九年级数学上册《复习直线和圆的位置关系》的说课稿

时间:2022-11-30 04:23:23 作者:雨凡 教案 收藏本文 下载本文

“雨凡”通过精心收集,向本站投稿了12篇九年级数学上册《复习直线和圆的位置关系》的说课稿,下面是小编帮大家整理后的九年级数学上册《复习直线和圆的位置关系》的说课稿,希望对大家的学习与工作有所帮助。

篇1:九年级数学上册《复习直线和圆的位置关系》的说课稿

九年级数学上册《复习直线和圆的位置关系》的说课稿

一、教材分析

本单元复习内容可分为直线和圆的位置关系、直线形(三角形、四边形)与圆两部分。直线和圆位置关系的运动和变化,把圆与直线形有机地结合在一起。(1)直线和圆的位置关系是点和圆的位置关系的深化和延伸,是研究直线形与的有关性质的基础。其中切线的判定与性质尤为重要。(2)直线形与圆主要包括三角形的外接圆和内切圆、圆内接四边形的有关性质等,不仅对三角形的内心、外心,切线长定理等知识点进行了复习,还为将来复习正多边形与圆作了铺垫。

依据教学大纲和对教材的理解分析,结合学生的认知特点和学习基础,确定本单元的复习目标为:(投影)

认知 三角形的内心、外心的概念,切线的定义

掌握 圆内接四边形的性质;直线与圆的位置关系;

切线的判定与性质;切线长定理

应用 会用尺规作三角形的外接圆和内切圆;

会用本单元定理进行有关的计算和证明

智能 通过直线和圆位置关系的分类,培养学生分类讨论的思想;

通过变式教学,培养学生发散思维能力和综合运用能力

情感 通过直线和圆位置关系的变化,渗透运动观点

布鲁纳说过:掌握数学思想可以使数学更容易理解和记忆。本单元复习过程中,注重分类讨论思想和运动观点的渗透。这样,不仅可以帮助学生更有效地掌握知识,而且还能培养学生的能力,优化学生的思维品质。基于这些想法,我确定了以上的教学目标。

本单元的主要知识点有着广泛的应用,所以本单元的重点是直线和圆的位置关系、切线的判定与性质、切线长定理、圆内接四边形的性质。(投影)由于学生如何从图形中观察、分析出比较隐蔽的数量关系的方法较弱,且综合运用知识的能力较差,因此本单元的难点有两个:一是领会图形运动变化的规律;二是综合运用知识解题。(投影)突破难点一的关键在于抓住分类讨论思想,通过动画发挥直观到抽象的支柱作用;突破难点二的关键是通过知识的梳理与沟通,形成知识本质上的融合。

二、教法、学法及师生互动设计

在数学复习课中,充分调动学生学习的积极性,充分发挥学生的主体作用,是十分重要的。同时,充分发挥教师的主导作用,组织他们生动活泼地进行学习,也是教师应当掌握的一门艺术。为此,在建构主义理论的指导下,我采用教师指导学生主动探索研究发现法。具体是用题组或基本图形网络知识点,学生自主探索,发现问题,并解决之;教师必要时进行引导或点拔;最后由师生共同小结,实现真正的意义建构。在实际教学中做到:

动:教师精心备课,使用多媒体动画,促使学生动脑、动口、动手;

变:教师设计变式题组,学生变换思维角度,培养学生思维的敏捷性、广阔性、深 刻性;

点拔:在学生思维受阻或某些学生不易理解的地方,教师予以点拔;

渗透:渗透分类讨论、观察猜想等数学思想和运动观点;

5、小结:及时引导学生进行知识和思想方法的小结,以及学法的小结。

三、教学程序分析

本单元复习预计分两课时完成,第一课时复习直线和圆的位置关系,第二课时复习直线形与圆的有关性质,另根据学生掌握情况补充适当的综合训练题。

教案基本按以下流程设计:(投影)

教案设计流程图

复习目标 — 基础过关 — 小结 — 能力提高 — 小结 — 达标训练

基本题组 基本图形 引申变式 综合运用 分层练习分层指导

教案的处理:1、可提前将教(学)案发给学生,题组一可安排在课内或课前完成;题组二由师生共同分析,学生完成;题组三由学生独立完成,教师视情况予以点拔。2、题组的设计以课本为蓝本,并结合学生实际和中考要求作了适当的补充。

现就主要环节说明如下:

关于复习目标

数学复习课与新授课不同,要复习的内容都是学生早知道的。不必转弯抹角,应当直接

了当地进入主题,点明复习目标。并指明复习内容在知识结构中的位置、地位和作用。这是引导学生自主学习的始点。教师在提出复习目标时应注意:第一,目标要全面,既要注意基本知识基本方法的落实,又要注重能力的培养;第二,目标要准确,即针对性要强;第三,目标要具体。(投影)

教学目标做到: 全面 准确 具体

教师在提出单元复习目标后,对于每一课时应有更详细、更具体的目标,甚至可以具体到题组或题型。例如在复习“直线形与圆”时,我将知识要点整理成基本题组,让学生课前完成,这样做复习目标明确,学生带着问题去听课,效果很好。

关于基础过关

复习目标的提出从心理角度讲,激发了学生“认识、理解的需要”,为了满足学生的需

要,又要提高复习效率,教师选择代表性的例题十分必要。例如复习“切线的判定与性质”可选用下面的例题:(投影)

C

已知:如图,AB是⊙O的直径,⊙O过BC的中 D

点D,DE⊥AC。E B

求证:DE是⊙的切线。A O

A

已知:如图,AB切⊙于A,CD切⊙O于C,且 B

AB∥CD。 O

求证:AC是⊙O的直径。(至少用三种方法)

C D

对于例1主要是复习切线的判定定理,鼓励学生采取不同的方法证明。学生完成后可让学生自己归纳出切线的判定方法;教师强化,视情况让学生回答教材P95—例4、L1、2各用何种判定方法,并加以区别。

例2主要是复习切线的性质及推论。考虑证明中要证三点共线,学生不易把握,教师处理时可将三种证明方法呈现出来,让学生指出划线处分别应用了切线的什么性质。这样既突出了重点,又拓宽了学生的视野。从而就起到了“以少胜多”、“事半功倍”的作用,大大减少了题量,提高了复习效率,实现了复习目标提出的要求。

此时,学生的自主性可以体现在多“讲”、多“议”上面。例如对上面的例题,学生通过思考能够讲得出的,一定要让学生自己讲解,教师不要包办代替。教师只重点讲清切线的判定与性质的区别,以及常用的辅助线作法这类学生较模糊的内容。所以使学生越听越专心,越听越有劲,这样上课效率会倍增。

数学复习课的另一个特征是回忆。回忆,应尽最大可能让学生独立完成。常用的办法如独立默写、同桌互说、启发得结果等。但回忆往往造成知识不系统、不完整,这就需要教师及时进行梳理。例如复习“切线长定理”及相关结论时,学生印象较深的只是定理本身,而对基本图形的识别和相关结论的回忆则显得把握不住重点。教师在处理时设计这样一道多结论的开放题加以梳理。(投影)

DMC

例3、如图,⊙O为等腰梯形ABCD的内切圆,M、M、P P

为⊙O与AB、CD、BD相切的切点,由这些条件, O

你可以得出哪些结论?(要求:结论不添加字母和A

辅助线) N B

此时,学生的自主性体现在多“想”上面。教学过程中,教师不应过早的把结论告诉学生,而采取教师引在前,讲在后,学生想在前,听在后的方法。上例中,即使基础很差的学生,稍加思考也能说出二、三个正确结论。这样可以扩大参入面,让每个学生都体验成功的喜悦。必要时,教师进行分类提示。(投影)在教学中,应鼓励学生大胆求异,以训练学生的发散思维能力。

由此可见,回忆是实现复习目标的重要组成部分,同时也进一步强化记忆的过程,还是互相启发获得联想结果的过程。

关于能力的提高

综合应用能力的.提高很大程度上取决于知识间的沟通是否顺畅。沟通是数学复习课鲜明的特征。因为新授课的主要目的是将知识点分化,把握单个知识点的本质属性,一般很少也不可能同后继知识发生关联。复习课中,正好就是将所学知识前后贯通、沟通起来。这就是所谓知识的泛化。沟通不同于知识间的简单联结,而是知识本质上的融合。因此,沟通不仅有异中求同,而且也有同中求异,是知识结构转化为认知结构的重要环节。为了实现沟通,选题应具有层次性。一是题目应有一定的“坡度”,对一些难题可以增设一些“台阶”;二是选题要符合学生的水平层次,更须定准的“难度”,恰当的难度会对学生产生良好的激励作用。

例如在“直线与圆的位置关系”一课中,为沟通圆与平面直角坐标系,我设计了这样一道例题,同时训练了学生分类讨论的思想方法。(投影)

已知点A(0,6),B(3,0),C(2,0),M(0,m),其中m﹤6,以

M为圆心,MC为半径作圆,则

(1)当m为何值时,⊙M与直线AB相切?

(2)当m=0时,⊙M与直线AB有怎样的位置关系?

当m=3时,⊙M与直线AB有怎样的位置关系?

(3)由第二题的验证结果,你是否得到启发,从而说出在什么范围内取值

时,⊙M与直线AB相离,相交?

本例是为沟通圆与平面直角坐标系而设计的。第(1)(3)问属条件开放,(2)属结论开放。三个小题由浅入深,由具体到一般,(1)(2)两小题是(3)的铺垫,(3)是对(1)(2)的引申和抽象概括。

分析时引导学生画出图形,找出关键是确定⊙M的半径和直线AB到⊙M的距离的大小关系,从而引出辅助线,方向已明。

考虑学生识图困难,用多媒体动画演示m在范围内移动,直线与圆的各种位置关系。(演示)可见相切是各种位置关系的界点,从而正确引导学生把m值进行正确全面的分类讨论,进而突破了难点。

复习课上沟通的目的不仅仅是求同与求异,更重要的是灵活运用知识解决数学问题,进而拓展学生的思维。因此,选题要有思考性。思考性强的习题,不仅能激发学生的兴趣和求知欲,而且有利于深化对问题的认识。

例如教案中对题组一的第2题进行变式,来训练学生的思维:(本例的原型来自书本)(投影)

原型(A2):如图,AB是⊙O的直径,⊙O过BC的中点D,CD

DE⊥AC,求证:DE是⊙O 的切线。

变式(一):若∠ACB=90°,其他条件不变,除上述结论外,E

你还能推出哪些正确结论?请画出图形。 A B

变式(二):若点O在AB上向点B移动,以O为圆心,OB

长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么

上述结论是否成立?请说明理由。

变式(三):如果AB=AC=5cm,sinA=,那么圆心O在AB的什么位置时⊙O与AC相切?

三个问题的结论未定,有待探索,而且要求学生自己画出图形。这无疑对学生的能力水平是一个挑战,正因为结论不定,才能使学生尝到成功的喜悦,激发兴趣。在设计中注意与教材的呼应,充分发挥教材的功能,并运用多媒体的动画功能,动态地演示出问题原形经过平移、旋转形成变式题的全过程。(动画演示)通过动画让学生对图形和图形的性质有了更深刻的理解,形成知识本质上的融合。

4.关于归纳与小结

复习完本单元内容之后,教师应及时引导学生进行归纳、整理,找出知识之间的联系,甚至可以布置学生进一步在课后写出单元总结。这不仅有利于全面地理解和掌握知识,而且能形成技能,为今后的学习扫清障碍。例如复习完“直线和圆的位置关系”后,教师应及时将其置于“圆”这一知识系统中,认清“直线和圆的位置关系”与其它图形与圆位置关系的异同及相互关系。进而得出运动变化是它们的共同特征,而分类讨论是研究图形运动变化的基本思想方法。

5、关于巩固训练

中学数学教学大纲提出:“数学教学中,发展思维能力是培养能力的核心。”而数学思维能力是通过各种训练才能逐步形成的。数学复习课的训练,不是知识的被动再现,不是让学生扎进题海,重要的是通过训练,使学生能从一个新的角度和高度去审视,思考学过的内容,达到深化认识,优化知识结构,提高能力的目的。为满足不同层次学生的需要,我设计了:A组,教材跟踪训练题;B组,综合应用创新训练题。

四、教学评价分析

本单元无论在教案的设计还是在教学过程中,都以发展学生的思维能力为主,在注重基础知识的落实的同时,注重能力的培养与提高。反馈与调节的主要措施是通过学生回答问题的积极性、主动性和练习的准确度的掌握来反馈信息,教师及时调整教法,分层指导。媒体的选择与组合,主要是在突出重点和突破难点时引入文字或动画,不扎花架子,本着实用够用的原则。在教学中,始终以思想方法统领,注重知识的梳理与沟通。使学生在轻松愉快的环境中,掌握知识,训练能力,体验情感,达到预期教学目标。 (片尾动画) 这样,站在高山俯瞰云海翻腾,青松临风让学生呼吸到最新鲜的氧气,得到昂扬的精、气、神,真正体验到杜老夫子那种“一览众山小”的感觉。

篇2:《复习直线和圆的位置关系》说课稿

1、教学目标:

(1)知识目标

A.通过回顾初中所学直线与圆的位置关系的定义进一步理解直线与圆的位置关系;

B.会根据直线和圆的方程用代数法和几何法判断直线与圆的位置关系;

C.掌握直线和圆的位置关系判定的应用,会求已知圆的交线和切线方程。

(2)能力目标

让学生通过观察,分析,总结归纳出根据直线与圆的方程来判断直线与圆的位置关系的方法,培养学生分析问题解决问题的能力,让学生对坐标法有进一步的了解,并能用参数法、数形结合的方法去分析、解决相应的数学问题,同时训练学生数学思维,培养学生寻求一题多解的能力。

(3)情感目标

通过学生自己动手实验和探索,培养学生动手能力和发现问题的能力;通过师生互动,生生互动的教学活动过程,形成学生的体验性认识,体会成功的愉悦,提高数学学习的兴趣,树立学好数学的信心,培养锲而不舍的钻研精神和合作交流的科学态度。

2、教学重点、难点:

重点:直线和圆的三种位置关系

难点:直线和圆的三种位置关系的性质和判定的应用

3、教学方法与手段:

教学方法:问题探究式、启发式引导、参与式探究、互动式讨论

学习方法:自主探究、观察发现、合作交流、归纳总结。

教学手段:借助多媒体动态演示,构建学生探究式学习的教学环境。

4、教学过程:

创设情景 引入新课

教师带领学生复习点与圆的位置关系,然后借助多媒体动态演示生活中常见的日出实例,引导学生观察直线和圆的位置关系的几何特征,提出问题。

(1)直线和圆有几种位置关系,他们各有什么特征?

(2)怎样去判断他们的位置关系?

提出问题,引导学生思考和探索。

观察思考,动手探究,交流发现。

通过直观画面展示问题情景,增强学生感性认识,激发学生学习兴趣,让数学更贴近生活。

引导启发 探索新知

对于问题(1)教师叫学生代表起来说出直线和圆的三种位置关系:相交、相切、相离。

教师再引导学生观察直线和圆的三种位置关系,从直线与圆的交点个数上总结出三种位置关系的几何特征(学生回答,教师板书)

(1).直线与圆相交,有两个公共点;

(2).直线和圆相切,有且只有一个公共点;

(3).直线与圆相离,没有公共点。

教师层层设问,逐步引导,活跃学生数学思维,学生有的可能“从直线与圆的交点个数上来进行区分” 有的可能“从圆半径r与圆心到直线的距离d的大小进行区分,教师都要给予表扬与鼓励,并引导学生找出三种位置关系的几何特征,教师板书。

观察、思考、猜测、概括学生回答问题,概括定义。

通过学生概括定义,培养学生归纳概括能力。由点与圆的'位置关系的性质与判定,类比到直线与圆的位置关系,在教师的帮助下从直线与圆的交点个数上区分这三种位置关系。

对于问题(2)先让学生先独立思考2分钟,然后分组讨论,整理出讨论结果,教师叫学生代表起来发表自己的看法。在过程中既有对正确认识的赞赏又对错误见解的分析及对该学生的鼓励,然后引导学生归纳出两种思路:

思路一:根据直线和圆交点个数来判断直线和圆的位置关系。具体做法是联立方程消去 或 后,得一个一元二次方程,然后计算一元二次方程的判别式△

当△>0时,直线和圆相交

当△=0时,直线和圆相切

当△<0时,直线和圆相离

思路二:直线和圆的位置关系:相交,相切,相离。根据点到直线的距离知识我们求出圆心到直线的距离为d,若圆的半径为r,则有

直线和圆相交 d

直线和圆相切 d=r

直线和圆相离 d>r

教师组织学生讨论第(2)个问题,让学生完成,最后叫学生代表说出他们的结论,教师补充板书讲解的内容。并总结:可利用直线与圆的交点个数判断它们的三种位置关系。特别强调“只有一个交点”的含义。得出这个结论后,教师要注意有的学生可能会回答:利用圆心到直线的距离d与圆半径r之间的大小关系也可以判断直线与圆的三种位置关系。此时,教师肯定他们的发现,并鼓励他们,同时也指出这便是第二种方法,教师板书。

学生观察图形,积极思考,归纳总结,在教师的引导下获得直线与圆的位置关系的两种判断方法。

在此基础上学生会想到用画图、测量等实验方法,小组交流合作,在教师的指引下去发现判断直线与圆的位置关系的两种方法。

在本环节中教师应关注如下几点:

1、教师应该对有自己独到见解的学生给与表扬,鼓励他们,对于正确的结论应予以肯定,增强学生学好数学的信心,同时激发学生学习兴趣;

2、学生能否理解符号“ ”,若不能教师应作简单说明。

讲练结合 巩固新知

例1已知直线 和圆心为C的圆 ,判断直线 与圆的位置关系;如果相交,求出他们的交点坐标。

讲解例题1时,引导学生借助数学图形来分析,让学生进一步感受数形结合的数学思想,同时帮助学生构建自己的解题思维模块;得出解题思路后老师详细讲解一种方法,然后提问:有没有第二种方法解决此题?(教师引导学生完成)

让学生从不同的解题思路中进一步体会多种数学思想的解题方法,发散学生思维,为今后教学打下基础。

受例1的启发,大部分学生已经有了解题思路,教师点拨根据不同的情况采用最简单的方法巩固练习。(学生独立完成,再叫学生回答)

(1)已知直线 ,圆 。试判断直线 与圆C有无公共点,有几个公共点。

(2)判断直线 与圆 的位置关系。

教师引导学生读清题目,理解题意,找出题中已知条件,再由上面总结出的判断直线与圆的位置关系的方法得出此题的第一种解法:将直线和圆的方程联立,判断直线与圆的位置关系,并求出交点坐标,教师板书解题过程;

教师提问:还有没有其他解法?组织学生完成,最后老师总结并板书解答过程;并强调解题格式;

教师组织学生独立完成巩固练习,教师加强个别指导,收集信息评估回授,发现问题,及时采取补救措施。

观察分析,独立思考并尝试动手写出解答过程,然后听取老师解析。

积极思考,小组交流合作

学生独立完成,再与同桌相互评议,学生代表上黑板写出解题过程。本环节例题及练习题设置要体现层次感,让班级全体学生都能得到训练,加强同学们对新知识的理解与应用,培养学生解决问题的能力;基础题和变式题的结合既面向全体学生,也考虑到了学有余力的学生的学习,体现了因材施教的教学原则。在本环节中,坚持以教师的主导作用的原则,充分

发挥教学评价的激励、调控功能。

知识拓展 深化提高

例2 已知过点M(-3,-3)的直线 ,被圆 所截得的弦长为 ,求直线 的方程。

在对例1问题成功解决的基础上给出例2,让学生再次探究、体验用数形结合,转化,函数等数学思想来解决数学问题的方法,加强用代数方法解决几何问题的能力,感受坐标法在研究几何问题中的应用,同时提升学生对直线与圆的位置关系相关知识的应用能力。

过圆外一点求圆的切线方程。

提问:过圆上一点可以作几条圆的切线,过圆外及圆内一点呢?怎样求圆的切线方程?

提高练习:

求经过点(1,-7)且与圆 相切的切线方程。

分析:已知一定点要求过该点与一圆相切的切线方程,可根据直线的点斜式设出直线方程,再根据直线与圆相切的位置关系求出相关量。

教师引导学生一起分析例2,借助图象帮助分析,进一步给学生灌输数形结合的数学思想,再引导学生将图中关系转化为代数形式,得出解题思路,教师板书出步骤,得出结果后,引导学生检验结果是否都符合要求,让学生养成良好的学习习惯。

教师引导学生思考,组织学生完成,再作评讲。

学生跟随老师思路,仔细听取老师的解析过程。

学生先独立思考,做出解答过程后再与同学交流,学生代表发言,教师讲解后学生再一次回顾。

这一阶段是学生解题思路,解题技巧成型的重要阶段,由于是下半节课,学生有可能会分散注意力,因此教师教学设计要得当、选题要新颖,才能使学生的思维成为破解难题的利剑;否则学生会就此罢休,无法达到预期目的。解析时进一步培养学生数学建模思想和数形结合思想,为学生以后的学习打下基础

小结新知 画龙点睛

一、直线与圆的三种位置关系

相交、相切、相离。

二、直线与圆的位置关系的两种判断方法:

1、代数法:联立直线与圆的方程,判断消元后关于 (或 )的一元二次方程的判别式

2.几何法:判断圆心到直线距离d与半径r的大小关系

教师提问,引导学生一起回顾本节课所学内容,并指出学生回答不妥之处。

学生回答,同时反思不足

通过提问方式进行小结,交流收获与不足,让学生养成学习――总结――再学习的良好学习习惯,有利于帮助学生理清知识脉络,同时明确本节课的学习目标,提高课堂效率。

布置作业 复习巩固

课后习题4.2 1、3、5

重新阅读课本本节相关内容并预习下一节课内容。

让学生养成课后复习阅读的良好习惯并通过适量的练习复习巩固课堂知识。

5、教学设计说明:

直线与圆的位置关系是高考的考点之一,是在学生已有的平面几何知识基础上进行教学,以点与圆的位置关系上升为直线与圆的位置关系,从简单到复杂,从几何特征到代数问题(坐标法)的教学过程,它应用比较广泛,同时也为后面圆和圆的位置关系作了铺垫,对后面的解题及相关数学问题的解决将起到重要的作用,且本节是直线与圆锥曲线位置关系的基础,故要求学生充分掌握。

针对上述情况,我精心设计教学过程,借助多媒体动态演示直线和圆的位置关系,直观形象地展示了直线与圆的位置关系,化抽象为具体,以便学生更好的理解他们之间的关系及其几何特征,再引导学生把几何形式的结论转化为代数形式;教学过程中采用问题探究式、参与式探究、互动式讨论等教学方法,为学生自主探究、合作交流构建一个好的平台;分层次设置例题与练习,让全体学生都得到提升;讲解例题时应用启发式引导教学方法,不断训练学生数学思维,借助图象分析题意,加深学生对数形结合思想了解;新课结束后,引导学生小结本课内容,培养学生归纳总结的能力。

篇3:九年级数学《直线与圆的位置关系》说课稿

九年级数学《直线与圆的位置关系》说课稿

一.学生状况分析

在初中,学生已经直观的讨论过直线与圆的位置关系,前阶段又学习了直线方程和圆的方程。本节课主要以问题为载体,帮助学生复习、整理已有的知识结构,让学生利用已有的知识,探究直线与圆的位置关系的判断方法。通过学生参与问题的解决,让学生体验有关的数学思想,培养“数形结合”的意识。

二.教学任务分析

1、地位和作用

解析几何的本质是利用代数方法来研究几何问题,这节课我们就要用代数方法来研究直线与圆的位置关系.这样一方面可以巩固前阶段所学的知识,另一方面也显示了用代数方法研究几何问题的优越性,用解析法研究直线与圆的位置关系是从初等数学到高等数学的开始,也为后面研究直线与圆锥曲线的位置关系打好基础,这节课内容起着承前启后的作用。

2、教学重点

能根据给定的直线与圆的方程判断直线与圆的位置关系

3、教学难点

灵活运用“数形结合”思想来解决问题

4、教学目标

知识目标:

(1)能通过点到直线的距离公式和方程组的解判断直线与圆的位置关系.

(2)能够解决直线和圆的相关的问题.

能力目标

通过观察——类比——概括——抽象等思维过程,发展学生自主学习的能力;

情感德育目标:

激发学生学习数学的自主性和积极性,体验获取知识的乐趣;

三、教学过程分析

本节课分为六个教学环节:复习引入、构建新知、例题讲解、拓展提高、应用演练、归纳小结

环节1:复习引入

1、平面几何中,直线与圆有哪几种位置关系?在初中,我们怎样判断直线与圆的位置关系?

平面几何中,直线与圆有三种位置关系:

(1)直线和圆有两个公共点,直线与圆相交;

(2)直线和圆只有一个公共点,直线与圆相切;

(3)直线和圆没有公共点,直线与圆相离.

两种方法,①根据定义②圆心到直线的距离d与圆的半径r的大小关系。

反过来,直线与圆相交,直线与圆有两个公共点。

直线与圆相切直线与圆有一个公共点

直线与圆相离,直线与圆没有公共点

2、现在,如何用直线方程和圆的方程判断它们之间的位置关系?

先看以下问题,看看你能否从问题中总结来.

(设计意图:以问题为载体,帮助学生复习、整理已有的知识结构,带着问题进入下一个环节,有效的调动学生的学习兴趣。)

环节2:构建新知

分析:根据初中判断直线与圆的位置关系的两种方法,我们可以利用d和r的大小关系或直线与圆的公共点的个数来判断它们的位置关系。

直线与圆的公共点的坐标即满足直线方程又满足圆的方程,把直线方程与圆的方程联立,

(设计意图:由较简单的问题导出这节课的内容,让学生利用已有的知识,探究用坐标法判断直线与圆的位置关系的方法,一方面可以巩固前阶段所学的知识,另一方面也显示了用代数思想研究几何问题的优越性)

3、构建新知

回顾我们前面提出的问题:如何用直线和圆的方程判断它们之间的位置关系?

判断直线与圆的'位置关系有两种方法:

几何法:根据圆心到直线的距离d与圆的半径r的关系来判断.如果d

如果d=r,直线与圆相切;如果d>r,直线与圆相离.

代数法:根据直线与圆的方程组成的方程组解的情况来判断.如果有两组实数解时,直线与圆相交;

有一组实数解时,直线与圆相切;无实数解时,直线与圆相离.

(设计意图:让学生通过独立的思考,概括出利用直线与圆的方程来判断它们位置关系的两种方法,可以自己把课堂上所学的零碎的知识点连成知识线,从而加深了学习的印象.)

环节3例题讲解

分析:依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系;

分析:根据直线l与圆C的方程组成的方程组解的情况来判断

这里是利用直线与圆的位置关系的性质来解题,已知直线与圆相切,可知圆心到直线的距离等于圆的半径,直线与圆有一个公共点。

求出交点的坐标目的在于认识到方程组解得意义。让学生体会出用何法解题更为方便。例2让学生运用直线与圆的位置关系的性质解题)结合图形,无论m为何值,点(0,2)的坐标恒满足直线方程,直线恒过这个定点,

m是直线的斜率,满足题目条件的直线就是图上的这两条直线,左边这条直线的方程

是,右边直线的方程为

(设计意图:例1让学生及时的巩固直线与圆位置关系的判断方法.以期达到强化训练的目的,

环节4、拓展提高

另解:(1)因为l:y=a(x-1)+4过定点N(1,4)

N与圆心C(2,4)相距为1

显然N在圆C内部,故直线l与圆C恒相交

(2)在y=ax+4-a中,a为斜率,当a=0时,l过圆心,

显然弦AB的最大值为直径的长,等于6

(设计意图:对学生进行一题多解的训练,有利于提高思维的灵活性,在解决问题过程中,通过利用数形结合的思想,提升对知识的理解,提高分析问题,解决问题的能力。)

环节5、应用演练

练习1、

2、

(设计意图:课堂练习的目的在于及时巩固重点内容,使学生在课堂上就能掌握.

同时强调规范的书写和准确的运算,培养学生严谨认真的数学学习习惯.)

环节6、归纳小结

1、直线与圆的位置关系的判断方法:

几何法:                 代数法 :

1、确定圆的圆心坐标和半径r          1、把直线方程带入圆的方程

2、计算圆心到直线的距离d            2、得到一元二次方程

3、判断d与圆半径r的大小关系           3、求出△的值

d>r,直线与圆相离,直线与圆相交

d=r,直线与圆相切,直线与圆相切

d

(设计意图:通过小结,使学生对本节所学的知识系统化、条理化,进一步巩固知识,明确方法.)

作业:

3.已知⊙C:(x-1)2+(y-2)2=2,P(2,-1),过P作⊙C的切线,求切线方程。

(设计意图:,第1、2题是基础题,为了复习巩固这节课的内容,第3题是弹性作业,为学有余力的学生提供发展的空间)

环节6、课后反思与点评:

1、新的课标把直线和圆的位置关系作为独立的章节,说明新课标对这节内容要求有所提高。

2、判断直线与圆的位置关系为了防止计算量过大,一般采取几何的方法,但用方程思想解决几何问题

是解析几何的精髓,是以后处理圆锥曲线问题的通法,掌握好方程的方法有利于培养数形结合的思想。

3、直线与圆位置关系的相关问题如:弦长的求法、圆的切线方程求法以后还要补充。

4、用代数法判断直线与圆的位置关系,不必求出方程组的解,利用根的判别式即可。

篇4:直线和圆的位置关系说课稿

尊敬的各位评委,亲爱的各位同行,大家好!今天我的说课内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。

一、教材分析

教材的地位和作用。

圆在平面几何中占有重要地位,它被安排在初中数学第二十四章,属于一个提高阶段。而直线和圆的位置关系又是本章的一个中心内容。从知识体系上看:它有着承上启下的作用,既是对点与圆的位置关系的延续与提高,又是后面学习切线的性质和判定、圆和圆的位置关系及高中继续学习几何知识的基础。从数学思想方法层面上看:它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质。

二、学情分析

在此之前学生已经学习了点和圆的位置关系,对圆有了一定的感性和理性认识,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之九年级学生好奇心强,活泼好动,注意力易分散,认知水平大都停留在表面现象,对亲身体验的事物容易激发求知的渴望,因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。

三、教学目标:

根据学生已有的认知基础及本课的教材的地位、作用,结合数学课程标准我将确定如下的教学目标:

(1)掌握直线和圆的三种位置关系性质及判定。

(2)通过观察、实验、合作交流等数学活动使学生了解探索问题的一般方法;

(3)通过直线和圆的位置关系的探究,向学生渗透分类讨论、数形结合、类比的数学思想,

陪养学生观察、分析和概括的能力;

(4)体会事物间的相互渗透,感受数学思维的严谨性,并在合作学习中体验成功的喜悦。

教学的重难点:

重点:直线和圆的三种位置关系的性质与判定。

难点:用数量法刻画直线与圆的三种位置关系。

突破难点的策略:引导学生动手动脑、操作实践,类比点和圆的位置关系的判定方法,配合几何画板直观演示来加深学生对知识的理解。

四、学法教法

教无定法,教学有法,贵在得法。根据新课改理念及学生特点,本节课主要采用“启发式”问题教学法,根据维果斯基的“最近发展区理论”,站在学生思维的最近发展区上启发诱导,用环环相扣的问题将探究活动层层深入;整堂课紧紧围绕“情景问题――学生体验――合作交流”的学习模式展开,并充分发挥几何画板、多媒体课件直观、形象的功能辅助教学,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。

五、教学过程

(1)创设情境,引出课题(3分钟)

从学生的生活经验和已有知识出发,创设情境。通过多媒体课件展示《海上日出》的朗诵视频,让学生观察并抽象出其中的几何图形(直线和圆),营造探索问题的氛围,从而引出课题(直线和圆的位置关系)。同时让学生体会到数学知识无处不在,应用数学无处不有,符合“数学教学应从生活经验出发”的新课标要求。

(2)动手操作、探求新知(20分钟)

a.学生动手实验――探究位置关系得出概念

美国学者说过:听过的会忘记,看过的会记得,做过的能学会。可见实验法在教学中有着何等重要的作用。从这一思想出发,我设计了一个动手操作的环节:让学生在纸上画一条直线,把课前准备好的圆卡片,在纸上移动,再现日出的整个过程,并归纳其公共点的个数变化情况。然后提出问题:你能由此归纳出直线和圆有几种不同的位置关系吗?你是怎样区分这几种位置关系的?如何用语言描述位置关系?教师层层设问,让学生思维自然发展,教学有序的进入实质部分。由于动手操作环节的铺垫,学生很容易能够从公共点个数的变化情况对直线和圆的位置关系进行分类。通过学生演示归纳,师生共同得出有关概念。教师板书讲解内容并总结:可利用直线与圆的交点个数判断直线与圆的三种位置关系。特别强调相切中“只有一个交点”的含义。

b.讲练结合――运用定义法、引出数量法

在学习了直线和圆的位置关系后,学生自然就得到了直线和圆的位置关系的第一种判定方法:定义法,这种方法对学生而言比较直观简单,因此教材上没有相应的练习。于是我设计了一道练习题:在练习中让学生发现用定义法来判断直线和圆的位置关系的局限性,当公共点个数不好判断时又该怎么办呢?你能类比之前所学的点和圆的位置关系的判定方法加以说明吗?从而引出用数量关系刻画直线和圆的位置关系的学习。

c.类比总结――探究第二种判定方法

由点与圆的位置关系的性质与判定,类比迁移到直线与圆的位置关系,学生较容易想到画图、测量等实验方法,小组交流合作,教师适时指导,再利用几何画板重复演示得出结论:

①d>r,直线L和⊙O相离;

②d=r,直线L和⊙O相切;

③d<r,直线L和⊙O相交,也就是用圆心到直线的距离d与半径r的大小关系来判定直线和圆三种位置关系,并强调:既是性质也是判定。

在动手操作,探索新知的过程中,让学生参与到定义的形成与给出过程中,在练习中发现定义法的局限性,从而引出对数量法的学习,让学生类比点和圆的位置关系的判定,验证直线和圆的位置关系,更加直接而自然,有效的突破教学难点,也让学生感受到所学知识间的相互联系。

(3)巩固练习,提高能力(10分钟)

为得到及时的反馈情况,我设计了如下的练习,而这个时段的学生因疲劳,注意力易分散,我抓住学生的好胜心理,首先设计了一道填空题:看谁抢得快

1、(P96练习)已知圆的直径为13cm,设直线和圆心的距离为d:

1)若d=4.5cm,则直线和圆 ,直线和圆有____个公共点;

2)若d=6.5cm,则直线和圆______,直线和圆有____个公共点;

3)若d=8cm,则直线和圆______,直线和圆有____个公共点。

这道题同时运用了数量法和定义法的判定,解题关键是要引导学生找出d与r并进行比较,从中体现数学中的转化思想。

2、Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,判断以点C为圆心,下列r为半径的⊙C与AB的位置关系:(1)r=2cm;(2)r=2.4cm;(3)r=3cm。(P101习题24.2第2题)

3、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆

(1)当圆C与线段AB相交时,r;

(2)当圆C与线段AB相切时,r;

(3)当圆C与线段AB相离时,r;

解题关键是要引导学生找出这两个问题的不同与联系,再进行求解。通过这两个题可以培养学生解决变式问题的能力。教师引导学生完成,加强个别指导。

(本环节的练习难度层层加大,其目的是让学生加强对新知的理解和应用,培养学生解决问题的能力;基础题目和变式题目的结合既面向全体学生,也考虑到了学有余力的学生的学习,体现了因材施教的教学原则。)

(4)课堂小结构建体系(5分钟)

本节课你有哪些收获?你还有哪些疑惑?

(通过提问方式进行小结,交流收获与不足,让学生养成学习知识―总结―再学习的良好学习习惯。教师再总结:这节课我们学习了三种位置关系、两种判定方法、三种思想,有利于帮助学生理清知识脉络,巩固学习效果。3、2、3)

篇5:直线和圆的位置关系说课稿

难点: 用数量法刻画 直线与圆的三种位置关系。

突破难点的策略: 引导学生动手动脑、操作实践 , 类比点和圆的位置关系的判定方法,配合几何画板直观演示 来 加深学生对知识的理解。

四、学法教法

教无定法,教学有法,贵在得法。根据新课改理念及学生特点,本节课 主要 采用 “启发式”问题教学法 , 根据 维果斯基 的“ 最近发展区理论 ”, 站在学生思维的最近发展区上启发诱导,用环环相扣的问题将探究活动层层深入 ; 整堂课紧紧围绕 “情景问题——学生体验——合作交流”的学习模式 展开 ,并充分发挥 几何画板、多媒体课件直观、形象的功能辅助教学 ,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。

五、教学过程

(1) 创设情境,引出课题(3分钟)

从学生的生活经验和已有知识出发,创设情境 。 通过多媒体课件展示《海上日出》的朗诵视频,让学生观察并抽象出其中的几何图形(直线和圆) , 营造探索问题的氛围 , 从而引出课题(直线和圆的.位置关系) 。 同时让学生体会到数学知识无处不在,应用数学无处不有 , 符合“数学教学应从生活经验出发”的新课标要求。

(2) 动手操作    探求新知(20分钟)

a. 学生动手实验——探究位置关系 得出概念

美国学者说过:听过的会忘记,看过的会记得,做过的能学会。可见实验法在教学中有着何等重要的作用。从这一思想出发,我设计了一个动手操作的环节:让学生在纸上画一条直线,   把课前准备好的圆卡片,在纸上移动,再现日出的整个过程,并归纳其公共点的个数变化情况。 然后提出问题: 你能 由此 归纳出直线和圆有几种不同的位置关系吗? 你是怎样区分这几种位置关系的?如何用语言描述位置关系? 教师层层设问,让学生思维自然发展,教学有序的进入实质部分。 由于动手操作环节的铺垫, 学生很容易能够从公共点个数的变化 情况对 直线和圆的位置关系 进行分类 。通过学生演示归纳,师生共同 得出 有关概念。教师板书讲解内容并总结:可利用直线与圆的交点个数判断直线与圆的三种位置关系。特别强调 相切中 “只有一个交点”的含义。

b. 讲练结合—— 运用 定义法、引出数量法

在学习了直线和圆的位置关系后,学生自然就得到了直线和圆的位置关系的第一种判定方法:定义法 ,这种方法对学生而言比较直观简单,因此教材上没有相应的练习。于是我设计了一道练习题:在练习中 让学生发现用定义法来判断直线和圆的位置关系的局限性, 当公共点个数不好判断时又该怎么办呢? 你能类比之前所学的点和圆的位置关系的判定方法加以说明吗? 从而引出用数量关系刻画直线和圆的位置关系的学习。

c. 类比总结——探究第二种判定方法

由点与圆的位置关系的性质与判定,类比迁移到直线与圆的位置关系,学生较容易想到画图、测量等实验方法,小组交流合作,教师适时指导 , 再利用几何画板 重复演示 得出结论:①d>r,直线L和⊙O相离;②d=r,直线L和⊙O相切;③d<r,直线L和⊙O相交,也就是用圆心到直线的距离d与半径r的大小关系来判定直线和圆三种位置关系, 并强调:既是性质也是判定 。

在动手操作, 探索新知 的过程中,让学生参与到定义的形成与给出过程中,在练习中发现定义法的局限性,从而引出对数量法的学习,让学生类比点和圆的位置关系的判定, 验证 直线和圆的位置关系,更加直接而自然 ,有效的突破教学难点 ,也让学生感受到所学知识间的相互联系。

(3) 巩固练习,提高能力(10分钟)

为 得到及时的反馈情况, 我设计了如下的练习,而这个时段的学生 因 疲劳,注意力 易 分散,我抓住学生的好胜心理,首先设计了 一 道填空题:看谁抢得快

1、( P96练习) 已知圆的直径为13cm,设直线和圆心的距离为d   :

1)若d=4.5cm   ,则直线和圆          ,   直线和圆有____个公共点;

2)若d=6.5cm   ,则直线和圆______,   直线和圆有____个公共点;

3)若d=   8   cm   ,则直线和圆______,   直线和圆有____个公共点。

这 道 题 同时运用了数量法和定义法的判定 ,解题关键是 要引导学生 找出d与r并进行比较,从中体现数学中的转化思想。

2 、Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm, 判断以点 C为圆心,下列r为半径的 ⊙ C与AB的位置关系 : (1)r =2cm ; (2)r =2.4cm ; (3)r =3cm 。 (P101习题24.2第2题)

3 、  在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C为圆心,r为半径的圆

(1)当圆C与线段AB相交时,r ;

(2)当圆C与线段AB相切时,r ;

(3)当圆C与线段AB相离时,r ;

解题关键是要引导学生 找出这两个问题的不同与联系,再进行求解。通过这两个题可以培养学生解决变式问题的能力。 教师引导学生完成,加强个别指导。

(本环节的练习难度层层加大,其目的是让学生加强对新知的理解和应用,培养学生解决问题的能力;基础题目和变式题目的结合既面向全体学生,也考虑到了学有余力的学生的学习,体现了因材施教的教学原则。)

(4) 课堂小结 构建体系(5分钟)

本节课你有哪些收获? 你还有哪些疑惑 ?

(通过提问方式进行小结,交流收获与不足,让学生养成学习—总结—再学习的良好学习习惯。教师再总结:这节课我们学习了三种位置关系、两种判定方法、三种思想,有利于帮助学生理清知识脉络,巩固学习效果。3、2、3)

(5) 作业布置    课后延伸   (2分钟)

必做题: 1.阅读教材100-101

2.P112练习2

选做题:如图,已知∠AOB=β(β为锐角) ,M为OB上一点,且 OM=5cm,以M为圆心、以

2.5为半径作圆

(1)⊙M与直线OA的位置关系由         大小决定;

(2)若⊙M与直线OA相切,则β=           ;

(3)若⊙M与直线OA相交,则β的取值范围是        。

六、板书设计:

篇6:直线和圆的位置关系说课稿

尊敬的各位评委,亲爱的各位同行,大家好!今天我 的说课 内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。

一、教材分析

教材的地位和作用。

圆在平面几何中占有重要地位, 它被安排在初中数学第二十四章, 属于 一个提高阶段 。而 直线和圆的位置关系 又是本章的一个中心内容。 从知识体系上看 :它有 着承上启下的作用 , 既是 对 点与圆的位置关系的延续与提高,又是 后面 学习切线的性质和判定、圆和圆的位置关系 及高中继续学习几何知识 的基础 。 从数学思想方法层面上看 : 它运用运动变化的观点揭示了知识的发生过程 以及相关知识 间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质 。

二、学情分析

在此之前学生已经 学习了点和圆的位置关系 , 对圆有了一定 的 感性和理性认识 ,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之 九年级学生好奇心强,活泼好动 , 注意力易分散 , 认知水平大都停留在表面现象, 对亲身体验的事物容易激发求知的渴望 , 因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。

三、教学目标:

根据学生已有的认知基础及本课的教材的地位、作用 ,结合数学课程标准 我将确定如下的 教学 目标:

(1) 掌握直线和圆的三种位置关系 性质及判定。

(2) 通过观察、实验、合作 交流 等数学活动使学生了解探索问题的一般方法;

(3) 通过直线和圆的位置关系的探究,向学生渗透分类讨论、数形结合 、类比 的数学思想 ,

陪养学生观察、分析和概括的能力;

( 4 ) 体会事物间的相互渗透 , 感受数学思维的严谨性,并在合作学习中 体验 成功的 喜悦 。

教 学 的重难点 :

篇7:直线和圆的位置关系说课稿

一、教材分析

1 、教材的地位和作用。

圆的教学在平面几何中乃至整个中学教学都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何的综合运用,又是在学习了点和圆的位置关系的基础上进行的,为后面的圆与圆的位置关系作铺垫的一节课,在今后的解题及几何证明中,将起到重要的作用。

2、教学目标:

根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:

(1)知识目标:

a、知道直线和圆相交、相切、相离的定义。

b、根据定义来判断直线和圆的位置关系,

会根据直线和圆相切的定义画出已知圆的切线。

c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。

2)能力目标:

让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。

3)情感目标:

在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。

3。教材的重点难点

直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。

4。在教学中如何突破这个重点和难点

解决重点的方法主要是:

(1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况),

(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。

在说直线与圆的位置关系时,如何突破这个难点:

(1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。

(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。

(3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公共点,它与有一个公共点的含义不同)。

(4)突破直线和圆的位置关系的`(如果圆O的半径为r,圆心到直线的距离为d,

1,直线l与圆 O相交 <=>d

2,直线l与圆 O相切 <=>d=r

3,直线l与圆 O相离 <=>d>r

(上述结论中的符号“<=>”读作“等价于”)

式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。二、学情分析 根据初三学生活泼好动好奇心和求知欲都非常强,并且在初一,初二基础上初三学生有一定的分析力,归纳力和根据他们的特点,联系生活实际中结合问题结合本节课适合学生的学习材料注重激发学生的求知欲让他们真正理解这节课是在学习了点和圆的位置关系的基础上,进行的为后面的圆与圆的位置关系作铺垫的一节课。通过直线与圆的相对运动,揭示直线与圆的位置关系,培养学生运动变化的辨证唯物主义观点;通过对研究过程的反思,进一步强化对分类和化归思想的认识。

三、教法设计 复习点和圆的位置关系,引导学生用类比的方法来研究直线与圆的位置关系,在直线与圆的位置关系的判定的过程中,采用小组讨论的方法,培养学生互助、协作的精神。学生质疑这一环节充分培养学生敢于提问的习惯,做到不懂就问。学生小结,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。

1,学生观察日出照片,把观察到的情况用自己的语言说出来,抽象出几何图形在学生回答的基础上,教师通过多媒体演示圆与直线的三种位置关系。

2,进一步让学生感受到数学产生于生活,与生活密切相关,并能使学生更好的直观感受直线和圆的三种位置关系。

3,强调公共点的唯一性。给出定义时,尽可能地有学生来概括和叙述,有利于提高学生的语言表达能力。

4,有利于新旧知识的联系,培养学生的迁移能力,掌握用定量研究来解决问题的方法。在学生回答问题的基础上,教师打出直线和圆的位置关系以及它们的数量特征。

5,通过直线到圆的距离d和半径r这两个数量之间的关系来研究直线和圆的位置关系。这样很好的体现数形结合的思想,使较为复杂的问题能简单化。

6,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。

四、学法指导

复习点和圆的位置关系,引导学生用类比的方法来研究直线与圆的位置关系,在直线与圆的位置关系的判定的过程中,采用小组讨论的方法,培养学生互助、协作的精神。学生质疑这一环节充分培养学生敢于提问的习惯,做到不懂就问。

学生小结,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。

五、教学程序

创设情境——————导入新课—————— 新授———————巩固练习—————学生质疑——————学生小结——————布置作业

[提问] 通过观察、演示,你知道直线和圆有几种位置关系?

[讨论] 一轮红日从海平面升起的照片

[新授] 给出相交、相切、相离的定义。

[类比] 复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。

[巩固练习] 例1,

出示例题

例1 在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C为圆心,r为半径的圆与AB有什么样的位置关系?为什么?

(1)r=2cm; (2)r=2。4cm; (3)r=3cm

由学生填写下例表格。

直线和圆的位置关系

公共点个数

圆心到直线距离d与半径r关系

公共点名称

直线名称

图形

补充练习的答案由师生一起归纳填写

教学小结

直线与圆的位置关系,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。然后老师在多媒体打出图表。

本节课主要采用了归纳、演绎、类比的思想方法,从现实生活中抽象出数学模型,体现了数学产生于生活的思想,并且将新旧知识进行了类比、转化,充分发挥了学生的主观能动性,体现了学生是学习的主体,真正成为学习的主人,转变了角色。

六,板书设计:

课题:直线和圆的位置关系

一,复习点与圆的位置关系

二,直线与圆的位置关系

1,相交、相切、相离的定义。

2,直线与圆的位置关系的性质定理。

3,直线与圆的位置关系的判定方法。

例1:

三,课堂练习

四,小结

篇8:九年级数学《圆和圆的位置关系》说课稿

九年级数学《圆和圆的位置关系》说课稿

一、教材的地位和作用

本节课是学生在已掌握了直线和圆的位置关系等知识的基础上,进一步研究平面上两圆的位置关系。是学生对圆的知识应用的基础,也为今后到高中继续研究平面与球的位置关系,球与球的位置关系打下坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。

根据本节的教学内容及学生现有的实际水平和认知能力,我把两圆相对运动产生“交点个数”的形成过程及两圆的半径与圆心距的数量关系作为教学重点;教学难点是通过学生动手操作和互相交流探索出圆和圆之间的几种位置关系;及其两圆圆心距d,半径R和r 数量关系的过程。

二、教学目标

根据上述教材分析,考虑到学生已有的认知结构,心理特征,制定如下教学目标。

(一)知识目标:

1、了解圆与圆之间的几种位置关系。

2、了解两圆的`位置关系与两圆圆心距d,半径R和r的数量关系之间的联系。

(2)能力目标:模似“日食”活动,经历观察、抽象类比、交流、想象、应用等过程,学会提炼圆与圆的位置关系,培养学生分类的数学思想。

(二)情感目标

1、通过本节探索,体验数学活动充满着探索与创造。

2、经历探究过程,丰富对现实空间及图形的认识,发展形象思维。

三、教材处理与教材教法。

1、引课更直观,模拟“日食”活动,用电脑演示两圆在平面内的动态过程,动中取静,清楚展示两圆的位置变化。

2、通过学生动手“移圆”活动,探索两圆的不同交点个数及位置关系,使学生更深入了解两圆的位置关系。

3、自己设计例题及练习,使知识反馈更快,更直接,弥补了教材中的例题和习题的不足。

4、在教学中增加外离、内含、相交中蕴涵的数量关系的探索,使知识体系更趋于完整,完善学生的认知结构。

四、教学过程设计

篇9:直线和圆的位置关系

直线和圆的位置关系

1.知识结构

2.重点、难点分析

重点:直线和圆的位置关系的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究“直线和圆的位置关系”的基础.

难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.

3.教法建议

本节内容需要一个课时.

(1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;

(2)在教学中,以“形”归纳“数”, 以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.

教学目标:

1、使学生理解直线和圆的三种位置关系,掌握其判定方法和性质;

2、通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生

观察、分析和概括的能力;

3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点.

教学重点:直线和圆的位置关系的判定方法和性质.

教学难点:直线和圆的三种位置关系的研究及运用.

教学设计:

(一)基本概念

1、观察:(组织学生,使学生从感性认识到理性认识)

2、归纳:(引导学生完成)

(1)直线与圆有两个公共点;(2)直线和圆有唯一公共点(3)直线和圆没有公共点

3、概念:(指导学生完成)

由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:

(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.

(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.

(3)相离:直线和圆没有公共点时,叫做直线和圆相离.

研究与理解:

①直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同.

②直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?

(二)直线与圆的`位置关系的数量特征

1、迁移:点与圆的位置关系

(1)点P在⊙O内 d

(2)点P在⊙O上 d=r;

(3)点P在⊙O外 d>r.

2、归纳概括:

如果⊙O的半径为r ,圆心O到直线l的距离为d,那么

(1)直线l和⊙O相交 d

(2)直线l和⊙O相切 d=r;

(3)直线l和⊙O相离 d>r.

(三)应用

例1、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么?

(1)r=2cm; (2)r=2.4cm; (3)r=3cm.

学生自主完成,老师指导学生规范解题过程.

解:(图形略)过C点作CD⊥AB于D,

在Rt△ABC中,∠C=90°,

AB= ,

∵ ,∴AB・CD=AC・BC,

∴ (cm),

(1)当r =2cm时  CD>r,∴圆C与AB相离;

(2)当r=2.4cm时,CD=r,∴圆C与AB相切;

(3)当r=3cm时,CD<r,∴圆C与AB相交.

练习P105,1、2.

(四)小结:

1、知识:(指导学生归纳)

2、能力:观察、归纳、概括能力,知识迁移能力,知识应用能力.

(五)作业:教材P115,1(1)、2、3.

探究活动

问题:如图,正三角形ABC的边长为6 厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数.

略解:由正三角形的边长为6 厘米,可得它一边上的高为9厘米.

①∴当⊙O的半径r=9厘米时,⊙O在移动中与△ABC的边共相切三次,即切点个数为3.

②当0<r<9时,⊙O在移动中与△ABC的边共相切六次,即

篇10:直线和圆的位置关系

1.知识结构

2.重点、难点分析

重点:的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究的基础.

难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.

3.教法建议

本节内容需要一个课时.

(1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;

(2)在教学中,以“形”归纳“数”, 以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.

第 1 2 页

篇11:《直线与圆的位置关系》 说课稿

在本届贵阳市中青年教师教学研讨会中,修文中学提出打造有自己特色的“良知高效课堂”,整个课堂进程分四步八环节。本人承担的是直线与圆的位置关系这一堂课与大家交流,有不足之外请老师们批评指正。

1、教材地位

从知识结构来看,直线与圆的位置关系是对圆的方程应用的延续和拓展,又是后续研究圆与圆的位置关系和直线与圆锥曲线的位置关系等内容的基础。在直线与圆的位置关系的判断方法的建立过程中蕴涵着诸多的数学思想方法,这对于进一步探索、研究后续内容有很强的启发与示范作用。

2、学生情况

对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交。从直线与圆的直观感受上,学生懂得从圆心到直线的距离与圆的半径相比较来研究直线与圆的位置关系。本节课,学生将进一步挖掘直线与圆的位置关系中的“数”的关系,学会从不同角度分析思考问题,为后续学习打下基础。另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。

3、教学目标

新课程标准的要求是能根据直线与圆的方程判断其位置关系(相交、相切、相离),体会用代数方法处理几何问题的思想,感受“形”与“数”的对立和统一;初步掌握数形结合的思想方法在研究数学问题中的应用。

根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,本节课教学应实现如下教学目标:

4、知识与技能

篇12:《直线与圆的位置关系》 说课稿

掌握用圆心到直线的距离d与圆的半径r的大小比较,判断直线与圆位置关系,几何法

以及通过方程组解的个数判断直线与圆位置关系,代数法

直线和圆的方程的应用,能用直线和圆的`方程解决一些简单的问题,初步了解用代数方法处理几何问题的思想、能根据直线和圆的位置关系求简单的参数问题;

5、过程与方法

理解直线和圆的三种位置关系,感受直线和圆的位置与它们的方程所组成的二元二次方程组的解的对应关系;体验通过比较圆心到直线的距离和半径之间的大小及通过方程组的解的个数判断直线与圆的位置关系,能用直线和圆的方程解决一些条件下圆的切线问题;领会数形结合的数学思想方法,提高发现问题、分析问题、解决问题的能力。

6、情感态度与价值观

通过对本节课知识的探究活动,加深学生对解析法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质。

教法学法为了实现上述教学目标,本节课采取以下教学方法:

(1)恰当的利用多媒体课件,通过学生熟悉的实际生活问题引入课题,拉近数学与现实的距离,激发学生的问题意识和求知欲,调动学生主体参与的积极性。

(2)采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,站在学生思维的最近发展区上启发诱导。

(3)在整个数学教学过程中,既要体现学生的主体地位,更要强调教师的主导地位,在科学讲授的同时教会学生清晰的思维和严谨的推理。

在学法上注重以下几点:

(1)让学生从代数和几何两个角度来解决直线与圆的位置关系问题,并体会几何法的优越性;

(2)在用代数法解决直线与圆的位置关系时,要能够明确运算方向,把握关键步骤,正确的处理较为复杂数据。

课堂结构设计:

整个教学过程是四步组成,自主学习,合作探究,老师辅导、课堂展示。共分为八个环节,复习、独立训练、相互探讨、老师参与、形成结论、课堂展示、评价(互评师评)、反思。

教学过程设计:

通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学。

回顾反思,拓展延伸:

以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,不妥之处,敬请各位老师批评指正,谢谢

数学教案-直线和圆的位置关系

《直线和圆的位置关系》教学设计

《直线和圆的位置关系》教学方案

直线和园的位置关系的教案设计

24.2.1点和圆的位置关系教案

点和圆的位置关系教学设计

九年级数学说课稿

九年级音乐上册说课稿精选合集

圆说课稿

九年级上册数学教学计划

九年级数学上册《复习直线和圆的位置关系》的说课稿(共12篇)

欢迎下载DOC格式的九年级数学上册《复习直线和圆的位置关系》的说课稿,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档