距离的单位要统一,一般都统一为低级单位厘米。

(4)怎样设x,.教师指出:设未知数时,单位要与已知单位统一,后再化聚到问题单位。

(5)尝.试练习第57页试一试。

河西村到汽车站的实际距离是20千米,图上距离是5厘米,算出这幅地图的比例尺。汽车站到县城的图上距离是15厘米,实际距离是多少千米?

篇12:解比例教案

解比例教案

教学内容 教科书第50页例3,练习十一3~6题。 教学目标 1.使学生理解解比例的意义。 2.使学生进一步掌握比例的基本性质,学会应用比例的基本性质解比例。 3.让学生在解比例的过程中,培养学生主动学习知识的意识和能力,感受到学习数学的乐趣,增强学习的.兴趣和自信。 教学重点 使学生掌握解比例的方法,学会解比例。 教学难点 建立解比例和解方程之间的联系。 教学过程: 一、出示课题:解比例. 二、出示目标: 1.使学生理解解比例的意义。  2.使学生进一步掌握比例的基本性质,学会应用比例的基本性质解比例。 3.让学生在解比例的过程中,培养学生主动学习知识的意识和能力,感受到学习数学的乐趣,增强学习的兴趣和自信。 三、出示自学指导 看书35页:1、什么叫做解比例?2、重点看例2、例3、例2列出的比例中,X :320=1 :10转化成10x=320x1依据是什么? 3、例3中,1.5/2.5=6/x个比例和前面几个比例有什么不同?指出它的内项和外项。想:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.  5分钟后检测 四、先学、认真看书 检测 :自学指导 五、后教: 1、更正 2、讨论:怎样解比例?根据是什么? 3小结:像上面这样求比例中的未知项,叫做解比例。 六、当堂达标: (一)解下面的比例. 1.2/8=9/x 2、x/25 =1.2/75 (二)根据下面的条件列出比例,并且解比例. 1.5和8的比等于40与x 的比. 2.x 和3/4的比等于1/5和2/5的比. 3.等号左端的比是1.5∶ ,等号右端比的前项和后项分别是3.6和4.8. 七、拓展练习: 1、如果一个比例中两个外项的积是最小的合数,其种一个内项是3/4,另一个内项是多少? 2、、如果一个比例中两个内项互为倒数,一个外项是2另一个外项多少? 八、回归目标:  

篇13: 比例线段教案

一、学生知识状况分析

学生在本章前两课时的学习中,通过对相似图形的直观感知,体会到可以用对应线段长度的比来描述两个形状相同的平面图形的大小关系。从而认识了线段的比,成比例线段。

二、教学任务分析

本节课依旧采用前两节在方格纸中探究的方式,引导学生得出平行线分线段成比例及其推论。平行线分线段成比例定理是研究相似形的最重要和最基本的理论,是《课程标准》图形的性质及其证明中列出的九个基本事实之一。在知识技能方面,要求学生理解并掌握平行线分线段成比例定理及其推论,并会灵活应用。学生经历运用平行线分线段成比例及其推论解决问题的过程,在观察、计算、讨论、推理等活动获取知识。让学生经历“观察―猜想―归纳―验证”的数学思想,并体会数形结合和特殊到一般的思想方法。进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系。

教学目标:

(一)知识目标

理解并掌握平行线分线段成比例的基本事实及其推论,并会灵活应用。

(二)能力目标

通过应用,培养识图能力和推理论证能力。

(三)情感与价值观目标

(1)、培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值。

(2)、在进行探索的活动过程中发展学生的探索发现归纳意识并养成合作交流的习惯。

教学重点:平行线分线段成比例定理和推论及其应用。

教学难点:平行线分线段成比例定理及推论的灵活应用,平行线分线段成比例定理的变式。

三、教学过程分析

本节课设计了五个教学环节:第一环节:创设情景,引入新课;第二环节:探索发现平行线分线段成比例定理及其推论;第三环节:平行线分线段成比例定理及其推论的简单应用;第四环节:课堂小结;第五环节:布置作业.

一:创设情景,引入新课

下图是一架梯子的示意图,由生活常识可以知道:AA1,BB1,CC1,DD1互相平行,且若AB=BC,你能猜想出什么结果呢?

通过一个生活中的实例激发学生探究的欲望,从而紧扣学生的好奇心,引入新课。

三条距离不相等的平行线截两条直线会有什么结果?

二:探索发现平行线分线段成比例定理

探究活动一:

1.内容:如图(1)小方格的边长都是1,直线abc,分别交直线m,n于A1,A2,A3,B1,B2,B3。

(1)计算你有什么发现?

(2)上面我们探究的是在方格纸上的特殊情况,

如果不在方格纸上上面的结论还成立吗?

(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?(用几何画板演示)

归纳:平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例;

目的:让学生通过观察、度量、计算、猜测、验证、推理与交流等数学活动,达到对平行线分线段成比例定理的意会、感悟。

效果:学生在以前的学习中,尤其是本章前两节的探究也是通过表格中的多边形来完成的。所以学生有种熟悉感,并不感到困难。通过几何画板的演示,对这个基本事实进行了“淡化”处理――让学生在操作演示中直接给出基本事实。

2.议一议:

内容:教师提问:(1)如何理解“对应线段”?

(2)平行线分线段成比例定理的符号语言如何表示?

(3)“对应线段”成比例都有哪些表达形式?

3.为了能够快捷而准确地得到比例线段,可以结合图形用形象化的语言对应找,如上/下=上/下上/全=上/全下/全=下/全左/右=左/右

目的:让学生在探究得出结论的基础上,对平行线分线段成比例定理的有进一步的理解。并掌握定理的符号语言,进一步发展推理能力。

效果:学生从几何直观上很容易找出“对应线段”。利用比例的性质写出成比例线段时,感觉结论很多,老师这时可以引导总结出成比例线段的特点,那就是都体现了“对应”二字。

4.灵活应用

例l1l2l3,AB=4,DE=3,EF=6.求BC的长

跟踪练习:课本30页练习1

三:探索发现平行线分线段成比例定理的推论

探究活动二:

1.继续使用几何画板,向左平移直线DF使点D和点A重合,再继续平移直线DF使点E和点B重合。在平移的过程中,对应线均无改变,上述比例线段仍成立,从而得出定理的推论

归纳:平行于三角形一边的直线与其他两边相交,截其他两边(或两边的延长线),所得的对应线段成比例。

2.议一议:(1)平行线分线段成比例定理推论的符号语言如何表示?

(2)这两个图形的形状像什么字母?这是什么形状的数学模型?

(3)互相说一说图中的比例线段?

3.灵活运用:

例:已知,点E为平行四边形ABCD的边CD的延长线上的一点,连接BE,交AC于点O,交AD于点F。求证

四:课堂小结

1.定理名称:2.文字语言:3.图形语言:4.符号语言:5.模型语言:

五:作业:

1、教材P31/随堂练习2.课时练P23/知识点二

教学反思:

本节的难点是平行线分线段成比例定理.平行线分线段成比例定理变式较多,学生在找对应线段时常常出现错误;另外在研究平行线分线段成比例时,常用到代数中列方程的方法,利用已知比例式或等式列出关于未知数的方程,求出未知数,这种运用代数方法研究几何问题,学生接触不多,也常常出现错误.

在授课过程中要根据学生的个体差异,注意因材施教、分层教学,在教学中结合课本“想一想”、“议一议”、“做一做”等教学环节调动学生的潜能,为每一位学生创设施展才能的空间,让学生学得轻松、愉快,培养学生的成就感,使每一位学生都能获得不同程度的成功。同时把学生的活动贯穿于教学的整体过程中,提供学生学习合作、交流、探索、归纳的机会,使学生最大限度的动手、动口、动脑、同伴互助,让学生通过实际感悟平行线分线段成比例定理及其推论的区别与联系。

篇14: 比例线段教案

一、教学目标

1、理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念、

2、把握比例基本性质和合分比性质、

3、通过通过的应用,培养学习的计算能力、

4、通过比例性质的教学,渗透转化思想、

5、通过比例性质的教学,激发学生学习爱好、

二、教学设计

先学后做,启发引导

三、重点及难点

1、教学重点比例性质及应用、

2、教学难点正确理解成比例线段及应用、

四、课时安排

1课时

五、教具学具预备

股影仪、胶片、常用画图工具

六、教学步骤

复习提问

1、什么是线段的比?

2、已知这两条线段的比是吗,为什么?

讲解新课

1、比例线段:见教材p203页。

如:见教材p203页图5―2。

又如:

即a、b、c、d是成比例线段。

注:①已知问这四条线段成比例吗?

(答:成比例。,这里与顺序无关)。

②若已知a、b、c、d是成比例线段,是指不能写成(在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

板书教材p203页比例线段的一些附属概念。

2、比例的性质:

(1)比例的基本性质:假如,那么。

它的逆命题也成立,即:假如,那么。

推论:假如,那么。

反之亦然:假如,那么。

①基本性质证实了“比例式”和“等积式”是可以互化的。

②由,除可得到外,还可得到其它七个比例式。即由一个等积式,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。 。再由等式的对称性写出另外四个比例式:。注重区别与联系。

③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

(2)合比性质:假如,那么

证实:∵,∴即:

同理可证:(找学生板演)

(3)等比性质:假如

那么

证实:设;则

等比性质的证实思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必把握。

例1(要求了解即可)

(1)已知:,求证:。

证实:∵,∴

“通法”:∵,∴即

(2)已知:,求证:。

方法一:

方法二:

(1)÷(2)得:

小结

(1)比例线段的概念及附属概念。

(2)比例的基本性质及其应用。

八、布置作业

(1)求

① ② ③

(2)求下列各式中的x

① ② ③ ④

九、板书设计

1、比例线段:

教师板书定义

………

比例线段的附属概念

………

2、比例的性质

(1)比例基本性质

…………

3、课堂练习

篇15: 比例线段教案

一、教学目标

1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.

2.使学生掌握三角形一边平行线的判定定理.

3.已知线的成已知比的作图问题.

4.通过应用,培养识图能力和推理论证能力.

5.通过定理的教学,进一步培养学生类比的数学思想.

二、教学设计

观察、猜想、归纳、讲解

三、重点、难点

l.教学重点:是平行线分线段成比例定理和推论及其应用.

2.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

【复习提问】

叙述平行线分线段成比例定理(要求:结合图形,做出六个比例式).

【讲解新课】

在黑板上画出图,观察其特点: 与 的交点A在直线 上,根据平行线分线段成比例定理有: ……(六个比例式)然后把图中有关线擦掉,剩下如图所示,这样即可得到:

平行于 的边BC的直线DE截AB、AC,所得对应线段成比例.

在黑板上画出左图,观察其特点: 与 的交点A在直线 上,同样可得出: (六个比例式),然后擦掉图中有关线,得到右图,这样即可证到:

平行于 的边BC的直线DE截边BA、CA的延长线,所以对应线段成比例.

综上所述,可以得到:

推论:(三角形一边平行线的性质定理)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.

如图, (六个比例式).

此推论是判定三角形相似的基础.

注:关于推论中“或两边的延长线”,是指三角形两边在第三边同一侧的延长线,如果已知 ,DE是截线,这个推论包含了下图的各种情况.

这个推论不包含下图的情况.

后者,教学中如学生不提起,可不必向学生交待.(考虑改用投影仪或小黑板)

例3 已知:如图, ,求:AE.

教材上采用了先求CE再求AE的方法,建议在列比例式时,把CE写成比例第一项,即: .

让学生思考,是否可直接未出AE(找学生板演).

【小结】

1.知道推论的探索方法.

2.重点是推论的正确运用

七、布置作业

(1)教材P215中2.

(2)选作教材P222中B组1.

八、板书设计

数学教案-平行线分线段成比例定理 (第二课时)

篇16: 比例线段教案

教学建议

1、教材分析

(1)知识结构

(2)重点、难点分析

重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.

难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆.

2、教学建议

本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.

(1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;

(2)在教学中,引导学生观察猜想证明应用等学习,教师组织下,以学生为主体开展教学活动.

第1课时:相交弦定理

教学目标 :

1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

2.学会作两条已知线段的比例中项;

3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

教学重点:

正确理解相交弦定理及其推论.

教学难点 :

在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

教学活动设计

(一)设置学习情境

1、图形变换:(利用电脑使AB与CD弦变动)

①引导学生观察图形,发现规律:D,B.

②进一步得出:△APC∽△DPB.

.

③如果将图形做些变换,去掉AC和BD,图中线段 PA,PB,PC,PO之间的关系会发生变化吗?为什么?

组织学生观察,并回答.

2、证明:

已知:弦AB和CD交于⊙O内一点P.

求证:PAPB=PCPD.

(A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

(证明略)

(二)定理及推论

1、相交弦定理: 圆内的两条相交弦,被交点分成的两条线段长的积相等.

结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PAPB=PCPD.

2、从一般到特殊,发现结论.

对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互 相垂直如图,AB是直径,并且ABCD于P.

提问:根据相交弦定理,能得到什么结论?

指出:PC2=PAPB.

请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.

推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PAPB.

若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

PC2=PAAC2=APCB2=BPAB

(三)应用、反思

例1 已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

引导学生根据题意列出方程并求出相应的解.

例2 已知:线段a,b.

求作:线段c,使c2=ab.

分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

作法:口述作法.

反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

练习1 如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是 多少?

将条件隐化,增加难度,提高学生学习兴趣

练习2 如图,CD是⊙O的直径,ABCD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

练习3 如图:在⊙O中,P是弦AB上一点,OPPC,PC 交⊙O于C. 求证:PC2=PAPB

引导学生分析:由APPB,联想到相交弦定理,于是想到延长 CP交⊙O于D,于是有PCPD=PAPB.又根据条件OPPC.易 证得PC=PD问题得证.

(四)小结

知识:相交弦定理及其推论;

能力:作图能力、发现问题的能力和解决问题的能力;

思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

(五)作业

教材P132中 9,10;P134中B组4(1).

第2课时 切割线定理

教学目标 :

1.掌握切割线定理及其推论,并初步学会运用它们进行计算和证明;

2.掌握构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力

3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.

教学重点:

理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

教学难点 :

定理的灵活运用以及定理与推论问的内在联系是难点.

教学活动设计

(一)提出问题

1、引出问题:相交弦定理是两弦相交于圆内一点.如果两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1)

当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?

2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PAPB.

3、证明:

让学生根据图2写出已知、求证,并进行分析、证明猜想.

分析:要证PT2=PAPB, 可以证明,为此可证以 PAPT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).容易证明PTA=B又P,因此△BPT∽△TPA,于是问题可证.

4、引导学生用语言表达上述结论.

切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

(二)切割线定理的推论

1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?

观察图4,提出猜想:PAPB=PCPD.

2、组织学生用多种方法证明:

方法一:要证PAPB=PCPD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明PAC=D,P,因此△PAC∽△PDB. (如图4)

方法二:要证,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.容易证明D,又P. 因此△PAD∽△PCB.(如图5)

方法三:引导学生再次观察图2,立即会发现.PT2=PAPB,同时PT2=PCPD,于是可以得出PAPB=PCPD.PAPB=PCPD

推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)

(三)初步应用

例1 已知:如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米, PO=10.9厘米,求⊙O的半径.

分析:由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.

(解略)教师示范解题.

例2 已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,

求证:AE=BF.

分析:要证明的两条线段AE,BF均与⊙O相切,且从A、B 两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC. 因此它们的积相等,问题得证.

学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=ACCD和BF2=BDDC等.

巩固练习:P128练习1、2题

(四)小结

知识:切割线定理及推论;

能力:结合具体图形时,应能写出正确的等积式;

方法:在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握.

(五)作业 教材P132中,11、12题.

探究活动

最佳射门位置

国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足蛎趴?.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).

分析与解 如图1所示.AB是足球门,点P是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示.即OP是圆的切线,而OB是圆的割线.

故 ,又 ,

OB=30.34+7.32=37.66.

OP=(米).

注:上述解法适用于更一般情形.如图2所示.△BOP可为任意角

篇17:复习比例的意义和性质

教学内容:教材第55页复习第1―3题。

教学要求:

1.使学生进―步认识比和比例的意义、性质及相关概念,能比较熟练地应用相应的概念求比值、化简比和解比例;加深认识知识之间的联系和区别。能应用比例尺的知识解决―些简单的实际问题。

2.进一步培养学生比较、分析、判断等思维能力。

教学重点:进―步认识比和比例的意义、性质及相关概念。

教学难点:比较熟练地应用相应的概念求比值、化简比和解比例。

教学过程():

一、揭示课题

提问:我们这一单元学习了什么内容?说明:我们已经学习了比例的知识,这节课复习比例的意义和性质。(板书课题)通过复习,要加深对比例意义、性质的认识,要能比较熟练地进行有关计算,井弄清比和比例的一些知识的联系与区别,提高思维能力。

二、整理比例的有关概念

1.整理比和比例的意义。

提问:什么叫做比?(板书)请举一个比的例子。什么叫做比例?(板书)谁也来举一个比例的例子?从它们的意义,你能说出比和比例的'联系吗,(比例由两个比组成,表示两个比相等)比和比例有什么不同?(比表示两个数的关系,只有两项;比例表示两个比的相等关系,有四项)

2.做复习第1题(1)、(2)题。

比里各部分分别是什么名称呢,比例里各个部分的名称又怎样呢,请大家在书上做第l题(1)、(2)两小题。练习后指名口答,老师板书。追问:比值是怎么得到的?

3.组织练习。(口答)

(1)下面的比各表示什么意思?

①白兔和黑兔只数的比是7 :9。

②科技书与文艺书本数的比是3 :5。

(2)求下列比的比值。

6 :1.5      :3    0.2 :       :

(3)下面每组里两个比能不能组成比例?为什么?

①1 :2和2.5 :5    ②1.2 :0.3和6 :1.5

③3 : 和2 :

篇18:复习比例的意义和性质

提问:比例的基本性质是什么?(板书)与比的基本性质相同吗?为什么?(板书比的基本性质)想一想,比的基本性质有什么用处?比例的基本性质有什么用处?(判断能不能组成比例、解比例)

5.练习。

(1) 做复习第1题(4)、(5)题。

(2) 解下列比例。

2.5 : =x :2

(3) 做复习第1题(6)~(8)题。

三、课堂小结

这节课主要复习了什么内容?你这一课进一步掌握了些什么?

四、课堂作业

复习第2、3题。

《比例尺》说课稿

比例尺课件

比例尺练习题

复习教案

比例尺练习题及答案

比例尺应用题及答案

复习教案一

一下复习教案

考研数学八月复习要点:树立时间概念

比例尺(六年级)(人教版六年级教案设计)

比例和比例尺的概念的和复习教案(精选18篇)

欢迎下载DOC格式的比例和比例尺的概念的和复习教案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档