数学教案-直线和圆的位置关系

时间:2022-12-16 05:54:40 作者:烤串张师傅 教案 收藏本文 下载本文

“烤串张师傅”通过精心收集,向本站投稿了17篇数学教案-直线和圆的位置关系,下面是小编整理后的数学教案-直线和圆的位置关系,欢迎您阅读,希望对您有所帮助。

篇1:数学教案-直线和圆的位置关系公开课

公开课教案

授课时间: 2004.11.17早上第二节     授课班级:初三、1班    授课教师:

教学内容:     7.7 直线和圆的位置关系

教学目标 :

知识与技能目标:1、理解直线和圆相交、相切、相离的概念。

2. 初步掌握直线和圆的位置关系的性质和判定及其灵活的应用。

过程与方法目标:1.通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思

想,培养学生观察、分析、概括、知识迁移的能力;

2. 通过例题教学,培养学生灵活运用知识的解决能力。

情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。

教学重点:直线和圆的位置关系的判定方法和性质

教学难点 :直线和圆的`三种位置关系的研究及运用

教学程序设计:

程序

教师活动

学生活动

备注

创设

问题

情景

利用多媒体放映落日的动画。引导学生从公共点个数和圆心到直线的距离两方面体会直线和圆的不同位置关系。

学生看投影并思考问题

调动学生积极主动参与数学活动中.

今天我们学习7.7直线和圆的位置关系。

1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。

2、观察圆心到直线的距离d与r的大小变化,类比点和圆的位置关系由圆半径和点与圆心的距离的数量关系来判定,总结得出直线与圆的位置关系由圆心到直线的距离与圆半径之间的数量关系来判定。得到直线和圆的位置关系的判定方法和性质。

6 厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数

布置

作业

1、课本第101页7.3 A组第2、3题

2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。

篇2:直线和圆的位置关系

直线和圆的位置关系

1.知识结构

2.重点、难点分析

重点:直线和圆的位置关系的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究“直线和圆的位置关系”的基础.

难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.

3.教法建议

本节内容需要一个课时.

(1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;

(2)在教学中,以“形”归纳“数”, 以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.

教学目标:

1、使学生理解直线和圆的三种位置关系,掌握其判定方法和性质;

2、通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生

观察、分析和概括的能力;

3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点.

教学重点:直线和圆的位置关系的判定方法和性质.

教学难点:直线和圆的三种位置关系的研究及运用.

教学设计:

(一)基本概念

1、观察:(组织学生,使学生从感性认识到理性认识)

2、归纳:(引导学生完成)

(1)直线与圆有两个公共点;(2)直线和圆有唯一公共点(3)直线和圆没有公共点

3、概念:(指导学生完成)

由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:

(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.

(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.

(3)相离:直线和圆没有公共点时,叫做直线和圆相离.

研究与理解:

①直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同.

②直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?

(二)直线与圆的`位置关系的数量特征

1、迁移:点与圆的位置关系

(1)点P在⊙O内 d

(2)点P在⊙O上 d=r;

(3)点P在⊙O外 d>r.

2、归纳概括:

如果⊙O的半径为r ,圆心O到直线l的距离为d,那么

(1)直线l和⊙O相交 d

(2)直线l和⊙O相切 d=r;

(3)直线l和⊙O相离 d>r.

(三)应用

例1、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么?

(1)r=2cm; (2)r=2.4cm; (3)r=3cm.

学生自主完成,老师指导学生规范解题过程.

解:(图形略)过C点作CD⊥AB于D,

在Rt△ABC中,∠C=90°,

AB= ,

∵ ,∴AB・CD=AC・BC,

∴ (cm),

(1)当r =2cm时  CD>r,∴圆C与AB相离;

(2)当r=2.4cm时,CD=r,∴圆C与AB相切;

(3)当r=3cm时,CD<r,∴圆C与AB相交.

练习P105,1、2.

(四)小结:

1、知识:(指导学生归纳)

2、能力:观察、归纳、概括能力,知识迁移能力,知识应用能力.

(五)作业:教材P115,1(1)、2、3.

探究活动

问题:如图,正三角形ABC的边长为6 厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数.

略解:由正三角形的边长为6 厘米,可得它一边上的高为9厘米.

①∴当⊙O的半径r=9厘米时,⊙O在移动中与△ABC的边共相切三次,即切点个数为3.

②当0<r<9时,⊙O在移动中与△ABC的边共相切六次,即

篇3:直线和圆的位置关系

1.知识结构

2.重点、难点分析

重点:的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究的基础.

难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.

3.教法建议

本节内容需要一个课时.

(1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;

(2)在教学中,以“形”归纳“数”, 以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.

第 1 2 页

篇4:数学教案-圆和圆的位置关系

1、教材分析

(1)知识结构

(2)重点、难点分析

重点:两圆的位置关系和两圆相交、相切的性质.它们是本节的主要内容,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识.

难点:两圆位置关系的判定与相交两圆的连心线垂直平分两圆的公共弦的性质的运用.由于两圆位置关系有5种类型,特别是相离有外离和内含,相切有外切和内切,学生容易遗漏;而在相交圆的性质应用中,学生容易把“相交两圆的公共弦垂直平分两圆的连心线.”看成是真命题.

2、教法建议

本节内容需要两个课时.第一课时主要研究圆和圆的位置关系;第二课时相交两圆的性质.

(1)把课堂活动设计的重点放在如何调动学生的主体,让学生观察、分析、归纳概括,主动获得知识;

(2)要重视圆的对称美的教学,组织学生欣赏,在激发学生的学习兴趣中,获得知识,提高能力;

(3)在教学中,以分类思想为指导,以数形结合为方法,贯串整个教学过程().

篇5:直线和圆的位置关系知识点

直线和圆的位置关系的'性质:

(1)直线l和⊙O相交,d<r

(2)直线l和⊙O相切,d=r;

(3)直线l和⊙O相离,d>r。

篇6:直线和圆的位置关系说课稿

尊敬的各位评委,亲爱的各位同行,大家好!今天我的说课内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。

一、教材分析

教材的地位和作用。

圆在平面几何中占有重要地位,它被安排在初中数学第二十四章,属于一个提高阶段。而直线和圆的位置关系又是本章的一个中心内容。从知识体系上看:它有着承上启下的作用,既是对点与圆的位置关系的延续与提高,又是后面学习切线的性质和判定、圆和圆的位置关系及高中继续学习几何知识的基础。从数学思想方法层面上看:它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质。

二、学情分析

在此之前学生已经学习了点和圆的位置关系,对圆有了一定的感性和理性认识,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之九年级学生好奇心强,活泼好动,注意力易分散,认知水平大都停留在表面现象,对亲身体验的事物容易激发求知的渴望,因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。

三、教学目标:

根据学生已有的认知基础及本课的教材的地位、作用,结合数学课程标准我将确定如下的教学目标:

(1)掌握直线和圆的三种位置关系性质及判定。

(2)通过观察、实验、合作交流等数学活动使学生了解探索问题的一般方法;

(3)通过直线和圆的位置关系的探究,向学生渗透分类讨论、数形结合、类比的数学思想,

陪养学生观察、分析和概括的能力;

(4)体会事物间的相互渗透,感受数学思维的严谨性,并在合作学习中体验成功的喜悦。

教学的重难点:

重点:直线和圆的三种位置关系的性质与判定。

难点:用数量法刻画直线与圆的三种位置关系。

突破难点的策略:引导学生动手动脑、操作实践,类比点和圆的位置关系的判定方法,配合几何画板直观演示来加深学生对知识的理解。

四、学法教法

教无定法,教学有法,贵在得法。根据新课改理念及学生特点,本节课主要采用“启发式”问题教学法,根据维果斯基的“最近发展区理论”,站在学生思维的最近发展区上启发诱导,用环环相扣的问题将探究活动层层深入;整堂课紧紧围绕“情景问题――学生体验――合作交流”的学习模式展开,并充分发挥几何画板、多媒体课件直观、形象的功能辅助教学,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。

五、教学过程

(1)创设情境,引出课题(3分钟)

从学生的生活经验和已有知识出发,创设情境。通过多媒体课件展示《海上日出》的朗诵视频,让学生观察并抽象出其中的几何图形(直线和圆),营造探索问题的氛围,从而引出课题(直线和圆的位置关系)。同时让学生体会到数学知识无处不在,应用数学无处不有,符合“数学教学应从生活经验出发”的新课标要求。

(2)动手操作、探求新知(20分钟)

a.学生动手实验――探究位置关系得出概念

美国学者说过:听过的会忘记,看过的会记得,做过的能学会。可见实验法在教学中有着何等重要的作用。从这一思想出发,我设计了一个动手操作的环节:让学生在纸上画一条直线,把课前准备好的圆卡片,在纸上移动,再现日出的整个过程,并归纳其公共点的个数变化情况。然后提出问题:你能由此归纳出直线和圆有几种不同的位置关系吗?你是怎样区分这几种位置关系的?如何用语言描述位置关系?教师层层设问,让学生思维自然发展,教学有序的进入实质部分。由于动手操作环节的铺垫,学生很容易能够从公共点个数的变化情况对直线和圆的位置关系进行分类。通过学生演示归纳,师生共同得出有关概念。教师板书讲解内容并总结:可利用直线与圆的交点个数判断直线与圆的三种位置关系。特别强调相切中“只有一个交点”的含义。

b.讲练结合――运用定义法、引出数量法

在学习了直线和圆的位置关系后,学生自然就得到了直线和圆的位置关系的第一种判定方法:定义法,这种方法对学生而言比较直观简单,因此教材上没有相应的练习。于是我设计了一道练习题:在练习中让学生发现用定义法来判断直线和圆的位置关系的局限性,当公共点个数不好判断时又该怎么办呢?你能类比之前所学的点和圆的位置关系的判定方法加以说明吗?从而引出用数量关系刻画直线和圆的位置关系的学习。

c.类比总结――探究第二种判定方法

由点与圆的位置关系的性质与判定,类比迁移到直线与圆的位置关系,学生较容易想到画图、测量等实验方法,小组交流合作,教师适时指导,再利用几何画板重复演示得出结论:

①d>r,直线L和⊙O相离;

②d=r,直线L和⊙O相切;

③d<r,直线L和⊙O相交,也就是用圆心到直线的距离d与半径r的大小关系来判定直线和圆三种位置关系,并强调:既是性质也是判定。

在动手操作,探索新知的过程中,让学生参与到定义的形成与给出过程中,在练习中发现定义法的局限性,从而引出对数量法的学习,让学生类比点和圆的位置关系的判定,验证直线和圆的位置关系,更加直接而自然,有效的突破教学难点,也让学生感受到所学知识间的相互联系。

(3)巩固练习,提高能力(10分钟)

为得到及时的反馈情况,我设计了如下的练习,而这个时段的学生因疲劳,注意力易分散,我抓住学生的好胜心理,首先设计了一道填空题:看谁抢得快

1、(P96练习)已知圆的直径为13cm,设直线和圆心的距离为d:

1)若d=4.5cm,则直线和圆 ,直线和圆有____个公共点;

2)若d=6.5cm,则直线和圆______,直线和圆有____个公共点;

3)若d=8cm,则直线和圆______,直线和圆有____个公共点。

这道题同时运用了数量法和定义法的判定,解题关键是要引导学生找出d与r并进行比较,从中体现数学中的转化思想。

2、Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,判断以点C为圆心,下列r为半径的⊙C与AB的位置关系:(1)r=2cm;(2)r=2.4cm;(3)r=3cm。(P101习题24.2第2题)

3、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆

(1)当圆C与线段AB相交时,r;

(2)当圆C与线段AB相切时,r;

(3)当圆C与线段AB相离时,r;

解题关键是要引导学生找出这两个问题的不同与联系,再进行求解。通过这两个题可以培养学生解决变式问题的能力。教师引导学生完成,加强个别指导。

(本环节的练习难度层层加大,其目的是让学生加强对新知的理解和应用,培养学生解决问题的能力;基础题目和变式题目的结合既面向全体学生,也考虑到了学有余力的学生的学习,体现了因材施教的教学原则。)

(4)课堂小结构建体系(5分钟)

本节课你有哪些收获?你还有哪些疑惑?

(通过提问方式进行小结,交流收获与不足,让学生养成学习知识―总结―再学习的良好学习习惯。教师再总结:这节课我们学习了三种位置关系、两种判定方法、三种思想,有利于帮助学生理清知识脉络,巩固学习效果。3、2、3)

篇7:直线和圆的位置关系说课稿

难点: 用数量法刻画 直线与圆的三种位置关系。

突破难点的策略: 引导学生动手动脑、操作实践 , 类比点和圆的位置关系的判定方法,配合几何画板直观演示 来 加深学生对知识的理解。

四、学法教法

教无定法,教学有法,贵在得法。根据新课改理念及学生特点,本节课 主要 采用 “启发式”问题教学法 , 根据 维果斯基 的“ 最近发展区理论 ”, 站在学生思维的最近发展区上启发诱导,用环环相扣的问题将探究活动层层深入 ; 整堂课紧紧围绕 “情景问题——学生体验——合作交流”的学习模式 展开 ,并充分发挥 几何画板、多媒体课件直观、形象的功能辅助教学 ,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。

五、教学过程

(1) 创设情境,引出课题(3分钟)

从学生的生活经验和已有知识出发,创设情境 。 通过多媒体课件展示《海上日出》的朗诵视频,让学生观察并抽象出其中的几何图形(直线和圆) , 营造探索问题的氛围 , 从而引出课题(直线和圆的.位置关系) 。 同时让学生体会到数学知识无处不在,应用数学无处不有 , 符合“数学教学应从生活经验出发”的新课标要求。

(2) 动手操作    探求新知(20分钟)

a. 学生动手实验——探究位置关系 得出概念

美国学者说过:听过的会忘记,看过的会记得,做过的能学会。可见实验法在教学中有着何等重要的作用。从这一思想出发,我设计了一个动手操作的环节:让学生在纸上画一条直线,   把课前准备好的圆卡片,在纸上移动,再现日出的整个过程,并归纳其公共点的个数变化情况。 然后提出问题: 你能 由此 归纳出直线和圆有几种不同的位置关系吗? 你是怎样区分这几种位置关系的?如何用语言描述位置关系? 教师层层设问,让学生思维自然发展,教学有序的进入实质部分。 由于动手操作环节的铺垫, 学生很容易能够从公共点个数的变化 情况对 直线和圆的位置关系 进行分类 。通过学生演示归纳,师生共同 得出 有关概念。教师板书讲解内容并总结:可利用直线与圆的交点个数判断直线与圆的三种位置关系。特别强调 相切中 “只有一个交点”的含义。

b. 讲练结合—— 运用 定义法、引出数量法

在学习了直线和圆的位置关系后,学生自然就得到了直线和圆的位置关系的第一种判定方法:定义法 ,这种方法对学生而言比较直观简单,因此教材上没有相应的练习。于是我设计了一道练习题:在练习中 让学生发现用定义法来判断直线和圆的位置关系的局限性, 当公共点个数不好判断时又该怎么办呢? 你能类比之前所学的点和圆的位置关系的判定方法加以说明吗? 从而引出用数量关系刻画直线和圆的位置关系的学习。

c. 类比总结——探究第二种判定方法

由点与圆的位置关系的性质与判定,类比迁移到直线与圆的位置关系,学生较容易想到画图、测量等实验方法,小组交流合作,教师适时指导 , 再利用几何画板 重复演示 得出结论:①d>r,直线L和⊙O相离;②d=r,直线L和⊙O相切;③d<r,直线L和⊙O相交,也就是用圆心到直线的距离d与半径r的大小关系来判定直线和圆三种位置关系, 并强调:既是性质也是判定 。

在动手操作, 探索新知 的过程中,让学生参与到定义的形成与给出过程中,在练习中发现定义法的局限性,从而引出对数量法的学习,让学生类比点和圆的位置关系的判定, 验证 直线和圆的位置关系,更加直接而自然 ,有效的突破教学难点 ,也让学生感受到所学知识间的相互联系。

(3) 巩固练习,提高能力(10分钟)

为 得到及时的反馈情况, 我设计了如下的练习,而这个时段的学生 因 疲劳,注意力 易 分散,我抓住学生的好胜心理,首先设计了 一 道填空题:看谁抢得快

1、( P96练习) 已知圆的直径为13cm,设直线和圆心的距离为d   :

1)若d=4.5cm   ,则直线和圆          ,   直线和圆有____个公共点;

2)若d=6.5cm   ,则直线和圆______,   直线和圆有____个公共点;

3)若d=   8   cm   ,则直线和圆______,   直线和圆有____个公共点。

这 道 题 同时运用了数量法和定义法的判定 ,解题关键是 要引导学生 找出d与r并进行比较,从中体现数学中的转化思想。

2 、Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm, 判断以点 C为圆心,下列r为半径的 ⊙ C与AB的位置关系 : (1)r =2cm ; (2)r =2.4cm ; (3)r =3cm 。 (P101习题24.2第2题)

3 、  在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C为圆心,r为半径的圆

(1)当圆C与线段AB相交时,r ;

(2)当圆C与线段AB相切时,r ;

(3)当圆C与线段AB相离时,r ;

解题关键是要引导学生 找出这两个问题的不同与联系,再进行求解。通过这两个题可以培养学生解决变式问题的能力。 教师引导学生完成,加强个别指导。

(本环节的练习难度层层加大,其目的是让学生加强对新知的理解和应用,培养学生解决问题的能力;基础题目和变式题目的结合既面向全体学生,也考虑到了学有余力的学生的学习,体现了因材施教的教学原则。)

(4) 课堂小结 构建体系(5分钟)

本节课你有哪些收获? 你还有哪些疑惑 ?

(通过提问方式进行小结,交流收获与不足,让学生养成学习—总结—再学习的良好学习习惯。教师再总结:这节课我们学习了三种位置关系、两种判定方法、三种思想,有利于帮助学生理清知识脉络,巩固学习效果。3、2、3)

(5) 作业布置    课后延伸   (2分钟)

必做题: 1.阅读教材100-101

2.P112练习2

选做题:如图,已知∠AOB=β(β为锐角) ,M为OB上一点,且 OM=5cm,以M为圆心、以

2.5为半径作圆

(1)⊙M与直线OA的位置关系由         大小决定;

(2)若⊙M与直线OA相切,则β=           ;

(3)若⊙M与直线OA相交,则β的取值范围是        。

六、板书设计:

篇8:直线和圆的位置关系说课稿

尊敬的各位评委,亲爱的各位同行,大家好!今天我 的说课 内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。

一、教材分析

教材的地位和作用。

圆在平面几何中占有重要地位, 它被安排在初中数学第二十四章, 属于 一个提高阶段 。而 直线和圆的位置关系 又是本章的一个中心内容。 从知识体系上看 :它有 着承上启下的作用 , 既是 对 点与圆的位置关系的延续与提高,又是 后面 学习切线的性质和判定、圆和圆的位置关系 及高中继续学习几何知识 的基础 。 从数学思想方法层面上看 : 它运用运动变化的观点揭示了知识的发生过程 以及相关知识 间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质 。

二、学情分析

在此之前学生已经 学习了点和圆的位置关系 , 对圆有了一定 的 感性和理性认识 ,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之 九年级学生好奇心强,活泼好动 , 注意力易分散 , 认知水平大都停留在表面现象, 对亲身体验的事物容易激发求知的渴望 , 因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。

三、教学目标:

根据学生已有的认知基础及本课的教材的地位、作用 ,结合数学课程标准 我将确定如下的 教学 目标:

(1) 掌握直线和圆的三种位置关系 性质及判定。

(2) 通过观察、实验、合作 交流 等数学活动使学生了解探索问题的一般方法;

(3) 通过直线和圆的位置关系的探究,向学生渗透分类讨论、数形结合 、类比 的数学思想 ,

陪养学生观察、分析和概括的能力;

( 4 ) 体会事物间的相互渗透 , 感受数学思维的严谨性,并在合作学习中 体验 成功的 喜悦 。

教 学 的重难点 :

篇9:第六册直线和圆的位置关系

教学目标:

1.使学生理解直线和圆的相交、相切、相离的概念。

2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。

3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。

重点难点:

1.重点:直线与圆的三种位置关系的概念。

2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。

教学过程:

一.复习引入

1.提问:复习点和圆的三种位置关系。

(目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)

2.由日出升起过程中的三个特殊位置引入直线与圆的位置关系问题。

(目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力)

二.定义、性质和判定

1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。

(1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。

(2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。

(3)直线和圆没有公共点时,叫做直线和圆相离。

篇10:第六册直线和圆的位置关系

如果⊙O半径为r,圆心O到直线l的距离为d,那么:

(1)线l与⊙O相交 d<r

(2)直线l与⊙O相切d=r

(3)直线l与⊙O相离d>r

三.例题分析:

例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C为圆心,r为半径。

①当r=     时,圆与AB相切。

②当r=2cm时,圆与AB有怎样的位置关系,为什么?

③当r=3cm时,圆与AB又是怎样的位置关系,为什么?

④思考:当r满足什么条件时圆与斜边AB有一个交点?

四.小结(学生完成)

五、随堂练习:

(1)直线和圆有种位置关系,是用直线和圆的个数来定义的;这也是判断直线和圆的位置关系的重要方法。

(2)已知⊙O的直径为13cm,直线L与圆心O的距离为d。

①当d=5cm时,直线L与圆的位置关系是;

②当d=13cm时,直线L与圆的位置关系是;

③当d=6.5cm时,直线L与圆的'位置关系是;

篇11:第六册直线和圆的位置关系

(3)⊙O的半径r=3cm,点O到直线L的距离为d,若直线L 与⊙O至少有一个公共点,则d应满足的条件是

(A)d=3   (B)d≤3      (C)d<3       (D)d>3

篇12:第六册直线和圆的位置关系

(4)⊙O半径=3cm.点P在直线L上,若OP=5 cm,则直线L与⊙O的位置关系是()

(A)相离(B)相切(C)相交(D)相切或相交

(目的:点和圆,直线和圆的位置关系的结合,提高学生的综合、开放性思维)

想一想:

在平面直角坐标系中有一点A(-3,-4),以点A为圆心,r长为半径时,

思考:随着r的变化,⊙A与坐标轴交点的变化情况。(有五种情况)

六、作业:P100―2、3

篇13:直线和圆的位置关系说课稿

一、教材分析

1 、教材的地位和作用。

圆的教学在平面几何中乃至整个中学教学都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何的综合运用,又是在学习了点和圆的位置关系的基础上进行的,为后面的圆与圆的位置关系作铺垫的一节课,在今后的解题及几何证明中,将起到重要的作用。

2、教学目标:

根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:

(1)知识目标:

a、知道直线和圆相交、相切、相离的定义。

b、根据定义来判断直线和圆的位置关系,

会根据直线和圆相切的定义画出已知圆的切线。

c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。

2)能力目标:

让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。

3)情感目标:

在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。

3。教材的重点难点

直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。

4。在教学中如何突破这个重点和难点

解决重点的方法主要是:

(1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况),

(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。

在说直线与圆的位置关系时,如何突破这个难点:

(1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。

(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。

(3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公共点,它与有一个公共点的含义不同)。

(4)突破直线和圆的位置关系的`(如果圆O的半径为r,圆心到直线的距离为d,

1,直线l与圆 O相交 <=>d

2,直线l与圆 O相切 <=>d=r

3,直线l与圆 O相离 <=>d>r

(上述结论中的符号“<=>”读作“等价于”)

式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。二、学情分析 根据初三学生活泼好动好奇心和求知欲都非常强,并且在初一,初二基础上初三学生有一定的分析力,归纳力和根据他们的特点,联系生活实际中结合问题结合本节课适合学生的学习材料注重激发学生的求知欲让他们真正理解这节课是在学习了点和圆的位置关系的基础上,进行的为后面的圆与圆的位置关系作铺垫的一节课。通过直线与圆的相对运动,揭示直线与圆的位置关系,培养学生运动变化的辨证唯物主义观点;通过对研究过程的反思,进一步强化对分类和化归思想的认识。

三、教法设计 复习点和圆的位置关系,引导学生用类比的方法来研究直线与圆的位置关系,在直线与圆的位置关系的判定的过程中,采用小组讨论的方法,培养学生互助、协作的精神。学生质疑这一环节充分培养学生敢于提问的习惯,做到不懂就问。学生小结,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。

1,学生观察日出照片,把观察到的情况用自己的语言说出来,抽象出几何图形在学生回答的基础上,教师通过多媒体演示圆与直线的三种位置关系。

2,进一步让学生感受到数学产生于生活,与生活密切相关,并能使学生更好的直观感受直线和圆的三种位置关系。

3,强调公共点的唯一性。给出定义时,尽可能地有学生来概括和叙述,有利于提高学生的语言表达能力。

4,有利于新旧知识的联系,培养学生的迁移能力,掌握用定量研究来解决问题的方法。在学生回答问题的基础上,教师打出直线和圆的位置关系以及它们的数量特征。

5,通过直线到圆的距离d和半径r这两个数量之间的关系来研究直线和圆的位置关系。这样很好的体现数形结合的思想,使较为复杂的问题能简单化。

6,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。

四、学法指导

复习点和圆的位置关系,引导学生用类比的方法来研究直线与圆的位置关系,在直线与圆的位置关系的判定的过程中,采用小组讨论的方法,培养学生互助、协作的精神。学生质疑这一环节充分培养学生敢于提问的习惯,做到不懂就问。

学生小结,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。

五、教学程序

创设情境——————导入新课—————— 新授———————巩固练习—————学生质疑——————学生小结——————布置作业

[提问] 通过观察、演示,你知道直线和圆有几种位置关系?

[讨论] 一轮红日从海平面升起的照片

[新授] 给出相交、相切、相离的定义。

[类比] 复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。

[巩固练习] 例1,

出示例题

例1 在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C为圆心,r为半径的圆与AB有什么样的位置关系?为什么?

(1)r=2cm; (2)r=2。4cm; (3)r=3cm

由学生填写下例表格。

直线和圆的位置关系

公共点个数

圆心到直线距离d与半径r关系

公共点名称

直线名称

图形

补充练习的答案由师生一起归纳填写

教学小结

直线与圆的位置关系,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。然后老师在多媒体打出图表。

本节课主要采用了归纳、演绎、类比的思想方法,从现实生活中抽象出数学模型,体现了数学产生于生活的思想,并且将新旧知识进行了类比、转化,充分发挥了学生的主观能动性,体现了学生是学习的主体,真正成为学习的主人,转变了角色。

六,板书设计:

课题:直线和圆的位置关系

一,复习点与圆的位置关系

二,直线与圆的位置关系

1,相交、相切、相离的定义。

2,直线与圆的位置关系的性质定理。

3,直线与圆的位置关系的判定方法。

例1:

三,课堂练习

四,小结

篇14:直线与圆的位置关系判定

如果b2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x2+y2+Dx+Ey+F=0化为(x-a)2+(y-b)2=r2。

令y=b,求出此时的两个x值x1、x2,并且规定x1

当x=-C/Ax2时,直线与圆相离;

当x1

篇15:《直线和圆的位置关系》教学反思

《直线与圆的位置关系》是人教版九年级(下)第三章第一节的内容,它和点与圆的位置关系、圆与圆的位置关系同是研究图形之间位置关系的重要内容。下面谈谈自己的做法和体会:

一、重视定义的形成和概括过程:

“直线与圆的位置关系”是由公共点的个数来定义的。定义的教学是在教师引导下,通过学生观察、思考、交流、概括等探究活动亲身经历概念的形成过程,形成新知识的建构。首先引导学生回忆点和圆的位置关系及判定方法,通过对已有研究方法的揭示,增强学生运用迁移方法研究新问题的意识。接着,借助多媒体引导学生观察并思考:在不同的位置关系下,直线和圆的公共点的个数有什么不同?从而引导学生揭示出直线与圆的位置关系与公共点的个数之间存在着对应关系的本质特征。到此,我并没有急于给出定义,而是进一步引导学生在定义的形成上下工夫,又提出两个问题:一是直线与圆有三个或三个以上公共点吗?二是通过刚才的研究,你认为直线和圆的位置关系可分为几种类型呢?分类的标准是什么?定义的教学不只是以直接感知教材为出发点,而是力图还原定义的形成过程,这样既加深了学生对定义本身的理解,又提高学生对定义形成过程中所涉及的思想、方法的认识。而多媒体课件在这里的作用主要是通过“直线动圆不动”“圆动直线不动”“圆心直线不动半径变”三种运动方式的演示,有效创设符合教学内容的情景,把知识的形成过程直观化,提高学生的兴趣,增强学生的参与性。

二、重视定理的发现和总结过程:

本课内容的第二个知识点是运用圆心到直线的距离与半径的大小关系来判定直线与圆的位置关系,并反过来得到直线与圆的位置关系下所具有的数量特征。难点是如何引导学生去发现隐含在图形中的这两个数量并加以比较,为此,我设计了一个问题串,以问题为导向,以探究问题的方式引导学生自学自悟,为学生提供了自主合作探究的舞台,闪现了学生思维创新的火花。

引导1:通过刚才的研究我们知道,利用公共点的个数可以判定直线与圆的位置关系,请同学想一想,能否像判定点与圆的位置关系那样,通过数量关系来判定直线与圆的位置关系?

引导2:点与圆的位置关系的判定运用了哪两个数量之间的关系?直线与圆的位置关系中可以出现哪两个量呢?

引导3:如何用图形来反映半径和圆心到直线的距离这两个量呢?

引导4:如何由数量关系并结合图形判定相应的位置关系呢?

引导5:运用数量关系判定直线与圆的位置关系以及点与圆的位置关系,这两者之间有何区别与联系?

引导6:以上三个判定反过来成立吗?

通过以上问题,学生不仅加深了对判定直线与圆的位置关系的方法的理解,更重要的是使学生学会运用联想、化归、数形结合等思想方法去研究问题,这无疑促进学生在学会数学的过程中顺利地向“会学”的方向发展。而多媒体课件在这里的作用在于把“形”和“数” 的关系及其变化动态呈现在屏幕上,成为学生探索验证的好帮手。

三、尊重学生的主体地位:

教学设计应为学生自主学习,实现知识的建构服务。这节课为学生提供了大量问题情境、活动方式,使学生通过“做一做”“想一想”“练一练”“议一议”充分地实践与探索,不断地归纳与总结,引导学生发现规律、拓展思路。而多媒体的介入,为学生实现“意义建构”创设了更为逼真的“情景”,改善了认知环境,有利于提高课堂效率,有利于学生思维和技能的训练。如“议一议”:(1)已知⊙O半径为4cm,直线l上的点A满足OA=4cm,能否判定直线l和⊙O相切?为什么?

(2)已知⊙O半径为4cm,直线l上的点A满足OA=5cm,能否判定直线l和⊙O相离?为什么?

此题重在强调判定方法中圆心到直线的距离,利用多媒体演示,更直观地说明:(1)中当OA不是圆心到直线的距离时,直线l和⊙O相交;当OA是圆心到直线距离时,直线l是⊙O相切。(2)方法同(1),通过此题练习提高了学生思维的深刻性和批判性。

四、重视规律的揭示和提炼过程:

某个数学知识的教学可以在短期内完成,数学技能也可通过强化训练形成,而掌握学习的规律是一个长期渐进的过程,我认为教师在教学过程中应增强揭示规律的意识,引导学生从学习、研究的过程加以提炼,通过日积月累产生认识的飞跃。因此,在回顾与反思中,我组织学生以小组交流的形式讨论以下问题:一是通过刚才的学习,你对如何研究图形之间的位置关系有什么收获和体会?二是“点与圆的位置关系”与“直线与圆的位置关系” 有哪些联系?通过比较你有何启发?这一设计的做法虽小,作用却大,它使学生的认识上升到一个新的高度。也确保了学生在学会数学的过程中顺利地向“会学”的方向发展。

五、拓宽学习的时间和空间:

课后作业的设计不仅要达到巩固知识的目的,更重要的是有研究性和探索性。本节的课后作业有一道探究价值的题目:在Rt△ABC 中,∠C=Rt∠,AC=8cm,BC=6cm,若要以C为圆心,R为半径画圆,请根据下列条件,求半径R的值或取值范围。 1、AB与圆相离 2、AB与圆相交 3、AB与圆相切。

学生需通过动手动脑来完成,使学生的探索精神由课内延伸到课外。多媒体课件的作用在于通过圆的半径的动态变化,为学生研究直线与圆的位置关系提供思路和分类方法。

总之,通过这节课的教学,力图达到以下三个目标:一是知识目标,就是使学生理解概念,掌握性质和判定并能够利用它们分析问题和解决问题;二是能力目标,培养学生运用迁移、联想、类比、化归、数形结合等数学思想方法发现问题解决问题的能力和创新能力;三是情感目标,通过学生的主动参与,在学会数学的过程中向“会学”的方向发展,培养运动、变化、发展的辨证唯物主义观点。

篇16:《直线和圆的位置关系》教学反思

这是我第一次进入初三进行教学,即紧张又兴奋。经过一个学期的历练,在校领导和组内老教师的无私帮助下我有了一些进步。现以《直线和圆的位置关系》第一课时为例,反思如下。

在初三的教学过程中,我几乎是听一节上一节。而集体备课也给了我很大的帮助。通过集体备课和听课,在《直线和圆的位置关系》这节课中,我首先引导学生回忆了点与圆的位置关系及所对应的点到圆心的距离与圆半径的数量关系。从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的'现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:

1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

2、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了两道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”“公路边的学校会不会受到噪声的影响?”培养学生解决实际问题的能力。由于这两题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:

1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。讲得过多,学生被动的接受,思考得不够,对概念的理解不是很深刻。可以改为让学生类比点与圆的位置关系下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2、虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。

3.对“做一做”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解“做一做”时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。并在进行下面的解题时体现出来。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,不能想当然,否则会影响学生对知识的消化吸收。

总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的数学教师。

篇17:《直线和圆的位置关系》教学反思

《直线和圆的位置关系的复习》一课的教学,可以说非常成功。教学设计充分体现了新的教学理念,重点突出、层次清楚、构思新颖,整个教学过程教师采用多样化的呈现方式为学生搭建参与探究的平台,高度重视学生的主动参与,有意识地为学生创设了良好的数学交流情境。注意学生的情感与态度,知识与技能的形成和发展,使每个学生都有表现的机会和获得成功的体验。

亮点一:由于本节课综合性强,涉及到的知识面广,对学生的能力水平要求高。教师结合本节课的教学目标,突出重点,突破难点。采用教师启发引导,学生合作交流的方式来组织本节课的教学。注重解题思路分析和方法引导,善于引导学生寻找图形中的数量关系,选用适当的知识和方法正确解答问题。

亮点二:在学习知识的同时,注意数学思想方法的渗透。在教学中,数学知识是一条明线,数学思想方法是一条暗线。崔老师在引导学生学习的同时,教给学生思考方法、学习方法和解决问题的方法,为学生未来发展服务,让学生在脑海里留下数学意识,长期下去,学生将终身受用。

亮点三:板书条理分明,布局合理,文字与图形完美结合,板书设计不仅让学生对直线和圆的位置关系图形的特征一目了然,而且也便于揭示它们之间的区别和联系。体现了板书的形式美和简洁美,真正使板书起到了画龙点睛的作用。

亮点四:充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使题意理解更清楚,结论更准确。

亮点五:教师教态自然,语言清晰,数学语言表述准确,操作演示熟练,提问率高,体现素质教育面向全体学生的要求。

亮点六:教师注意培养学生的自信心,在教学过程的设计上体现了层次性和梯度性。防止学生对一些问题出现畏惧情绪,鼓励学生敢于知难而进,让学生树立战胜困难的勇气和决心。例题的设计,按照由易到难的顺序呈现,关于直线和圆的复习教学中能利用一个图形提出尽可能多的问题,并尽可能的覆盖到圆的大多数知识,尽可能的加强知识间的横纵的联系,尽可能渗透多种数学思想和方法,最大限度的榨取它的利用价值,达到了一线串珠的目的。体现了综合性例题的大容量、大综合的特点,非常有效地达成本节课的教学目标。

《直线和圆的位置关系》教学设计

《直线和圆的位置关系》教学方案

直线和园的位置关系的教案设计

九年级数学上册《复习直线和圆的位置关系》的说课稿

24.2.1点和圆的位置关系教案

点和圆的位置关系教学设计

数学教案-线段、射线、直线和角。

圆的认识的五年级数学教案

数学教案- 乘法各部分间的关系

数学教案-除法的意义和乘、除法各部分间的关系

数学教案-直线和圆的位置关系(精选17篇)

欢迎下载DOC格式的数学教案-直线和圆的位置关系,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档