初中数学数轴教学教案有哪些

时间:2023-03-11 03:41:18 作者:Rex 教案 收藏本文 下载本文

【导语】“Rex”通过精心收集,向本站投稿了15篇初中数学数轴教学教案有哪些,下面是小编整理后的初中数学数轴教学教案有哪些,希望能帮助到大家!

篇1:初中数学数轴教学教案有哪些

变量之间的关系

【学习目标】

1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。

2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。

3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测。

【学习方法】自主探究与小组合作交流相结合.

【学习重难点】重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。

难点:对表格所表达的两个变量关系的理解。

【学习过程】

模块一 预习反馈

一、学习准备

1.我们生活在一个变化的世界中,很多东西都在悄悄地发生变化.

你能从生活中举出一些发生变化的例子吗?

教材精读

1.请同学们观察思考,逐一回答下面的问题:

根据上表回答下列问题:

(1)支撑物高度为70厘米时,小车下滑时间是多少?

(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?

(3)h每增加10厘米,t的变化情况相同吗?

(4)估计当h=110厘米时,t的值是多少,你是怎样估计的?

(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?

支撑物的高度h和小车下滑的时间t都在变化,它们都是 。其中小车下滑的时间t随支撑物的高度h的变化而变化。支撑物的高度h是 ,小车下滑的时间t是 。

在这一变化过程中,小车下滑的距离(木板的长度)一直 变化。像这种在变化过程中 的量叫做 。

我国从1949年到的人口统计数据如下(精确到0.01亿):

(1)如果用x表示时间,y表示我国人口总数,那么随着x的变化,y的变化趋势是什么?

(2)X和y哪个是自变量?哪个是因变量?

(3)从1949年起,时间每向后推移,我国人口是怎样的变化?

(4)你能根据此表格预测时我国人口将会是多少?

在“人口统计数据”中:

时间和人口数都在变化,它们都是 。其中人口数随时间的变化而变化。时间是 ,人口数是 。

归纳:借助表格,我们可以表示因变量随自变量的变化而变化的情况

模块二 合作探究

1.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

(2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?

(3)据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由。

(4)粗略说一说氮肥的施用量对土豆产量的影响。

模块三 形成提升

某电影院地面的一部分是扇形,座位按下列方式设置:

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

(2)第5排、第6排各有多少个座位?

(3)第n排有多少个 座位?请说明你的理由。

模块四 小结反思

一、本课知识

1. 变量、自变量、因变量:在某一变化过程中不断变化的量,叫做 ;如果一个变量y随另一个变量x的变化而变化,则把x叫做 ,y叫做 。即先发生变化的量叫做 ,后发生变化或者随自变量的变化而变化的量叫做 。

2.常量: 。

二、我的困惑;

篇2:数学数轴教案

【学习目标】

1.利用数轴比较两个数的大小;用数轴帮助深化对数的认识;

2.探索有理数与数轴上的点的对应关系,初步感受“数形结合”思想;

3.感受点在数轴上左右运动时,所表示数的大小变化。

【导学提纲】

1.观察数轴,比较右边的点表示的数与左边的点表示的数的大小关系;并比较-3与-1, 与1的大小关系。

2.观察数轴,比较正数、负数、0的大小关系。

【展示交流】

活动一:

1.在数轴上画出表示-5,3,-1,0,4的点。你能将这些数从大到小排列吗?说说你这样排列的理由。

2.2°C与-2°C哪个温度高?-1°C与0°C哪个温度高?-3°C与-4°C哪个温度高?在数轴上画出表示数2、-2; -1、0和-3,-4的点,它们的位置关系如何?

3.把-3°C、-2°C、0°C、5°C按温度从低到高的顺序排列;在数轴上画出表示-3、-2、0、5的点,你能比较这几个数的大小吗?

活动二:

1.比较下列各组数的大小

(1)5和0 (2)-0.5和0 (3)-3、0、1.5 (4) -3.5和-0.5

2.在数轴上画出下列各数的点,并用“<”将它们连接起来。

4 , -2.5 , 0 , -4.5 ,

【课堂反馈】

1.课本P18-19 练一练 1、2、3

2.在数轴上,到原点距离不大于2的所有整数是 ;

3.在数轴上有三个点A、B、C,请回答:

(1)将点B向左移动3个单位后,三个点所表示的数谁最小?

(2)将点A向右移动4个单位后的数是多少?这时三个点所表示的数谁最小?

(3)将C点向左移动6个单位后,这时点B所表示的数比点C表示的数大多少?

(4)移动A、B、C中的两个点,使三个点表示的数相同,有几种移法?

【迁移创新】

利用数轴回答:

(1)写出所有不大于4且大于-3的'整数: ;

(2)不小于-4的非正整数是 ;

(3)比-2大 的数是 ;-3比-6大 。

【课堂作业】

课本P19习题 3 、4。

篇3:数学数轴教案

数轴定理:数轴是一种特定几何图形;原点、正方向、单位长度称数轴的三要素,这三者缺一不可。

数轴

1)从原点出发,朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应零。

2)在数轴上表示的两个数,右边的数总比左边的数大。

3)正数都大于0,负数都小于0,正数大于一切负数。

注:单位长度则是指取适当的长度作为单位长度,比如可以取2m作为单位长度“1”,那么4m就表示2个单位长度。长度单位则是指米,厘米,毫米等表示长度的单位。二者不容混淆。

应用

相反数:

只有符号不同且绝对值相等的两个数叫做互为相反数,其中的一个数叫做另一个数的相反数。

(a≠0)a的相反数是-a,0的相反数是0。

绝对值:

在数轴上表示一个数的点离原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的绝对值是它的相反数。0的绝对值是0。

公式 |a|=?

若a大于0, 则a的绝对值还等于a;

若a等于0 ,则a的绝对值等于0 ;

若a小于0, 则a的绝对值等于-a。

性质:

绝对值有非负性

有理数比较大小:

一切正数大于0,0大于一切负数,正数大于一切负数。

说明:

数轴上右边的数总比左边的数大,两个负数相比较,绝对值大的反而小。

温馨提示:

任何一个实数都可以用数轴上的一个点来表示。

篇4:初中人教版数学数轴教案

初中人教版数学数轴教案

设计理念

这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。

教学目标

1、知识与技能

(1)掌握数轴的三要素,能正确画出数轴。

(2)能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

2、过程与方法

使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

3、情感态度与价值观

通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

重点正确掌握数轴画法和用数轴上的`点表示有理数。

难点有理数和数轴上的点的对应关系。

教学过程

1、创设情境,让学生根据家乡的地图尝试画出自己家相对沙墩中学的位置,让学生初步体会生活中的平面问题可以简化为具体的直线问题来研究。

2、让学生在一条直线上画出第一排八名同学的位置各个物体的相对位置,从而使学生对本节课的学习目的有一个初步的认识。若以第三名同学为中心,以他的左边为负,右边为正表示出其它同学

3、让学生仔细观察温度计,对比学生所画图形与温度计的区别,学生会发现,温度计上有0刻度,0刻度以上为正数,0刻度以下为负数,那我们能否用类似温度计的图形来表示有理数呢?从而引出课题――数轴。

篇5:初中数学《数轴》说课稿

一.教材分析

(说教材)

一.教材内容分析

数与形是数学的两大组成部分,数形结合的思想方法是数学中的一个重要思想方法,而数轴是数形结合的高度统一。数轴是新人教版数学教材七年级上册第一章第二节的内容,是在学生学习了有理数概念的基础上再介绍的。通过数轴的学习可加深学生对有理数概念的理解,并为后面引出相反数、绝对值的概念,学习有理数大小比较、有理数运算法则、平面直角坐标系等打下良好的基础,起到承上启下的作用。

二.学情分析(学生情况分析)

本课的教学对象是刚刚步入中学校门的七年级学生,此阶段学生天真活泼,好奇心强,有较强的模仿能力和求知欲望,而且富有一定的逻辑思维能力。但在新知的学习过程中,还是较容易出现理解局限的问题。

三.教学目标

根据《新课程标准》对学生在知识技能、数学思考、解决问题、情感态度等方面的要求,我确定了本节课教学目标如下:

A、知识技能:

1、理解数轴概念,会画数轴。

2、知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。

B、数学思考:

1、从直观认识到理性认识,从而建立数轴概念。

2、通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。

C、解决问题:会利用数轴解决有关问题。

D、情感态度:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性,感受数学与生活的联系。

四.重点、难点(说教学重点、难点)

本节课教学重点我确定为:数轴的概念。

因为:只要数轴概念真正理解了,画数轴、在数轴上表示有理数等也就容易了。

本节课教学难点我确定为:从直观认识到理性认识,从而建立数轴概念。

因为:七年级的学生形象思维占主导地位,抽象思维刚开始萌芽。

教有教法,学有学法,但无定法,贵在得法,下面谈谈本节课的教法与学法。

五.学习方法和教学方法

1、教法:数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重。基于本节课的特点:课堂教学采用了“情境—问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。

根据本节课的教学内容,我所采用的教学手段是:多媒体辅助教学

通过课件演示,创设情境,让学生分四人小组讨论、交流、总结,并派代表发言。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。

2、学法:俗话说“授人以鱼,不如授人以渔”,在教学中我特别重视学法的指导,让学生在“观察—操作—交流—思考—概括—应用”的学习过程中,自主参与、经历数学知识的形成和应用过程。告诉学生,学习数学不是简单模仿、机械操练,而是探究学习、发现学习、研究学习、合作学习。

“凡事预则立,不预则废”,充分的课前准备是成功的一半。

六.教学准备

老师:要充分备课,精心制作多媒体课件,准备教具

学生:要认真预习,准备直尺或三角板

七、教学过程分析

课堂教学是学生获取知识、形成技能、发展能力和思维的主战场。为了突出重点、突破难点、达到目标,我设计了以下几个教学环节:

(一)、复习旧知

通过对已知知识的回顾复习,使学生更易于接受新知识。

(二)、创设情景,引入课题

为了使学生明白数与形的对应关系,初步认识数形结合的美妙之处,我设计了:

观察温度计的活动,目的是为了让学生切身体会数与形的对应关系,为学习数轴概念埋下伏笔。

学生拿出自己准备的温度计分小组讨论观察,共同发现数与形的对应关系。

接下来,我创设了这样一个情境:

在一条东西方向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆。随后我提出问题:“怎样用数简明地表示这些树、电线杆与汽车站的相对位置?”(学生小组讨论后再派代表回答)通过这个活动,让学生们认识到:考虑东西方向的马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。

前面几个活动之后,学生对数形结合的思想方法已有所体会,为此我让学生:

再次观察所画情境图、温度计

并引导学生观察、比较,将其抽象成一条直线。

这样,就把正数、0和负数用一条直线上点表示出来。

(三)、学习概念,解决问题

通过刚才的观察、比较,我引出了新课:

1)学习数轴的概念

我先进行讲解:

一般地,在数学中人们用画图的方式把数“直观化”。通常用一条直线上的点表示数,当然这条直线必须满足以下三点要求:

(1)在直线上任取一个点表示数0,这个点叫做原点。

(2)规定直线上从原点向右(或上)为正方向,通常以向右为正方向。

(3)选取适当的长度为单位长度,每隔一个单位长度取一个点。

再画数轴

师生共同归纳画数轴的步骤,要求学生独立画出数轴,并互相交流,老师巡堂并参与交流使学生弄清如何画数轴。

设计意图:通过学生画数轴,交流和反思,使学生真正掌握数轴的概念。

3)在数轴上表示右边各数:

4)指出数轴上A,B,C,D各点分别表示什么数。

设计意图:让学生明白任何一个有理数都可以用数轴上的一个点来表示。

下一个活动,填空:数轴上表示-2的点在原点的边,距原点的距()表示3的点在原点的()边,距原点的距离是()。

通过填空,老师引导学生做出课本第12页的归纳

设计意图:通过从特殊到一般的方法归纳出数轴上的点的特征,逐步培养学生的抽象概括(从具体的数到字母表示的数)能力

课堂练习:

1)课本第12页的练习1、2题

2)强化练习:

(1)在数轴上标出到原点的距离小于3的整数。

(2)在数轴上标出-5和+5之间的所有的整数。

设计意图:通过练习,巩固数轴的概念;强化练习是为了培养学生用数轴解决问题的能力。

小结:什么是数轴?如何画数轴?如何在数轴上表示有理数?

1)数轴的三要素:原点、正方向、单位长度。

2)画数轴的步骤:

1.画直线;

2.在直线上取一点作为原点;

3.确定正方向,并用箭头表示;

4.根据需要选取适当单位长度。

作业:课本第17页习题1.2第2题;学生用书同步训练

设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。

八、教学设计说明

这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

篇6:初中数学说课稿《数轴》

初中数学说课稿《数轴》

尊敬的各位老师们:

你们好!

今天我说课的题目是人教版数学七年级上册第一章第2节《数轴》,下面,我将从背景分析、教学目标设计、、课堂结构和教学媒体设计、教学过程设计及教学评价设计等几个方面对本课的设计进行说明。

一.背景分析

1. 教材的地位及作用

“数轴”是人教版七年级数学上册第一章第二节“有理数” 的重点内容之一,是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。

2. 教学重点、难点的分析

教学的重点:1)正确理解数轴的概念;2)正确掌握数轴的画法和用数轴上的点表示有理数。

教学的难点:正确理解有理数与数轴上点的对应关系,体会数形结合的数学思想。

3. 教材的处理

1)通过观察温度计及师生互动表示课本第10页中的问题,使学生明白数与形的对应,初步认识数形结合的美妙之处。

2)通过讲解数轴的概念,概括出数轴三要素,指导学生正确地画出数轴。

3)通过练习,使学生准确地掌握数轴的概念,并会用数轴表示有理数,进一步体会数形结合。

4)通过课本第11页的归纳,使学生深化对数轴概念的理解。

二、教学目标设计

1. 知识技能

1)掌握数轴的概念,并理解其三要素,能正确地画出数轴。2)会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数。理解任何有理数在数轴上都有唯一的点与之对应

2.数学思考

1)通过观察与思考,建立数轴的概念。

2)通过对数轴的.学习,初步体会对应的思想、数形结合的思想。

3.解决问题

会利用数轴解决有关问题。

4.情感态度

通过对数轴的学习,向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。

三.课堂结构和教学媒体设计

1.教学方法

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现获取知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重要。基于本节课的特点:课堂教学采用了“情境—问题 —观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程,

根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。

有方法就要有手段进行依托,我所采用的教学手段是:多媒体辅助教学通过课件演示,创设情境,让学生分四人小组讨论、交流、总结,并派代表发言。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。

2.学法指导

现代新教育理念认为,学习数学不应只是单调刻板的简单模仿、机械背诵与操练,而应该采用设置现实的问题情景,有意义的,富有挑战性的学习内容来引起学习者的兴趣。为达到提升学生的学习兴趣,我们应强调探究学习、发现学习、研究学习、合作学习才能改变学生原来的那种“学而无思,思而无疑,有疑不问”的旧学习方式。

要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。

学生的工具:直尺或三角板

四.教学过程设计

活动1创设情境引入新课

1)观察温度计,并填空:

℃ ℃ ℃

师生行为:老师演示课件,学生观察并举手发言。

设计意图:通过让学生观察温度计并填空,为学习数轴概念做好铺垫。

2)课本第10页问题:在一条东西方向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。

师生行为:老师发问:“请同学们思考:怎样用数简明地表示这些树、电线杆与汽车站的相对位置(方向、距离)?”学生分四人小组讨论,并画出图形。老师巡堂查看学生完成的情况,并请最先做好的两个小组派代表到黑板演示。

设计意图:通过学生的活动,让学生认识到:考虑东西方向马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。

3)再次观察课本图1.2-1、温度计,找出它们之间的共同之处

师生行为:老师引导学生观察、比较。学生组内讨论,并派代表发表意见,老师及时给予肯定和评议。

设计意图:通过比较,学生容易发现正数、0和负数都可以用一条直线上点表示出来。

活动2学习数轴的概念

一般地,在数学中人们用画图的方式把数“直观化”。通常用一条直线上的点表示数。这条直线叫做数轴。

数轴满足以下要求:1)在直线上任取一个点表示数0,这个点叫做原点。2)规定直线上从原点向右(或上)为正方向,通常以向右为正方向。3)选取适当的长度为单位长度,直线上每隔一个单位长度取一个点。

篇7:初中数学数轴说课稿

初中数学数轴说课稿

非常高兴能有机会和大家来交流说课活动,谨此向在座的老师们学习。我说课的内容是人教版九年义务教育七年级教科书代数第一册第一章第二节“数轴”的第一课时内容。

一:教材分析:

本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

二:教学目标:

根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:

1、使学生理解数轴的三要素,会画数轴。

2、能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示

3、向学生渗透数形结合的数学思想,让学生知道数学于实践,培养学生对数学的学习兴趣。

三:教学重难点确定:

正确理解数轴的概念和有理数在数轴上的表示方法是本节课的教学重点,建立有理数与数轴上的点的对应关系(数与形的结合)是本节课的教学难点。

四:学情分析:

⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中老师应予以简单明白、深入浅出的分析。

⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

⑷心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。

五:教学策略:

由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的`概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。为充分发挥学生的主体性和老师的主导辅助作用,教学过程中设计了七个教学环节:

(一)、温故知新,激发情趣

(二)、得出定义,揭示内涵

(三)、手脑并用,深入理解

(四)、启发诱导,初步运用

(五)、反馈矫正,注重参与

(六)、归纳小结,强化思想

(七)、布置作业,引导预习

六:教学程序设计:

(一)、温故知新,激发情趣:

首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:

(1)零上5°C用 5 表示。

(2)零下15°C 用 —15 表示。

(3)0°C 用 0 表示。

然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?答案是肯定的,从而引出课题:数轴。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。

(二)、得出定义,揭示内涵:

老师设问:到底什么是数轴?如何画数轴呢?

(1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。)

(2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸。)

(3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

由于画数轴是本节课的教学重点,老师板书这三个步骤,给学生以示范。

画完数轴后老师引导学生讨论:“怎样用数学语言来描述数轴?”(通过老师的亲切的语言启发学生,以培养师生间的默契)

通过讨论由师生共同得到数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程。

(三)、手脑并用,深入理解:

1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么?

A、

B、

C、

D、

E、

F、

A、B、C三个图形从数轴的三要素出发,D和F是学生可能出现的错误,给学生足够的观察、思考的时间然后展开充分的讨论,老师参与到学生的讨论之中去接触学生,认识学生,关注学生。

2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)

学生在画数轴时老师巡视并予以个别指导,关注学生的个体发展,画完后老师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可。

我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解。

(四)、启发诱导,初步运用:

有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开。

安排课本23页的例1,利用黑板上的例题图形让学生来操作,老师提出要求:

1、要把点标在线上

2、要把数标在点的上方

通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。

当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。

(五)、反馈矫正,注重参与:

为巩固本节的教学重点让学生独立完成:

1、课本23页练习1、2

2、课本23页3题的(给全体学生以示范性让一个同学板书)

为向学生进一步渗透数形结合的思想让学生讨论:

3、数轴上的点P与表示有理数3的点A距离是2,

(1)试确定点P表示的有理数;

(2)将A向右移动2个单位到B点,点B表示的有理数是多少?

(3)再由B点向左移动9个单位到C点,则C点表示的有理数是多少?

先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。

(六)、归纳小结,强化思想:

根据学生的特点,师生共同小结:

1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?

2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?

让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。

(七)、布置作业,引导预习:

为面向全体学生,安排如下:

1、全体学生必做课本25页1、2、3

2、最后布置一个思考题:

与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如何?

(来引导学生养成预习的学习习惯)

七:板书设计:(略)

总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到老师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好老师。

以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢!

篇8:初中数学《数轴》说课稿

一:教材分析:

本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低

这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题.数轴不仅是学生学习相反数,绝对值等有理数知识的重要工具,还是以后学好不等式的解法,函数图象及其性质等内容的必要基础知识.

二:教学目标:

根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:

1. 使学生理解数轴的三要素,会画数轴.

2. 能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示

3. 向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣.

三:教学重,难点:

正确理解数轴的概念和有理数在数轴上的表示方法是本节课的教学重点,建立有理数与数轴上的点的对应关系(数与形的结合)是本节课的教学难点.

四:教材分析:

⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述.

⑵学生学习本节课的知识障碍.学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中丢三落四的现象,所以教学中教师应予以简单明白,深入浅出的分析.

⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;

由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动,有趣,高效,特将整节课以观察,

思考,讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的`情感交流,并教给学生“多观察,动脑想,大胆猜,勤钻研”的研讨式学习方法.教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,

使学生在动脑,动手,动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想.

为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计了七个教学环节:

(一),温故知新,激发情趣

(二),得出定义,揭示内涵

(三),手脑并用,深入理解

(四),启发诱导,初步运用

(五),反馈矫正,注重参与

(六),归纳小结,强化思想

(七),布置作业,引导预习

五:教学程序设计:

(一),温故知新,激发情趣:

首先复习提问:有理数包括那些数 学生回答后让大家讨论:你能找出用刻度表示这些数的实例吗 学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:

(1)零上5°C用 5 表示.

(2)零下15°C 用 -15 表示.

(3)0°C 用 0 表示.

然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数,负数和0呢 答案是肯定的,从而引出课题:数轴.结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备.

(二),得出定义,揭示内涵:

教师设问:到底什么是数轴 如何画数轴呢

(1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读,画方便,同时也为了有美的感觉.)

(2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与

方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸.)

(3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1,2,3…负数反之.单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同.)

由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范.

画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴 ”(通过教师的亲切的语言启发学生,以培养师生间的默契)

通过讨论由师生共同得到数轴的定义:规定了原点,正方向和单位长度的直线叫做数轴.

至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程.

(三),手脑并用,深入理解:

篇9:初一数学数轴教案

教学目的

1.了解一元一次方程的概念。

2.掌握含有括号的一元一次方程的解法。

重点、难点

1.重点:解含有括号的一元一次方程的解法。

2.难点:括号前面是负号时,去括号时忘记变号。

教学过程

一、复习提问

1.解下列方程:

(1)5x-2=8 (2)5+2x=4x

2.去括号法则是什么?“移项”要注意什么?

二、新授

一元一次方程的概念

如44x+64=328 3+x=(45+x) y-5=2y+l 问:它们有什么共同特征?

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。

例1.判断下列哪些是一元一次方程

x= 3x-2 x-=-l

5x2-3x+1=0 2x+y=l-3y =5

例2.解方程(1)-2(x-1)=4

(2)3(x-2)+1=x-(2x-1)

强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。

补充:解方程3x-[3(x+1)-(1+4)]=l

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

三、巩固练习

教科书第9页,练习,l、2、3。

四、小结

学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

五、作业

1.教科书第12页习题6.2,2第l题。

篇10:初一数学数轴教案

教学目的

掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。

重点、难点

1、重点:掌握去分母解方程的方法。

2、难点:求各分母的最小公倍数,去分母时,有时要添括号。

教学过程

一、复习提问

1.去括号和添括号法则。

2.求几个数的最小公倍数的方法。

二、新授

例1:解方程(见课本)

解一元一次方程有哪些步骤?

一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。

补充例:解方程 (x+15)=- (x-7)

三、巩固练习

教科书第10页,练习1、2。

四、小结

1.解一元一次方程有哪些步骤?

2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。

五、作业

教科书第13页习题6.2,2第2题。

篇11:初一数学数轴教案

教学目的

使学生灵活应用解方程的一般步骤,提高综合解题能力。

重点、难点

1、重点:灵活应用解题步骤。

2、难点:在“灵活”二字上下功夫。

教学过程 :

一、一、复习

1、一元一次方程的解题步骤。

2、分数的基本性质。

二、新授

例1.解方程(见课本)

分析:此方程的分母是小数,如果能把各分母化为整数,那么就可以用前面学过的方法求解了。那么怎样化简呢?引导学生分析,并求出方程的解。交流体会。

例2.解方程(见课本)

例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整数)

分析:在公式中,V、D、∏都已知,只要把它们的值代入公式,就可以得到关于n的一元一次方程。

三、巩固练习。

根据公式V=V0+at,填写下列表中的空格。

V V0 a t

0 2 8

48 3 14

15 5 4

76 13 7

四、小结。

若方程的分母是小数,应先利用分数的性质,把分子、分母同时扩大若干倍,此时分子要作为一个整体,需要补上括号,注意不是去分母,不能把方程其余的项也扩大若干倍。

五、作业 。

教科书第13页第3题

篇12:初一数学数轴教案

教学目的:

理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

重点、难点

1、重点:弄清应用题题意列出方程。

2、难点:弄清应用题题意列出方程。

教学过程

一、复习

1、什么叫一元一次方程?

2、解一元一次方程的理论根据是什么?

二、新授。

例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?

分析:等量关系;A盘现有盐=B盘现有盐

检验所求出的解是否合理。 培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。

例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了1400块,问初一同学有多少人参加了搬砖?

1.题目中有哪些已知量?

(1)参加搬砖的初一同学和其他年级同学共65名。

(2)初一同学每人搬6块,其他年级同学每人搬8块。

(3)初一和其他年级同学一共搬了1400块。

2.求什么?

初一同学有多少人参加搬砖?

3.等量关系是什么?

初一同学搬砖的块数十其他年级同学的搬砖数=1400

三、巩固练习

教科书第12页练习1、2、3

四、小结

列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

五、作业

篇13:初一数学数轴教案

教学目的:

(一)知识点目标:

1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:理解负数,数0表示的量的意义。

教学方法:师生互动与教师讲解相结合。

教具准备:地图册(中国地形图)。

教学过程:

引入新课:

1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?

内容:老师说出指令:

向前两步,向后两步;

向前一步,向后三步;

向前两步,向后一步;

向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:

1.自然数的产生、分数的产生。

2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、等是正数(也可加上“十”)

-3、-2、-0.5、- 等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。

巩固提高:练习:课本P5练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本P7习题1.1的第1、2、4、5题。

活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。

(1)美美得95分,应记为多少?

(2)多多被记作一12分,他实际得分是多少?

课后反思

初一数学数轴教案

篇14:初一数学数轴教案人教版

初一数学数轴教案人教版1

教学目标: 1、使学生在现实情境中理解有理数加法的意义

2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。[]

3、在教学中适当渗透分类讨论思想。

重点:有理数的加法法则

重点:异号两数相加的法则

教学过程:

二、讲授新课

1、同号两数相加的法则

问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m。如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)

教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(-5)+(-3)=-8(m)

师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。

2、异号两数相加的法则

教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?

学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(-3)=2(m)

师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得零。

教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?

学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。

师生共同归纳出:互为相反数的两个数相加得零

教师:你能用加法法则来解释这个法则吗?

学生回答:可用异号两数相加的法则来解释。

一般地,还有一个数同0相加,仍得这个数。

三、巩固知识

课本P18 例1,例2、课本P118 练习1、2题

四、总结

运算的关键:先分类,再按法则运算;

运算的步骤:先确定符号,再计算绝对值。

注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。

五、布置作业

课本P24习题1.3第1、7题。

初一数学数轴教案人教版2

一、教学目标设计

[知识与技能目标]

1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

[过程与方法目标]

限度的发挥学生的主体参与,让学生在教师的引导启发,师生的交流与探索下,轻松愉快地学到新知识。

[情感态度与价值观]

借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想,让学生采取自主探索,合作交流的学习方式。

二、教材解读

借助数轴引出对绝对值的概念,并通过计算、观察、交流、发现绝对值的性质特征,利用绝对值来比较两个负数的大小。

让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和

字母,多鼓励学生通过观察、归纳、验证。

、教学过程设计与分析

一、情境导入

[课件展示,激趣感知]

博物馆、农场到学校与学校到博物馆农场的距离的关系。

[媒体展示课件,认知生活中的有些问题]

不考虑相反意义,只考虑具体数值。

[创设情境,实例导入]利用动画展示,让学生在有趣的图画中感受绝对值激发学生的兴趣。

实物的形象符合学生心理,学生兴趣很高,踊跃发言,95%的学生能顺利的解决问题。

师生互动

[提出问题,引发讨论]

1、引导学生得出绝对值定义及表示方法。

2、同桌之间互相举例。

[展示:启发学生交流了解绝对值]

归纳绝对值概念,教师指出表示方法。

[师生互动、探索新知]:学生根据情境感知初步认知绝对值,并通过对其概念的理解求解一个数的绝对值。

同桌之间举例,效果良好,体现了“自主——协作”学习。

阅读课文,互动探索

求解各数的绝对值后讨论

1、想一想互为相反数的两个数的绝对值有什么关系?学生举例,并进行观察、比较、归纳。

2、议一议一个数的绝对值与这个数有什么关系?小组讨论、交流教师引导学生用自己的语言描述所得结论教师质疑:一个数的绝对值是否为负数?学生通过分析理解绝对值的内在涵义。

阅读课文:从各数的绝对值归纳绝对值的代数意义。

[阅读课文:“想一想]提出问题,引起学生的思考。

[阅读课文:“议一议]

学生分析各类数的绝对值与本身的关系,并对教师的质疑进行深究。

[趣引妙答,思路点拨]通过学生举例思考,对互为相反数的两个数的绝对值进行观察对比,从而得到它们的关系。

学生从“特殊——一般”分类归纳绝对值的代数意义,并通过归纳总结出绝对值的内在涵义,体现学生的主体性。

积极调动学生的思维,使学生在协商、讨论中将问题逐渐明朗化、具体化,在共享集体思维成果的基础上达到对当前所学内容比较全面、正确的理解。

3、做一做

[激趣探知]

教师出示过关题目

学生通过自主探索最终找到两个负数比较大小的方法,绝对值大的反而小。

师生归纳两页数比较大小的两种方法。

[探索用绝对值比较两负数的方法]

体验概念的形式过程

旧知识的引用,让学生在轻松愉快的环境中获取新知,从已有知识逐渐到新知识,不但可激发学生的兴趣,并且培养学生的探索精神,同时分解了本节的难点。

从旧知识层层引入,学生兴趣十足,提高了教学效果,突破了难点,学生接受轻而易举。

巩固练习

[绝对值比较两负数大小的运用]

情境:比较下列每组数的大小。

[媒体展示,出示习题]:

运用绝对值比较负数大小。

[变成训练,巩固反馈]

继续对绝对值比较负数大小进行巩固练习。

由以上练习层层深入,学生解决问题的能力大大提高,并且印象深刻。

知识延伸

[学生探究,教师点拨]

[媒体展示]

绝对值定义,代数意义及内在涵义的的灵活应用。

[知识延伸,目标升华]

充分发挥学生的自主探索能力,使学生能够深入、细致的理解知识点。

学生能够互相评点,共同探索,既发展了自主学习能力,又强化了协作精神。

初一数学数轴教案人教版3

一、内容简介

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:

1、在学习本课之前应具备的基本知识和技能:

①同类项的定义。

②合并同类项法则

③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:

在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、教学/学习目标及其对应的课程标准:

(一)教学目标:

1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理

数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同

角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难

和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

四、教育理念和教学方式:

1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

教学是师生交往、积极互动、共同发展的过程。当学生迷路的时

候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2、采用“问题情景—探究交流—得出结论—强化训练”的模式

展开教学。

3、教学评价方式:

(1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主

动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,

揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

(3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的

教学效果。

五、教学媒体 :多媒体 六、教学和活动过程:

教学过程设计如下:

〈一〉、提出问题

[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析问题

1、[学生回答] 分组交流、讨论

(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

(1)原式的特点。

(2)结果的项数特点。

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

2、[学生回答] 总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍;

两数差的平方,等于它们平方的和,减去它们乘积的两倍。

3、[学生回答] 完全平方公式的数学表达式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、运用公式,解决问题

1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

(m+n)2=____________, (m-n)2=_______________,

(-m+n)2=____________, (-m-n)2=______________,

(a+3)2=______________, (-c+5)2=______________,

(-7-a)2=______________, (0.5-a)2=______________.

2、判断:

( )① (a-2b)2= a2-2ab+b2

( )② (2m+n)2= 2m2+4mn+n2

( )③ (-n-3m)2= n2-6mn+9m2

( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

( )⑥ (-a-2b)2=(a+2b)2

( )⑦ (2a-4b)2=(4a-2b)2

( )⑧ (-5m+n)2=(-n+5m)2

3、小试牛刀

① (x+y)2 =______________;② (-y-x)2 =_______________;

③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

〈四〉、[学生小结]

你认为完全平方公式在应用过程中,需要注意那些问题?

(1) 公式右边共有3项。

(2) 两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

〈五〉、冒险岛:

(1)(-3a+2b)2=________________________________

(2)(-7-2m) 2 =__________________________________

(3)(-0.5m+2n) 2=_______________________________

(4)(3/5a-1/2b) 2=________________________________

(5)(mn+3) 2=__________________________________

(6)(a2b-0.2) 2=_________________________________

(7)(2xy2-3x2y) 2=_______________________________

(8)(2n3-3m3) 2=________________________________

〈六〉、学生自我评价

[小结] 通过本节课的学习,你有什么收获和感悟?

本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

〈七〉[作业] P34 随堂练习P36习题

初一数学数轴教案人教版4

学习目标

1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛

2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.

重点难点

同位角、内错角、同旁内角的特征

教学过程

一·导入

1.指出右图中所有的邻补角和对顶角?

2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?

若都不是,请自学课本P6内容后回答它们各是什么关系的角?

二·问题导学

1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成“直线 和直线 与直线 相交” 也可以说成“两条直线 , 被第三条直线 所截”.构成了小于平角的角共有 个,通常将这种图形称作为“三线八角”。其中直线 , 称为两被截线,直线 称为截线。

2. 如图⑶是“直线 , 被直线 所截”形成的图形

(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如“ ” 字型.具有这种关系的一对角叫同位角。

(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如“ ” 字型.具有这种关系的一对角叫内错角。

(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如“ ” 字型.具有这种关系的一对角叫同旁内角。

3.找出图⑶中所有的同位角、内错角、同旁内角

4.讨论与交流:

(1)“同位角、内错角、同旁内角”与“邻补角、对顶角”在识别方法上有什么区别?

(2)归纳总结同位角、内错角、同旁内角的特征:

同位角:“F” 字型,“同旁同侧”

“三线八角” 内错角:“Z” 字型,“之间两侧”

同旁内角:“U” 字型,“之间同侧”

三·典题训练

例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?

小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;

两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;

自我检测

⒈如图⑷,下列说法不正确的是( )

A、∠1与∠2是同位角 B、∠2与∠3是同位角

C、∠1与∠3是同位角 D、∠1与∠4不是同位角

⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.

⒊如图⑹, 直线DE截AB, AC, 构成八个角:

① 指出图中所有的同位角、内错角、同旁内角.

②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?

⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.

②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)

相交线与平行线练习

课型:复习课: 备课人:徐新齐 审核人:霍红超

一.基础知识填空

1、如图,∵AB⊥CD(已知)

∴∠BOC=90°( )

2、如图,∵∠AOC=90°(已知)

∴AB⊥CD( )

3、∵a∥b,a∥c(已知)

∴b∥c( )

4、∵a⊥b,a⊥c(已知)

∴b∥c( )

5、如图,∵∠D=∠DCF(已知)

∴_____//______( )

6、如图,∵∠D+∠BAD=180°(已知)

∴_____//______( )

(第1、2题) (第5、6题) (第7题) (第9题)

7、如图,∵ ∠2 = ∠3( )

∠1 = ∠2(已知)

∴∠1 = ∠3( )

∴CD____EF ( )

8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)

∴∠1 = ∠3( )

9、∵a//b(已知)

∴∠1=∠2( )

∠2=∠3( )

∠2+∠4=180°( )

10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

二.基础过关题:

1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。

证明:∵∠A=∠F ( 已知 )

∴AC∥DF ( )

∴∠D=∠ ( )

又∵∠C=∠D ( 已知 ),

∴∠1=∠C ( 等量代换 )

∴BD∥CE( )。

2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。

证明:∵∠B=∠BGD ( 已知 )

∴AB∥CD ( )

∵∠DGF=∠F;( 已知 )

∴CD∥EF ( )

∵AB∥EF ( )

∴∠B + ∠F =180°( )。

3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.

初一数学数轴教案人教版5

学习目标

1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛

2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角

重点、难点

重点:邻补角、对顶角的概念,对顶角性质与应用.

难点:理解对顶角相等的性质的探索.

教学过程

一、复习导入

教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.

学生欣赏图片,阅读其中的文字.

师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.

二、自学指导

观察剪刀剪布的过程,引入两条相交直线所成的角

握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.

三、问题导学

认识邻补角和对顶角,探索对顶角性质

(1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流.

∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.

∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.

( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.

(3).概括形成邻补角、对顶角概念.

有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.

四、典题训练

1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

2.:判断下列图中是否存在对顶角.

小结

自我检测

一、判断题:

1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )

2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )

二、填空题:

1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.

(1) (2)

2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________.

三、解答题:

1.如图,直线AB、CD相交于点O.

(1)若∠AOC+∠BOD=100°,求各角的度数.

(2)若∠BOC比∠AOC的2倍多33°,求各角的度数.毛

2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?

初一数学数轴教案人教版

篇15:七年级数学数轴教学设计

一、教材分析:

本节课主要是在学生学习了有理数概念的基础上,从温度计表示“温度高低”这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。

数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学习不等式的解法、函数图象及其性质等内容的重要的基础知识。

二、教学目标:

根据新课标的要求以及七年级学生的认知水平,我制定出如下的教学目标:

1.使学生理解数轴的三要素,会画数轴。

2.能将“已知的有理数在数轴上表示出来”,能说出“数轴上的已知点所表示的有理数”,理解“所有的有理数都可以用数轴上的点表示”

3.向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。

三、教学重点和难点:

“正确理解数轴的概念”和“有理数在数轴上的表示方法”是本节课的教学重点,“建立有理数与数轴上的点的对应关系(数与形的结合)”是本节课的教学难点。

四、学情分析:

⑴知识掌握上,七年级学生刚刚学习正负数,对正负数概念的理解不一定很深刻,许多学生容易造成知识遗忘,可以给与适当的巩固复习。

⑵学生学习本节课的知识障碍。对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应给以深入浅出的分析。

⑶由于七年级学生的理解能力和思维特征的局限性,以及学生好动,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中,我一方面要运用直观的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

五、教学方法:

七年级学生往往对直观具体的图形很感兴趣,因此我使用了教具—温度计和多媒体辅助教学。同时教学过程中我采用“启发式教学法”和“互动式教学法”,让整节课以观察、思考、讨论的形式贯穿始终。加强师生之间的情感交流,并教给学生“多观察、多动脑、大胆猜、多交流”的合作式学习方法。教学中为学生提供更多的活动机会和空间,让学生在动脑、动手、动口的同时获得体验和发展。

为此,我设计了以下七个教学环节:

(一)温故知新,激发情趣

(二)得出定义,揭示内涵

(三)手脑并用,深入理解

(四)启发诱导,初步运用

(五)反馈矫正,注重参与

(六)归纳小结,强化思想

(七)布置作业,引导预习

六、教学程序设计:

下面是教学过程的具体设计-------------

(一)温故知新,激发兴趣:

首先复习:有理数包括那些数?

学生回答后让大家思考:你能说出一些用刻度表示这些数的例子吗?

(学生会举出很多例子),但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计(展示准备好的教具),并提问:

(1)零上5°C用5表示。

(2)零下10°C用-10表示。

(3)0°C用0表示。

然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?答案是肯定的,从而引出课题:“数轴”。结合实例,使学生体会到数学来源于现实生活,从而对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。

(二)得出定义,揭示内涵:

教师设问:到底什么是数轴?如何画数轴呢?

(1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。)

(2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸。)

(3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范。

画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”

通过小组交流得到数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程。

(三)手脑并用,深入理解:

1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么?

(1)------(8)

(3)(6)(7)三个图形从数轴的三要素出发,学生可能出现错误判断,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生。

2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)

学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可。

我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解。

(四)启发诱导,初步运用:

有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开。

安排课本30页的例1,

利用黑板上的例题图形让学生来操作,教师提出要求:

1、要把点标在线上2、要把数标在点的上方

通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。

当然,此题还可以再说出几个有理数让学生去标出点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。

(五)反馈矫正,注重参与:

为巩固本节的教学重点让学生独立完成:

1、课本30页练习1、2

2、课本30页3题(给全体学生以示范性让一个同学板书)。

为向学生进一步渗透数形结合的思想让学生讨论:

(六)归纳小结,强化思想:(我采用引导式小结)

1、为了巩固本节课的重点,提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?

2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?

让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。

数轴教案

七年级上册数学数轴教案

人教版七年级数学数轴教学设计

数轴教学设计论文

初中数学的教学教案有哪些

数轴练习题

数学教案-数轴

数轴课件

初中数学优秀教案

初中数学公开课教案

初中数学数轴教学教案有哪些(推荐15篇)

欢迎下载DOC格式的初中数学数轴教学教案有哪些,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档