“Yueqm”通过精心收集,向本站投稿了13篇平行四边形及其性质 ―― 初中数学第二册教案,下面是小编为大家整理后的平行四边形及其性质 ―― 初中数学第二册教案,欢迎大家借鉴与参考,希望对大家有所帮助。
- 目录
篇1:初中数学第二册平行四边形及其性质教案
初中数学第二册平行四边形及其性质教案
教学目标
1、知识目标
(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.
2、能力目标
(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标
渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.
教学重点、难点
重点:平行四边形的概念及其性质.
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素――顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素――边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;
(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;
(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习近平行四边形的面积公式.
2.证明.
例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.
例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
平行四边形及其性质
教学目标
1、知识目标
(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.
2、能力目标
(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标
渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.
教学重点、难点
重点:平行四边形的概念及其性质.
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素――顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素――边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的.平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;
(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;
(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习近平行四边形的面积公式.
2.证明.
例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.
例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
篇2:第二册平行四边形及其性质
第二册平行四边形及其性质
教学目标
1、知识目标
(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.
2、能力目标
(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标
渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.
教学重点、难点
重点:平行四边形的概念及其性质.
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素――顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素――边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的`定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在
(2)在
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知
(5)在
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习近平行四边形的面积公式.
2.证明.
例2已知:如图4-16,
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形:
例4已知:如图4-18(a),
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
篇3:第二册平行四边形及其性质
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程 设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素――顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的`对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵ ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素――边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在 ABCD中,AB=a,BC=b,∠A=50°,则 ABCD的周长为__,∠B=__,∠C=__,∠D=__;
(2)在 ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知 ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;
(5)在 ABCD中,AB=8cm,BC=10cm,∠B=30°,S ABCD=__;
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习近平行四边形的面积公式.
2.证明.
例2 已知:如图4-16, ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在 ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形: C′BCA, ABCB′, ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.
例4 已知:如图4-18(a), ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在 ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
篇4:初中数学第二册不等式基本性质教案
初中数学第二册不等式基本性质教案
教学目的
掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。
教学过程
师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?
第一组:1+2=3; a+b=b+a; S =ab; 4+x =7。
第二组:-7 < -5; 3+4 >1+4; 2x ≤6, a+2 ≥0; 3≠4。
生:第一组都是等式,第二组都是不等式。
师:那么,什么叫做等式?什么叫做不等式?
生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。
师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。
前面我们学过了等式,同学们还记得等式的性质吗?
生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以( 除数不为零)同一个数,所得到的仍是等式。
师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。
练习1 (回答)用小于号“<”或大于号“>”填空。
(1)7 ___ 4; (2)- 2____6; (3)- 3_____ -2; (4)- 4_____-6
练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。
(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?
(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?
(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?
生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!
师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?
生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。
师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。
练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:
7>4;-2<6;-3<-2;-4>-6。
师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的基本性质有三条:
性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向 。
(让同学回答。)
性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向 。(让同学回答。)
性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向 。(让同学回答。)
现在请大家翻开课本,一起朗读用黑体字写的三条基本性质。
不等式的这三条基本性质,都可以用数学语言表达出来,先请一位同学说一说第一条基本性质。
生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。
师:对a和b有什么要求吗?对c有什么要求?
生:没有什么要求。
师:哪位同学来回答第二、三条性质?
生甲:如果a0, 那么acb,且c>0,那么ac>bc(或
生乙:如果abc(或 );如果a>b,且c<0,那么ac 师:这两条性质中,对a、b、c有什么要求? 生:对a、b没什么要求,特别要注意c是正数还是负数。 师:很好,c可以为零吗? 生:c不能为零。因为c为零时,任何不等式两边都乘以零就变成等式了。 师:好!应用刚才学到的基本性质,我们来看下面的例题。 [例1]按照下列条件,写出仍能成立的不等式: (1)5<9,两边都加上-3; (2)9>4,两边都减去10; (3)-5<3,两边都乘以4; (4)14>-8,两边都除以-2。 解 (1)根据不等式基本性质1,在不等式59的两边都加上-3,不等号的方向不变,所以 5+(-3)<9+(-3), 2<6 (2)根据不等式基本性质1,得 9-10>4-10 -1>-6 (3)根据不等式基本性质2,得 -5×4<3×4 -20<12 (4)根据不等式基本性质3,得 14÷(-2)<(-8)÷(-2) -7<4 [例2]设a>b,用不等号连结下列各题中的两式: (1)a-3与b-3;(2)2a与2b;(3)-a与-b。 师:哪一位同学来做这题?解题时,要讲清一步的理由。 生甲:因为a>b,两边都减去3,由不等式的基本性质1,得 a-3>b-3. 师:很好,大家都是这样做的吗? 生乙:我是这样做的,因为a>b,两边都加上(-3),由基本性质1,得 a-3>b-3. 师:好!这两位同学从不同的角度来分析题目,都得到了正确的结论。 生丙:因为a>b,2>0,由基本性质2,得2a>2b。 生丁:因为a>b,-1>0,由基本性质3,得-a>-b。 师:下面我们来看一组较复杂的问题,请大家都来开动脑筋,认真审题,仔细分析。[例3]判断以下各题的结论是否正确,并说明都理由: (1)如果a>b,且c>0,那么ac>bd; (2)如果a>b,那么ac2>bc2; (3)如果ac2>bc2,那么a>b; (4)如果a>b,那么a-b>0; (5)如果ax>b,且a≠0,那么x< ; (6)如果a+b>a; 生甲:(1)不对,当c=d≤0时,ac>bd不成立。 生乙:(2)也不对,因为c2是一个非负数,当c=0时,ac2>bc2不成立。 生丙:(3)对,因为ac2>bc2成立,则c2一定大于零,根据不等式基本性质2,得a>b出。 (4)对,根据不等式基本性质,由a>b,两边减去b得a-b>0。 (5)不对,当a<0时,根据不等式基本性质3,得。 (6)不对,因为当b<0时,根据不等式基本性质1,得a+b<a;而当b=0时,则有a+b=a。 师:同学们回答得很好。今天我们学习了不等式的基本性质,我们不仅要理解这三条性质,还要能灵活运用。 课外做以下作业:略。 教案说明 (1) 不等式的基本性质的教学,是分成两个阶段进行的。在初中阶段,对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。科学上的许多发现,大多离不开试验和观察。大数学家欧拉说过:“数学这门科学,需要观察,也需要试验。”通过教学培养学生掌握由试验发现规律的方法,具有重要的意义。当然通过几个特殊的试验,就得出一般的结论,是不严密的。但对初中学生来说,初次接触不等式,是不能要求那么严密的。 (2) 不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的.影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。对比的方法,也是学习数学的一种重要方法。 (3) 在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。因为它比较抽象,特别是在运用不等式的基本性质2和性质3时,学生必须考虑不等式两边同乘(或同除)的这个用字母表示的数的符号是什么,或者还要对这个用字母表示的数,按正数、负数或零三种情况加以讨论。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。对于正确的见解,教师可以让学生说出解题的依据;对于错误的见解,教师可以进行启发引导,发动学生自己找出错误的原因,自己修正见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。 教学内容: 教科书第14、15页的内容。 教学目标: 1、通过观察、比较等方法,初步认识平行四边形,初步感知平行四边形的特征。 2、参与对图形的围、拼、折等实践活动,体会图形的变换,发展空间观念。 3、在学习活动中积累对数学的兴趣,培养交往、合作意识。 教学重点: 认识平行四边形。 教学难点: 感悟平行四边形的特征。 教学过程: 一、情境导入 同学们,上节课我们知道了什么是四边形以及它的特点,今天,老师又给你们带来了一位新朋友(出示平行四边形图),你们见过它吗?这节课我们就来认识这位新朋友。 二、自主探究 同学们在生活中见过这样的图形吗?在哪见过? 看,这是教师在生活中见到的四边形,你知道这是什么吗? 课件出示:教材第14页例2图 第一幅图是挂衣服的架子,第二幅图是围起来的篱笆墙,第三幅图是楼梯的扶手。 你能用两块完全一样的三角尺拼出这样的平行四边形吗?它跟长方形、正方形有什么区别和联系呢?试一试。 学生动手操作,尝试拼平行四边形,教师巡视指导。 组织交流,展示学生拼图结果,并让学生说说发现了什么? (它们的对边一样长,长方形、正方形和平行四边形都是四边形,长方形、正方形的四个角都是直角,平行四边形的角不是直角) 老师边画平行四边形边指出:像这样的四边形叫做平行四边形。 三、巩固练习 1.“想想做做”第1题。学生独立完成,分小组讨论,汇报。 2.“想想做做”第2题。组织学生想一想,再围一围。 3.“想想做做”第3题,学生在书上描一描,教师巡视检查。 4.“想想做做”第4题,学生动手完成。 5. “想想做做”第5题,学生在家长的帮助下完成。 四、全课总结 提问:今天这节课你有什么收获? 一、内容和内容解析内容: 本课是人教版新课标实验教科书八上第十九章的第一课时,其主要内容是平行四边形的概念及平行四边形的边、角的相关性质. 内容解析: 四边形是几何中的基本图形,也是“空间与图形”领域研究的主要对象之一.平行四边形是特殊的四边形,较一般四边形而言,它与我们的关系更为密切,这不仅表现在日常生活中有众多的平行四边形图案,更重要的是,它的性质在日常生活及生产实践等各个领域中均有广泛的应用.此外,平行四边形的相关知识在建筑学、物理学、测绘学中也有较为重要的应用. 平行四边形是一个四边形,但与一般四边形相比,它的对边分别平行.由这一本质特征,教材给出了定义:两组对边分别平行的四边形叫做平行四边形.这一定义既给出了平行四边形的一种判断方法:两组对边分别平行的四边形是平行四边形.也给出了平行四边形的一条性质:平行四边形的对边平行.这为判定一个四边形是平行四边形提供了重要的理论依据,也为证明两直线平行提供了新的方法. 平行四边形从属于四边形,所以一般四边形所具有的性质它都具有,如:内角和是360°、外角和为360°、四边形的不稳定性等.同时,它还具有自己特有的性质:对边平行且相等、对角相等、邻角互补等.这些性质为学生证明或解决线段相等、角相等等问题提供了全新的思路,拓展了学生的视野.另外,平行四边形的这些性质还是所有特殊平行四边形的基本性质.本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础. 在教材的编写上,本课还注意了使学生经历充分地观察、猜想、验证、推理、交流、应用等数学活动后获得结论,这对于培养学生的观察能力、推理能力、图形处理能力、探索及解决问题的能力等方面,都起着较为重要的作用. 教学重点:平行四边形的性质的探究与应用 二、目标和目标解析 目标:理解并掌握平行四边形的概念和性质,能运用平行四边形的概念及性质解决相关问题. 目标解析: 1、经历从现实情景中抽象出平行四边形的过程,发展学生的形象思维与抽象思维.2、经历观察、实验、猜想、验证、推理、应用等数学活动,培养学生的观察能力、概括能力和演绎推理能力,渗透转化思想. 3、通过性质的应用,培养学生独立思考的习惯,发展合作交流与应用意识,感悟数学与实际生活的密切联系.4、通过一系列探究活动的开展,使学生从中体验数学活动的探索性和创造性,感受探究成功的乐趣,从而激发学习兴趣. 三、教学问题诊断分析 平行四边形的定义,学生在小学已经学过,但受当时学生文化基础与认知水平的限制,他们对平行四边形的认识还比较肤浅,对概念本质属性的理解与把握还不够深刻与透彻.作为本节课的核心概念,教学中切忌把平行四边形概念当学生已学知识,简单复习巩固后,一带而过.而应精心设计教学活动,使学生在原有知识的基础上,加深理解、全方位把握.尤其对于定义的双重性,应引导学生细致剖析,使他们理解、让他们会用.另外,考虑到学生以前对一般四边形与特殊四边形的认识是割裂开来的,他们对两者从属关系的认识较为淡漠,学习定义之前,教师应先让学生明晰一般四边形与特殊四边形的联系与区别,这样既可突出概念本质,也可为性质的学习作好铺垫. 对于性质,从教材的呈现方式看,编者力图以问题为线索,通过观察──猜想──验证──推理证明等一系列数学活动,以自主探索、小组合作探究的.方式让学生主动获得.如何真实的反应教材本意,突出性质的探索过程?如何彻底将学生的被动接受转为主动发现?这是执教者必须深思的问题.八年级的学生,已具备了一定的观察、分析、动手操作、语言表达及逻辑推理能力,若直接让学生观察图形──提出猜想──简单度量──推理论证──给出结论,这样难免有穿新鞋走老路之嫌,同时,也很难提高学生的学习积极性.尤其是对于性质的证明,在仅有平行四边形的前提下,如何解决线段相等、角相等这一推证难点也将因教学方式的生硬而变得更加难以逾越,教学效果可想而知. 要切实解决这个问题,教师应通过充分的活动让学生真正“动”起来.我思考了这样的处理:将整个性质的探究分两步走,第一步先引导学生通过观察大胆“猜一猜”,再“画一画”,进一步感受图形特征,接着“量一量”,初步验证猜想.第二步激发学生“剪一剪”,引导他们以小组合作的方式进一步探究.将所画的平行四边形沿其中一条对角线剪开,学生将不难发现所得到的两三角形全等,而全等三角形的对应边相等、对应角相等,这样很自然地进一步验证了猜想,与此同时,通过引导,学生还将发现,连接一条对角线,平行四边形的问题便转化成了全等三角形的问题.这样,一石二鸟,既让学生品尝了探究成功之乐,也为性质的推理论证扫清了障碍,轻松突破难点.若学生基础较好,还可考虑直接提供学具袋(里面提供可采用度量、平移、旋转、折叠、拼图等方法的相应学具),然后完全放手让学生去自主探索.鼓励学生探究方式、结果、表示方式及学习方式的多样化.相信在老师的精心组织、合作与参与下,学生将会从多个方面完善对平行四边形性质的认识. 教学难点:平行四边形性质的探究与证明。 四、教学支持条件分析 ⑴借助一般四边形、平行四边形、梯形等模型,明晰一般四边形与特殊四边形的区别与联系,深化对概念本质的认识,也可为性质的探究服务.⑵借助多媒体课件,使实例背景更形象、更逼真,以此激发学生的学习兴趣.借助Flash动画,从激励学生探究入手,改进问题的呈现方式,使教学更富有趣味性、生动性和互动性,从而激发学生的主动参与热情,为更好的实现教学目标服务. 五、教学过程设计 (一)情景激趣: 1、出示一般四边形模型,随后出示平行四边形模型,感受“特殊四边形”与“一般四边形”的区别与联系.设计意图:谈话式开场,清新自然.让学生明晰平行四边形与一般四边形从属关系的同时,轻松切入主题. 2、你能举出生活中平行四边形的实例吗? 3、媒体展示:原野鸟瞰、中银大厦外景、篱笆、电动门、艺术装饰物等图片,引导学生从图片中找出平行四边形.──生活中的平行四边形随处可见,它装点着我们的生活,服务着我们的生活.由此导出课题. 设计意图:先由学生举实例,再选取生活中平行四边形的一组精美图片由媒体集中展示,让学生感悟数学与生活紧密联系的同时,也让他们更真切地感受到学近平行四边形的必要.另外,通过对图形的捕捉与提炼,培养学生的形象思维与抽象思维能力. (二)探究在线: 1.定义探究: ①结合平行四边形的模型提问:平行四边形的“平行”体现在哪里? ②师生共议,归纳定义. 定义:有两组对边分别平行的四边形叫做平行四边形. 结合媒体动画演示,学平行四边形的表示法、读法及对边、对角、邻边、邻角等概念. 设计意图:突出概念本质,深化对定义的理解.将对边、对角等概念由媒体形象生动的展示,可使枯燥的概念更加灵动,让学生自觉地进入到对定义的深入探究中来. ③出示梯形模型,巩固定义(两组对边分别平行). ④图形及符号语言: 设计意图:多角度的表述,使学生能全面、透彻的理解定义.同时,规范了推理格式、提升了概括能力. 2.性质探究: ①平行四边形除了两组对边分别平行外,还有没有其它性质呢? 探究:(媒体播放,分步出示) 猜一猜:边之间???角之间??? 画一画:在格点纸上画一个平行四边形.量一量:度量一下,与你的猜想一致吗? 剪一剪:将所画的平行四边形沿其中一条对角线剪开,现在,你有新的办法进一步验证猜想吗? ②结论:边:对边平行、对边相等;角:对角相等、邻角互补 设计意图:以学生原有知识为出发点,引导学生通过观察、猜想、动手实践、合作交流等方式主动获取知识,获得解决问题的方法.同时,在学生亲历知识的发生、发展与形成过程中使学生获得富有成效的学习体验,发展探究与合作意识,培养逻辑思维能力.另外,通过“剪一剪”,学生进一步验证猜想的同时还找到了将四边形问题转化为三角形问题的有效途径,为性质的证明扫清了障碍.这样既渗透了转化思想,又巧妙的突破了难点. ③你能证明“平行四边形的对边相等,平行四边形的对角相等”吗? 师生共议,写出已知、求证及证明过程.已知:如图,四边形ABCD为平行四边形. 求证:AB=CD,AD=BC;∠A=∠C,∠B=∠D. 分析:连结对角线将平行四边形的问题通过转化为全等三角形的问题进行解决. 设计意图:注重直观操作与逻辑推理的有机结合,把几何论证作为探究活动的自然延续和必然发展.同时,通过证明,验证了猜想的正确性,让学生感受到数学结论的确定性和证明的必要性. ④总结:性质1:平行四边形的对边相等. 符号语言: ∵四边形ABCD为平行四边形 ∴AB=CD,AD=BC. 性质2:平行四边形的对角相等. 符号语言: ∵四边形ABCD为平行四边形 ∴∠A=∠C,∠B=∠D. 师生共议:以上性质为证明(解决)线段相等,角相等,提供了新的理论依据. 设计意图:对平行四边形性质的归纳,是学生对平行四边形特征的更深入认识,也是知识的一次升华,突出了教学重点. (三)厉兵秣马: 小试身手:(媒体播放)如图,在□ABCD中,根据已知你能得到哪些结论?为什么? 设计意图:尝试对性质的应用,实现从知识到能力的顺利过渡.同时,开放式的问题,利于学生多角度的思考并解决问题. 例题探究:如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中AB边长为8m,其他三条边的长各是多少?(媒体播放) 随机应变: (1)在□ABCD中,已知AC=12,ΔABC的周长=30,则□ABCD的周长= (2)若∠DCE=38°,则□ABCD的四个内角的度数分别为: (3)若最大的两个角之和为220°,则平行四边形的四个角的度数分别为: 设计意图:通过对例题的学习,加深对平行四边形性质的理解,培养学生的应用意识.通过一题多变,使学生能多角度、多层次、灵活的运用所学知识解决问题,培养学生思维的深刻性与灵活性. 智启百宝箱: 辨一辨:谁的测量肯定有误? 贝贝、晶晶、妮妮、号号四位同学正在测量 ABCD. 贝贝测量的结果:AB=CD=5,BC=AD=8; 晶晶测量的结果:∠A=∠C=40°,∠B=∠D=130°; 妮妮测量的结果:AB//CD,BC//AD; 号号测量的结果:∠A﹕∠B﹕∠C﹕∠D=2﹕6﹕2﹕7.想一想:如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形,线段AD和BC的长度有什么关系? 证一证:如图,在□ABCD中,E、F分别为边AB、CD上的点,连接DE、BF. (1)如果E、F分别为AB、CD边上的中点,求证:∠ADE=∠CBF (2)如果DE//BF,上述结论还成立吗? 设计意图:练习是学生心智技能和动作技能形成的基本途径,精心设计的练习将会使这一功用得到更充分的体现.以上这组练习层层递进、由浅入深,有效地促进学生对本节课所学习的概念与性质进行更加深刻的理解与掌握.另外,以游戏为载体,使问题的呈现方式更加生动活泼与富有挑战性,促使学生能更加主动的投入到知识的巩固与能力的提升中来. (四)整理反思: 师生共议:通过这节课的学习,你对平行四边形有哪些新的认识? 我的收获(媒体播放): ①平行四边形的定义、性质. ②方法:证明平行、线段相等、角相等的新方法. ③转化思想: 设计意图:这是一次知识与情感的交流,浓缩知识要点、突出内容本质、渗透思想方法.培养学生自我反馈、自主评价的意识,促进学生可持续地、和谐地发展. (五)快乐套餐: 必做:P90T 1、2.P91 T 6、7 选做: 文物保护部门需复原一如图形状的等腰三角形木格子,里面每一同方向木条相互平行且将腰分成相等的六段,已知等腰三角形的腰是30cm,底边长50cm,你能算出拼这个木格子所需木条的总长度吗?(接头不计) (聪明的同学们,你们能想出几种方法呢?) (1)如果里面的每一同方向木条都不均匀排列,但互相平行,你还能算出所需木条的总长度吗?(接头不计) (2)如果这个木格子底边上有n个不规则排列的点,你还能算出所需木条的总长度吗?(接头不计) 设计意图:“套餐”分两类,必做题面向全体、巩固所学,力图让“人人都获得必需的数学”.选做题力图“让不同的人在数学上得到不同的发展”,本题既可直接运用今天所学的定义与性质求解;亦可通过构造与此模型全等的图形,将两个全等的图形拼合成一个平行四边形,进而简捷求解;还可以借助“过等腰三角形底边上任一点向两腰作平行线,所得的平行四边形两邻边之和等于一腰长.”这一模型轻松求解等等.这是本课内容的一次拓展与升华. 教学内容: 义务教育课程标准实验教科书(西南师大版)四年级(下)第97,98页中的主题图和例题1,例2,以及第97~99页中课堂活动第1~2题和练习二十第1题。 教学目标: 1、通过观察、操作等活动,认识平行四边形以及图形的特征;通过操作活动(折纸)认识并理解平行四边形的高。 2、经历探索平行四边形形状的过程,了解它的基本特征,进一步发展空间观念,培养学生动手操作能力。 3、通过观察、操作、交流等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。 教学重、难点: 让学生在观察、操作、交流等教学活动中认识平行四边形。 教具准备: 一个长方形方框,多媒体课件。 学具准备: 每人一块直尺、一副三角板、一张印有平行四边形的白纸和一个剪好的平行四边形、一个硬纸条做的长方形方框。 教学过程: 一、谈话引入 教师:同学们,在以前的学习中我们已经初步认识了平行四边形。实际上,在我们生活中也经常见到平行四边形。请看大屏幕。 (课件出示主题图) 请同学们仔细观察这些物体,你能在这些物体上找出平行四边形吗?(请同学到台上用鼠标边指边说,然后课件再呈现学生所指出的平行四边形。) 教师:同学们观察得非常仔细,找到了这么多的平行四边形,它们有些什么共同的特征呢?今天这节课老师就和同学们一起来进一步认识平行四边形。 板书课题:平行四边形 二、探究新知 1、认识平行四边形的特征 (1)教师:同学们喜欢看魔术表演吗?(喜欢)现在,老师就给同学们表演一个小魔术。 (教师出示一个长方形方框)这个图形大家认识吗?(它是长方形) 教师:对!这是一个长方形。老师握着这个长方形方框的两个对角,轻轻地拉一拉。变!变!变!这还是长方形吗?(平行四边形)对!这是平行四边形。 教师:你们想玩玩这个魔术吗? (2)学生自己用硬纸条做的长方形方框来体验平行四边形的不稳定性。 (3)师:同学们观察老师手里的平行四边形,同桌讨论你们发现了什么? 生1:对边平行 生2:对边相等 同学们真聪明,真能干通过观察发现了这么多! 同学们,这些发现对吗?现在我们来验证我们的发现,请同学们拿出老师发的平行四边形,首先我们用画平行线的方法来验证对边是否平行。 汇报结果:对边平行 现在我们再来验证一下对边真的相等吗?应该怎样办呢? 生:测量平行四边形四条边的长度。 师:请拿出你们的直尺测量手中平行四边形四条边的长度。 汇报结果:对边相等 师:同学们,我们现在发现了平行四边形有两个特点,它们是什么呢? (4)师:我们现在认识了平行四边形,也知道它的对边相等且平行。那么什么是平行四边形呢? 教师通过学生的回答引导出:对边平行的四边形,叫做平行四边形。 2、认识平行四边形的高 同学们真能干!这么快就知道了什么叫做平行四边形,现在我们来学习-平行四边形另外一个特征。请同学们拿出老师发的平行四边形跟老师做(折高)。 师:打开平行四边形,观察折痕有什么特点(垂直于边) 师:想一想什么叫做平行四边形的高?(从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.)教师:同学们,通过刚才折平行四边形的高,你有什么发现? 学生:我发现平行四边形的高有无数条。 教师:对!平行四边形有无数条高。 第99页第3题,学生独立完成之后全班交流,教师强调底与高的对应性。 师:引导认识底 3、引导学生认识长方形、正方形、平行四边形的关系 (1)完成表格 (2)归纳总结第98页课堂活动第1题 教师:请同学们想一想,到现在为止,我们都学习了哪些四边形?(长方形、正方形、平行四边形……) 教师:它们都有哪些地方一样呢?(它们都是对边相等,对边互相平行……) 教师:平行四边形的这些特征,长方形、正方形都具备。 我们通常说长方形、正方形是特殊的平行四边形。 长方形、正方形是特殊的平行四边形。平行四边形的对边平行且相等,具有不稳定性。 三、课堂小结 同学们,这节课你学到了哪些知识?能给大家讲讲吗? 一、教学目标 1知识目标 理解平行四边形的概念;探索并掌握平行四边形的对边相等,对角相等的性质。 2能力目标 在探索过程中发展学生的探究能力,提高学生运用数学知识解决问题的能力; 3情感目标 培养学生合作交流的习惯,提高克复困难的勇气和信心。 二、教学重点、难点 教学重点:探索平行四边形的性质 教学难点:通过操作、思考、归纳出结论 三、教学方法 探索归纳法 四、教学过程 (一)创设情境,引入新课 1.(幻灯片展示)观察图片中有你熟悉的哪种图形?(平行四边形)请你举出自己身边存在的平行四边形的例子。 例如:汽车的防护链,地板砖,篱笆格子等(用幻灯打出实物的照片) 2.观察图形有什么特征?(有两组对边分别平行) 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形如图:四边形ABCD是平行四边形记作:ABCD今天我们就来探究平形四边形的性质。 (二)讲授新课 1、拼一拼(出示幻灯片)小组合作,探究新知 用两个全等的三角形纸片可以拼出几种形状不同的平行四边形?从拼图中你能得到哪些启示?相对的边、角分别有什么关系? (让学生实际动手操作,可分组讨论结论,用ppt课件展示) 2、学生分析总结出:平行四边形的对边平行 平行四边形的对边相等 平行四边形的对角相等 平行四边形的邻角互补 用符号语言表示:如图 小结:平行四边形的性质是证明线段相等、角相等的重要依据和方法。 3.用什么方法验证平行四边形:两组对边分别相等 两组对角分别相等 (小组讨论比一比看谁的速度最快、方法最多) 4、例题讲解 如图:小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少? 解:∵四边形ABCD是平行四边形 ∴AB=CD, AD=BC ∵AB=8m ∴CD=8m 又AB+BC+CD+AD=36 ∴ AD=BC=10m (三)随堂练习(幻灯片展示) (四)感悟与收获 1.两组对边分别平行的四边形叫做平行四边形. 2.平行四边形的性质:对边平行 对边相等 对角相等 邻角互补 3.解决平行四边形的有关问题经常连结对角线转化为三角形。 (五)作业 (六)板书与设计 (见幻灯片) 《平行四边形的性质》教案篇5:平行四边形的性质教案
篇6:平行四边形的性质教案
篇7:平行四边形的性质教案
篇8:平行四边形的性质教案
篇9:《平行四边形的性质》教案
篇10:《平行四边形的性质》教案
【知识目标】
1、掌握平行四边形有关概念;
2、在动手操作实践的过程中,探索并掌握平行四边形的性质。
【能力目标】
1、通过探索与证明平行四边形的性质,发展演绎推理的能力;
2、在证明平行四边形的性质的过程中,体会将平行四边形问题为三角形问题的转化思想.
【情感态度与价值观】
在进行探索的活动过程中发展合作交流的意识.
【数学核心素养目标】
1、通过操作活动,在发现平行四边形的性质的过程中培养直观想象的数学素养;
2、通过对性质的证明,进一步提升逻辑推理的数学核心素养.
教材
分析
重点
掌握平行四边形的概念与性质
难点
篇11:《平行四边形的性质》教案
教学方法
引导类比、鼓励操作、启发推理
学法指导
探索发现、猜想证明、迁移应用
教学过程
一、引入新课
PPT呈现:类比是伟大的引路人,转化是智慧的思想家.
几何学习,是一场充满挑战与惊喜的旅行,老师很荣幸今天能和在座的'同学们继续我的平面几何之旅.
回顾我们学过的平面图形:
直线、射线、线段角三角形?
同学们推测一下,接着我们会研究那种平面图形?四边形
我们就从生活中常见的一类特殊的四边形——平行四边形研究起.
你能举出一些生活中常见的平行四边形实例吗?
地砖、推拉门、活动衣架、窗格……
二、实践探究
1、平行四边形的相关概念
平行四边形的定义:两组对边分别平行的四边形,叫做平行四边形.
D
C
A
B
如图:
学生活动:邀请学生指导老师画两组分别平行的线段,并上黑板协助老师画图,从而得到平行四边形.
平行四边形的符号表示:ABCD,读作“平行四边形ABCD”
(注意表示时,四个顶点A、B、C、D的书写顺序只能按顺时针方向或逆时针方向)
边、对边、邻边;角、对角、邻角
对角线:平行四边形不相邻的两个顶点连成的线段叫做它的对角线.
ABCD的对角线有两条:AC、BD
2、平行四边形是中心对称图形
活动:利用平行四边形纸片探索平行四边形的性质
活动方式:同桌或四人小组合作、讨论交流.
教具:画好平行四边形的彩纸、透明纸各一张、图钉一枚.
平行四边形是中心对称图形,两条对角线的交点是它的对称中心.
3、平行四边形的性质
性质1:平行四边形的对边相等.
已知:如图,四边形ABCD是平行四边形.
因为四边形ABCD是平行四边形
所以∠A=∠C,∠B=∠D
求证:AB=CD,BC=DA.
证明:连接AC
因为四边形ABCD是平行四边形
所以AB∥CD,BC∥DA(平行四边形的定义)
所以∠1=∠2,∠3=∠4
在△ABC与△CDA中:
所以(ASA)
所以AB=CD,BC=DA
几何语言:
因为四边形ABCD是平行四边形
所以AB=CD,BC=DA
性质2:平行四边形的对角相等.
几何语言:
因为四边形ABCD是平行四边形
所以∠A=∠C,∠B=∠D
三、应用迁移
【例题探究,夯实基础】
例:已知:如图,在□ABCD中,E,F是对角线AC上的两点,并且AE=CF。
求证:
证明:因为四边形ABCD是平行四边形
所以AB=CD(平行四边形的对边相等)
AB∥CD(平行四边形的定义)
所以∠BAE=∠DCF
在12鈭咥BE/与12鈭咰DF/中:
因为
所以(SAS)
所以BE=DF
【例题变式,灵活思维】
变式1:已知:如图,在ABCD中,E,F是对角线AC上的两点,并且AE∥DF。
求证:
变式2:已知:如图,在ABCD中,E,F是对角线AC上的两点,并且BE平分∠ABC,DF平分∠ADC.
求证:
变式1图变式2图
【接龙练习,巩固迁移】
1、如图,四边形ABCD是平行四边形,
若∠A=130°,则∠B=______,∠C=______,∠D=______;
若AB=4,AD=5,则BC=__________,CD=________。
第1题图第2题图
2、如图,在平面直角坐标系中,□ABCD的三个顶点为A(0,0)、B(4,0)、D(1,2),则顶点C的坐标是_____________。
3、小强用30米的铁丝围成一个平行四边形的场地(不计接口长度),其中一条边长是10米,则与这条边相邻的边的长度是________米.
4、如图,在□ABCD中,若BE平分∠ABC,则ED=.
5、如图,在□ABCD中,AM平分∠BAD,BM平分∠ABC,∠AMB____。
第4题图第5题图
【游戏设计,拓展提升】
四位同学玩传球游戏,三位同学已经站好位置,要求以这四位同学所占位置为顶点,组成平行四边形,请问第四位同学应该站在哪里?
解:如图,第四位同学可以站在P、Q、M这三个位置.
四、本课总结
知识:平行四边形的概念与性质
探究方法与思想:类比探究,转化思想
五、作业布置
必做题:课本P1372、3、4题.
选做题:将【游戏设计,拓展提升】部分的问题整理在好题本“分类讨论”这一问题中.
设计意图
提醒并渗透“类比的方法、转化的思想”.
提醒学生本节课是几何探究课程.
本节课是《平行四边形》这一章的章起始课,促使学生对平面图形的学习进行系统性的认识.
小学已经感知上认识了平行四边形,由学生主动举生活中平行四边形的实例,感受数学源于生活而服务于生活,同时逐渐调动学生主动思考,为接下来的探究热身.
突出学生课堂主体的地位,加深对平行四边形定义的认识.
突出重点:
1、学生通过观察、动手操作,经历平行四边形性质的探索和发现过程,发展合作交流的意识,提升探究能力;
2、在动手操作额过程中,发现并验证了平行四边形是中心对称图形;
3、使学生发现平行四边形中有关元素之间的相等关系,获得平行四边形有关性质的猜想.
突破难点:
1、学生探索猜想性质是合情推理,而规范证明则是演绎推理,通过规范的几何证明,提升学生的推理论证能力.
2、转化思想:将四边形问题转化为三角形问题来研究.
1、引导学生探索并展示多种证明方法.
2、激励学生分析、解决问题的热情,进一步提升推理论证的能力.
本例是对所学的平行四边形性质定理的简单应用。教学时让学生先独立思考,再组织学生进行交流。鼓励学生充分表达他们寻求证明思路的过程。
这两个问题是对例题条件进行变化,结论不变,以促进学生对平行四边形性质的熟练掌握与灵活运用.
1、这组练习的设计,层层递进,由浅入深,可有效地开发各层次学生的潜能及上进心,实现分类推进的教学思想.
2、第4题引导学生发现平行四边形一条角平分线可以构造出等腰三角形;
3、第5题引导学生发现平行四边形两个邻角的角平分线可以构造出直角三角形三角形.
(此问题根据实际授课情况,可删减)
1、游戏情境,激发学生兴趣;
2、此问题有三种情况,体现分类讨论的思想,促进学生思考问题的全面性;
1、作业一部分是必做题,体现新课标下落实“学有价值的数学”,达到“人人都能获得必需数学”,另一部分是选做题,让“不同的人在数学上得到不同的发展”.
2、选做部分为了促进学生养成分类梳理数学问题的习惯.
篇12:初中数学《平行四边形的性质及应用》说课稿
初中人教版数学《平行四边形的性质及应用》说课稿模板
一、教材分析
1、教材所处的地位和作用,
《平行四边形的性质》是人教版八年级数学第二学期第十九章第一节内容。它是在学生掌握了平行线、三角形及简单图形的平移等几何知识的基础上学习的。平行四边形及其性质在实际生产和生活中有广泛的应用,它是本节的重点,又是全章的重点。学习它不仅是对已学平行线、三角形等知识的综合应用和深化,又是下一步学习矩形、菱形、正方形及梯形等知识的基础,起着承上启下的作用。
2、教学目标
根据新课标的要求及学生的实际情况,本节我制定了如下目标:
(1)知识目标
理解平行四边形的定义,探究平行四边形的性质;利用平行四边形的性质进行有关的证明和计算,解决简单的实际问题。
(2)能力目标
通过观察、猜测、归纳、证明,能运用数学语言合乎逻辑地进行讨论与质疑,发展学生合理的推理意识,培养主动探究的习惯。
(3)情感目标
通过平行四边形性质的应用过程,培养学生独立思考的习惯,在数学学习活动中获得成功的体验。进一步认识数学与生活的密切联系,体验数学来源于生活又服务于生活。
3、教学重点、难点
基于以上的分析,我认为本节课的重点是:平行四边形性质的探究与应用;难点是:平行四边形性质的探究,即如何添加辅助线将平行四边形问题转化为三角形问题来解决的思想方法。
二、学情及教法分析
农村的学生基础知识薄弱,主动学习的积极性不高,学习能力较差,针对这种情况及本节课的特点,结合我校课题“因材施教,当堂达标”发挥学生主体地位,教师“引导—辅导—指导—讲评—归纳”有目的的辅助学生学习。
1、利用直观形象的图片、模型,引导学生在观察、操作、猜测、验证与交流等数学活动中发现平行四边形的性质。发挥学生的观察能力、联想力,大胆猜测平行四边形的可能性。
2、注重学生参与,合作交流,让学生在教师的指导下自始至终处于积极思维,主动探究的学习状态,同时借助多媒体进行演示,以增加教学的直观性。
三、学法指导
1、观察猜想。以学生的观察、猜想为主,要求学生多观察,大胆猜想,主动探索来了解平行四边形的性质。
2、合作交流。采取积极引导、主动参与、互相交流来组织教学,使学生真正成为教学的主体,体会成功的喜悦。
3、抽象概括。指导学生学会观察分析,从具体实例中抽象出平行四边形的图形,概括出平行四边形的定义,培养学生的抽象思维,
4、总结归纳。通过例题探索、练习反馈、收获园地,引导学生总结归纳本节课学习的主要内容和解决问题的方法以及注意的问题,发挥学生的积极性和主动性,培养学生良好的学习习惯。
四、教学过程
(一)温故思新,情境导入
首先复习四边形的定义及四边形的有关性质。然后课件显示章前图和一些图片。提出问题:你能从图中找出我们熟悉的几何图形吗?
这个问题是以农田鸟瞰图作为本章的章前图,学生可以见识各种四边形的形状。通过查找长方形、正方形、平行四边形、梯形等起到复习的作用,为进一步比较系统地学习这些图形做准备,并明确本章的学习任务。
(二)自主学习,发现问题
通过观察图片,让学生举出身边存在的平行四边形的例子。通过举例,为学生提供参与活动的时间和空间,调动学生的主观能动性,激发求知欲,培养学生形象思维。
然后自学课本83页—84页例1上面的内容,教师出示问题:
1、通过观察图片,找出图形的共同特征,说出平行四边形的定义?
2、你会用符号表示一个平行四边形吗?想一想用符号表示时要注意什么问 题?
如图平行四边形ABCD记作:□ABCD(略)
3、通过观察测量自做的平行四边形你能发现平行四边形的特点吗?
边:对边平行且相等
角:对角相等,邻角互补
4、你能证明你发现的结论吗?
此环节的设计意图:从实例图片中抽象出平行四边形的`几何图形,培养学生的抽象思维,让学生感受到数学与我们生活的密切联系。通过自学加深理解,发现问题,提高自主学习能力。感受动手测量,猜想的乐趣,培养猜想的意识。教师巡视引导,帮助学生自学。
(三)合作交流,解决问题
小组合作交流,共同解决自主学习过程中发现的问题:寻找证明的方法。当学生有疑惑时,教师巡视辅导:我们目前证明线段、角相等的方法是什么?(利用三角形全等来证明)。而图中没有三角形该怎么办?引导学生得出需构造辅助线,将四边形问题转化为三角形问题来解决。学生完成证明,归纳平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等,邻角互补。并引导学生写出性质的几何语言。
设计意图:通过交流和引导,明确目前证明线段、角相等的常用方法是证明三角形全等。学生完成证明,验证猜想的正确性,让学生感受到数学的严谨性,数学结论的确定性和证明的必要性。对平行四边形性质的归纳,培养了学生的合作交流能力和概括能力,突出了教学的重点。
(四)小组展示,学以致用
1、小组代表展示交流的结果,通过实物投影讲解平行四边形性质的证明过程。培养学生语言组织能力和思维逻辑能力。
2、探究例1 :
小明用一根36米长的绳子围成一个平行四边形的场地,其中一条边AB长为8米,其他三条边各长多少?
教师引导学生审题,学生弄清题意后教师示范解题过程,并重点强调解答中平行四边形性质的几何表述。
设计意图:通过运用平行四边形的性质,学会解决简单的实际问题,让学生认识到数学在现实世界中有着广泛的应用,培养了学生的应用意识。
篇13:初中平行四边形及其性质教学设计
平行四边形及其性质教学设计
初中平行四边形及其性质教学反思
平行四边形学生在小学就学过了,学生对平行四边形的有关性质还是比较容易理解、接受的。本节课我主要是让学生利用平行线的性质、三角形全等有关知识等有条理地表达自己的发现,培养学生多角度地阐述自己观点的能力,让学生深入地理解、运用平行四边形的性质,提高学生的数学能力。主要有以下几点收获:
1、遵循学生学习数学的认知规律,对教材内容进行了重组加工,由三角形开始引入,过渡到研究任意四边形,主要从边、角、对角线出发,自然引出比较“好看”的四边形——平行四边形。
2、将教材中平行四边形性质的探究活动完全开放.为学生提供了自主合作探究的舞台,营造了思维驰骋的空间,激发了学生思维创新的火花,培养了学生的动手能力和语言表达能力。
3、探究平行四边形的性质从定义入手,强调概念,由文字表达到几何语言的表达,注重循序渐进,由浅入深。
总体来说,本节课课堂气氛较为活跃,基本达到了预期教学效果,但引导学生思维的语言不够精练,时间把握得不够好,课堂不够紧凑。由于性质探索部分花了较多时间,导致练习的时间不够多。应该让学生在练习的时候有更多的时间讨论,说得更多。最后的小结部分也没有完成,如果时间充裕的话,应由学生自己归纳本节课的内容,把性质按边、角作归纳,配以图表方便记忆。这些都是在今后的教学中要多加注意和需要不断改进的。
教学永远是一门遗憾的艺术,“吹尽黄沙始现金”。让我们以“没有最好,力求更好”来不断改进我们的教学,实现真正意义上的与时俱进。
平行四边形及其性质 ―― 初中数学第二册教案(共13篇)




