对数函数教案

时间:2023-03-18 04:04:31 作者:云鱼 教案 收藏本文 下载本文

【导语】“云鱼”通过精心收集,向本站投稿了13篇对数函数教案,下面是小编为大家整理后的对数函数教案,如果喜欢可以分享给身边的朋友喔!

篇1:对数函数教案

对数函数教案

1、掌握对数函数的定义和图象,理解并记忆对数函数的性质。 2、培养分析推理能力 3、培4、重点:理解对数函数的定义,掌握对数函数的图像和性质。 5、难点:底数a对数函数的影响 。首先复习对数的定义  师:上次讲细胞分裂问题时得到细胞个数y是分裂次数x的.函数。今天我们来研究相反的问题,如果要求这种细胞经过多次分裂,大约可以得到1万个,10万个等等,那么,分裂次数可以用怎样的关系式来表示呢? 生:表达式是x=log ,表示分裂次数x是细胞个数y的函数 师:如果用x表示自变量,y表示函数,此式又可化为y=logax ,那么它与指数函数有何关系?函数y=log ax的定义域是什么? 生:它们互为反函数,由于y= 的值域是{y|y>0}所以y=logax的定义域是{x|x>0} 师:对,由此我们就可以得到新的函数的定义。(引入课题《对数函数的概念及性质》)一般地,函数y=log ax叫做对数函数,(a>0且a≠1)其中是自变量,定义域是{x|x>0}

篇2:对数函数教案

对数函数教案模板

教学目标:

(一)教学知识点:1.对数函数的概念;2.对数函数的图象和性质.

(二)能力训练要求:1.理解对数函数的概念;2.掌握对数函数的图象和性质.

(三)德育渗透目标:1.用联系的观点分析问题;2.认识事物之间的互相转化.

教学重点:

对数函数的图象和性质

教学难点:

对数函数与指数函数的关系

教学方法:

联想、类比、发现、探索

教学辅助:

多媒体

教学过程:

一、引入对数函数的概念

由学生的预习,可以直接回答“对数函数的概念”

由指数、对数的定义及指数函数的'概念,我们进行类比,可否猜想有:

问题:1.指数函数是否存在反函数?

2.求指数函数的反函数.

①;

②;

③指出反函数的定义域.

3.结论

所以函数与指数函数互为反函数.

这节课我们所要研究的便是指数函数的反函数——对数函数.

二、讲授新课

1.对数函数的定义:

定义域:(0,+∞);值域:(-∞,+∞)

2.对数函数的图象和性质:

因为对数函数与指数函数互为反函数.所以与图象关于直线对称.

因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.

研究指数函数时,我们分别研究了底数和两种情形.

那么我们可以画出与图象关于直线对称的曲线得到的图象.

还可以画出与图象关于直线对称的曲线得到的图象.

请同学们作出与的草图,并观察它们具有一些什么特征?

对数函数的图象与性质:

图象

性质(1)定义域:

(2)值域:

(3)过定点,即当时,

(4)上的增函数

(4)上的减函数

3.图象的加深理解:

下面我们来研究这样几个函数:,,,.

我们发现:

与图象关于X轴对称;与图象关于X轴对称.

一般地,与图象关于X轴对称.

再通过图象的变化(变化的值),我们发现:

(1)时,函数为增函数,

(2)时,函数为减函数,

4.练习:

(1)如图:曲线分别为函数,,,,的图像,试问的大小关系如何?

(2)比较下列各组数中两个值的大小:

(3)解关于x的不等式:

思考:(1)比较大小:

(2)解关于x的不等式:

三、小结

这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.

四、课后作业

课本P85,习题2.8,1、3

篇3: 《对数函数》教案

对数函数及其性质教学设计

1.教学方法

建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。它既强调学习者的认知主体作用,又不忽视教师的指导作用。

高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.

在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。其理论依据为建构主义学习理论。它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。

2.学法指导

新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。因此本节课学生将在教师的启发诱导下对教师提供的素材经历创设情境→获得新知→作图察质→问题探究→归纳性质→学以致用→趁热打铁→画龙点睛→自我提升的过程,这一过程将激发学生积极参与到教学活动中来。

3.教学手段

本节课我选择计算机辅助教学。增大课堂容量,提高课堂效率;激发学生的学习兴趣,展示运动变化过程,使信息技术真正为教学服务.

4.教学流程

四、教学过程

教学过程

设计意图

一、创设情境,导入新课

活动1:(1)同学们有没有看过《冰河世纪》这个电影?先播放视频,引入课题。

(2)考古学家经过长期实践,发现冻土层内某微量元素的含量P与年份t的关系:,这是一个指数式,由指数与对数的关系,此指数式可改写为对数式。

(3)考古学家提取了冻土层内微量元素,确定它的残余量约占原始含量的1%,即P=0.01,代入对数式,可知

(4)由表格中的数据:

碳14的含量P

0.5

0.3

0.1

0.01

0.001

生物死亡年数t

5730

9953

19035

39069

57104

可读出精确年份为39069,当P值为0.001时,t大约为571,所以每一个P值都与一个t值相对应,是一一对应关系,所以p与t之间是函数关系。

(5)数学知识不但可以解决猛犸象的封存时间,也可以与其他学科的知识相结合来解决视频中的遗留问题,就是不知道咱们中国的猛犸象克隆问题会由班里的哪位同学解决,我们拭目以待。

(6)把函数模型一般化,可给出对数函数的概念。

通过这个实例激发学生学习的兴趣,使学生认识到数学来源于实践,并为实践服务。

和学生一起分析处理问题,体会函数关系,并体现学生的主体地位。

二、形成概念、获得新知

定义:一般地,我们把函数

叫做对数函数。其中x是自变量,定义域为

例1求下列函数的`定义域:

(1);(2).

解:(1)函数的定义域是。

(2)函数的定义域是。

归纳:形如的的函数的定义域要考虑—

三、探究归纳、总结性质

活动1:小组合作,每个组内分别利用描点法画和的图象,组长合理分工,看哪个小组完成的最好。

选取完成最好、最快的小组,由组长在班内展示。

活动2:小组讨论,对任意的a值,对数函数图象怎么画?

教师带领学生一起举手,共同画图。

活动3:对a>1时,观察图象,你能发现图象有哪些图形特征吗?

然后由学生讨论完成下表左边:

函数的图象特征

函数的性质

图象都位于y轴的右方

定义域是

图象向上向下无限延展

值域是R

图象都经过点(1,0)

当x=1时,总有y=0

当a>1时,图象逐渐上升;

当0当a>1时,是增函数

当0通过对定义的进一步理解,培养学生思维的严密性和批判性。

通过作出具体函数图象,让学生体会由特殊到一般的研究方法。

学生可类比指数函数的研究过程,独立研究对数函数性质,从而培养学生探究归纳、分析问题、解决问题的能力。

师生一起完成表格右边,对0<a<1时,找两位同学一问一答共同完成,再次体现数形结合。

四、探究延伸

(1)探讨对数函数中的符号规律.

(2)探究底数分别为与的对数函数图像的关系.

(3)在第一象限中,探究底数分别为的对数函数图象与底数a的关系.

五、分析例题、巩固新知

例2比较下列各组数中两个值的大小:

(1),;

(2),;

(3),。

解:

(1)在上是增函数,

且3.4<8.5,

(2)在上是减函数,

且3.4<8.5,.

(3)注:底数非常数,要分类讨论的范围.

当a>1时,在上是增函数,

且3.4<8.5,;

当0且3.4<8.5,

练习1:比较下列两个数的大小:

练习2:比较下列两个数的大小:

(找学生上黑板讲解练习2的第一题,强调多种做法,一起完成第二小题.)

考察学生对对数函数图像的理解与掌握,进一步强调数形结合。

通过运用对数函数的单调性“比较两数的大小”培养学生运用函数的观点解决问题,逐步向学生渗透函数的思想,分类讨论的思想,提高学生的发散思维能力。

六、对比总结、深化认识

先总结本节课所学内容,由学生总结,教师补充,强调哪些是重要内容

(1)对数函数的定义;

(2)对数函数的图象与性质;

(3)对数函数的三个结论;

(4)对数函数的图象与性质的应用.

七、课后作业、巩固提高

(1)理解对数函数的图象与性质;

(2)课本74页,习题2.2中7,8;

(3)上网搜集一些运用对数函数解决的实际问题,根据今天学习的知识予以解答.

八、评价分析

坚持过程性评价和阶段性评价相结合的原则。坚持激励与批评相结合的原则.

教学过程中,评价学生的情绪、状态、积极性、自信心、合作交流的意识与独立思考的能力;

在学习互动中,评价学生思维发展的水平;

在解决问题练习和作业中,评价学生基础知识基本技能的掌握.

适时地组织和指导学生归纳知识和技能的一般规律,有助于学生更好地学习、记忆和应用,发挥知识系统的整体优势,并为后续学习打好基础。

课后作业的设计意图:

一、巩固学生本节课所学的知识并落实教学目标;二、让不同基础的学生学到不同的技能,体现因材施教的原则;

三、使同学们体会到科学的探索永无止境,为数学的学习营造一种良好的科学氛围。

篇4: 《对数函数》教案

3. , (0,+)

【拓展引导】

当 时, 的取值范围是

当 时, 的取值范围是

【总结】20xx年数学网为小编在此为您收集了此文章高一数学教案:对数函数,今后还会发布更多更好的'文章希望对大家有所帮助,祝您在数学网学习愉快!

篇5: 《对数函数》教案

教学目标:

①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复

合函数的定义域、值 域及单调性。

③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高

解题能力。

教学重点与难点:对数函数的性质的应用。

教学过程设计:

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1 比较数的大小

例 1 比较下列各组数的大小。

⑴loga5。1 ,loga5。9 (a>0,a≠1)

⑵log0。50。6 ,logЛ0。5 ,lnЛ

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0

调递减,所以loga5。1>loga5。9 ;当a>1时,函数y=logax单调递

增,所以loga5。1

板书:

解:Ⅰ)当0

∵5。1<5。9 1=“”>loga5。9

Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

∵5。1<5。9 ∴loga5。1

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”, log0。50。6>0,lnЛ>0,logЛ0。5<0;lnл>1,log0。50。6<1,所以logЛ0。5< log0。50。6< lnЛ。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函

数 的单调性比大小,②借用“中间量”间接比大小,③利用对数

函数图象的位置关系来比大小。

2 函数的定义域, 值 域及单调性。

例 2 ⑴求函数y=的定义域。

⑵解不等式log0。2(x2+2x-3)>log0。2(3x+3)

师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要

使函数有意义。若函数中含有分母,分母不为零;有偶次根式,

被开方式大于或等于零;若函数中有对数的形式,则真数大于

零,如果函数中同时出现以上几种情况,就要全部考虑进去,求

它们共同作用的结果。)

生:分母2x-1≠0且偶次根式的被开方式log0。8x-1≥0,且真数x>0。

板书:

解:∵ 2x-1≠0 x≠0。5

log0。8x-1≥0 , x≤0。8

x>0 x>0

∴x(0,0。5)∪(0。5,0。8〕

师:接下来我们一起来解这个不等式。

分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,

再根据对数函数的单调性求解。

师:请你写一下这道题的解题过程。

生:<板书>

解: x2+2x-3>0 x<-3 x=“”>1

(3x+3)>0 , x>-1

x2+2x-3<(3x+3) -2

不等式的.解为:1

⒊小结

这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。

⒋作业

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数)

⑵已知函数y=loga(x2-2x),(a>0,a≠1)

①求它的单调区间;②当0

⑶已知函数y=loga (a>0, b>0, 且 a≠1)

①求它的定义域;②讨论它的奇偶性;

③讨论它的单调性。

⑷已知函数y=loga(ax-1) (a>0,a≠1),

①求它的定义域;

②当x为何值时,函数值大于1;

③讨论它的单调性。

篇6: 《对数函数》教案

教学目标:

①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。

③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

教学重点与难点:

对数函数的性质的应用。

教学过程设计:

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1 比较数的大小

例 1 比较下列各组数的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logл0.5 ,lnл

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的.单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0

调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递

增,所以loga5.1

板书:

解:ⅰ)当0

∵5.1<5.9 loga5.1=“”>loga5.9

ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

∵5.1<5.9 ∴loga5.1

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”, log0.50.6>0,lnл>0,logл0.5<0;lnл>1,

log0.50.6<1,所以logл0.5< log0.50.6< lnл。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函

数 的单调性比大小,②借用“中间量”间接比大小,③利用对数

函数图象的位置关系来比大小。

2 函数的定义域, 值 域及单调性。

例 2 ⑴求函数y=的定义域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要

使函数有意义。若函数中含有分母,分母不为零;有偶次根式,

被开方式大于或等于零;若函数中有对数的形式,则真数大于

零,如果函数中同时出现以上几种情况,就要全部考虑进去,求

它们共同作用的结果。)

生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x>0。

板书:

解:∵ 2x-1≠0 x≠0.5

log0.8x-1≥0 , x≤0.8

x>0 x>0

∴x(0,0.5)∪(0.5,0.8〕

师:接下来我们一起来解这个不等式。

分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,

再根据对数函数的单调性求解。

师:请你写一下这道题的解题过程。

生:<板书>

解: x2+2x-3>0 x<-3 x=“”>1

(3x+3)>0 , x>-1

x2+2x-3<(3x+3) -2

不等式的解为:1

例 3 求下列函数的值域和单调区间。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。

下面请同学们来解⑴。

生:此函数可看作是由y= log0.5u, u= x- x2复合而成。

篇7:高中数学对数函数教案

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.

(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.

(2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.

篇8:高中数学对数函数教案

教材分析

(1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

(2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.

(3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点.

教法建议

(1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

(2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

篇9:高中数学对数函数教案

一. 引入新课

一. 对数函数的概念

1. 定义:函数 的反函数 叫做对数函数.

由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .

在此基础上,我们将一起来研究对数函数的图像与性质.

二.对数函数的图像与性质 (板书)

1. 作图方法

提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.

由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.

具体操作时,要求学生做到:

(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).

(2) 画出直线 .

(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近轴对称为逐渐靠近轴,而 的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在 右侧的部分.

学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

2. 草图.

教师画完图后再利用投影仪将 和 的图像画在同一坐标系内,如图:

然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

3. 性质

(1) 定义域:

(2) 值域:

由以上两条可说明图像位于 轴的右侧.

(3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线.

(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

当 时,在 上是减函数,即图像是下降的.

之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

对图像和性质有了一定的了解后,一起来看看它们的应用.

篇10:高中数学对数函数教案

1. 研究相关函数的性质

例1. 求下列函数的定义域:

(1) (2) (3)

先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

2. 利用单调性比较大小 (板书)

例2. 比较下列各组数的大小

(1) 与 ; (2) 与 ;(3) 与 ; (4) 与 .

让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

篇11:对数函数

教学目标

1. 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.

2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.

3. 通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.

教学重点,难点

重点是理解对数函数的定义,掌握图像和性质.

难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.

教学方法

启发研讨式

教学用具

投影仪

教学过程

一. 引入新课

今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

提问:什么是指数函数?指数函数存在反函数吗?

由学生说出 是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:

由 得 .又 的'值域为 ,

所求反函数为 .

那么我们今天就是研究指数函数的反函数-----对数函数.

篇12:高一数学对数函数教案

教学目标:

(一)教学知识点:1.对数函数的概念;2.对数函数的图象和性质.

(二)能力训练要求:1.理解对数函数的概念;2.掌握对数函数的图象和性质.

(三)德育渗透目标:1.用联系的观点分析问题;2.认识事物之间的互相转化.

教学重点:

对数函数的图象和性质

教学难点:

对数函数与指数函数的关系

教学方法:

联想、类比、发现、探索

教学辅助:

多媒体

教学过程:

一、引入对数函数的概念

由学生的预习,可以直接回答“对数函数的概念”

由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:

问题:1.指数函数是否存在反函数?

2.求指数函数的反函数.

3.结论

所以函数与指数函数互为反函数.

这节课我们所要研究的便是指数函数的反函数——对数函数.

二、讲授新课

1.对数函数的定义:

定义域:(0,+∞);值域:(-∞,+∞)

2.对数函数的图象和性质:

因为对数函数与指数函数互为反函数.所以与图象关于直线对称.

因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.

研究指数函数时,我们分别研究了底数和两种情形.

那么我们可以画出与图象关于直线对称的曲线得到的图象.

还可以画出与图象关于直线对称的曲线得到的图象.

请同学们作出与的'草图,并观察它们具有一些什么特征?

对数函数的图象与性质:

(1)定义域:

(2)值域:

(3)过定点,即当时,

(4)上的增函数

(4)上的减函数

3.练习:

(1)比较下列各组数中两个值的大小:

(2)解关于x的不等式:

思考:(1)比较大小:

(2)解关于x的不等式:

三、小结

这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.

四、课后作业

课本P85,习题2.8,1、3

篇13:对数函数教案学案一体化

对数函数教案学案一体化

课题:高中数学必修(1) 2.2.2对数函数(二) 【教学任务】: (1)进一步理解对数函数的图象和性质; (2)熟练应用对数函数的图象和性质,解决一些综合问题; (3)通过例题和练习的讲解与演练,培养学生分析问题和解决问题的能力. 【教学重点】:对数函数的图象和性质. 【教学难点】:对对数函数的性质的综合运用. 【教学过程】: 一、回顾与总结 1 1、函数 的图象如图所示,回答下列问题.     2 (1)说明哪个函数对应于哪个图象,并解释为什么?     3 (2)函数 与   且 有什么关系?图象之间  又有什么特殊的关系? (3)以 的图象为基础,在同一坐标系中画出 的图象. (4)已知函数 的图象,则底数之间的关系: .     1   2   3   4 完成下表(对数函数 且 的图象和性质)         图 象     定义域     值域     性 质     2、根据对数函数的图象和性质填空. 1 已知函数 ,则当 时, ;当 时, ;当 时, ;当 时,   . 1 已知函数 ,则当 时, ;当 时, ;当 时, ;当 时,   ;当 时,   . 二、应用举例 例1.  比较大小:1 , 且 ; 2 , . 解: 例2.已知 恒为正数,求 的取值范围. 解:   [总结点评]:(由学生独立思考,师生共同归纳概括).     . 例3.求函数 的定义域及值域. 解:   注意:函数值域的求法.   例4.(1)函数 在[2,4]上的最大值比最小值大1,求 的值; (2)求函数 的最小值. 解:   注意:利用函数单调性求函数最值的方法,复合函数最值的求法.   例5.(2003年上海高考题)已知函数 ,求函数 的定义域,并讨论它的奇偶性和单调性. 解:   注意:判断函数奇偶性和单调性的方法,规范判断函数奇偶性和单调性的步骤.   例6.求函数 的单调区间. 解:   注意:复合函数单调性的求法及规律:“同增异减”. 练习:求函数 的单调区间. 三、课堂小结: 本小节的目的是掌握对数函数的概念、图象和性质.在理解对数函数的定义的基础上,掌握对数函数的图象和性质是本小节的重点.(引导学生自主归纳,教师点拨完善)   四、作业布置 1、必做题:教材   A组   ※基础达标 1.函数 的图象关于(  ).   A. y轴对称 B. x轴对称  C. 原点对称  D. 直线y=x对称 2.函数 的值域是(  ).   A.  R  B. C.  D. 3.(07年全国卷.文理8)设 ,函数 在区间 上的最大值与最小值之差为 ,则 (  ).   0 x C1 C2 C4 C3 1 y   A. B.  2 C. D.  4   4.图中的曲线是 的图象,已知 的值为 , , , ,则相应曲线 的 依次为(  ).   A. , , ,   B., , ,   C. , , ,   D., , , 5.下列函数中,在 上为增函数的是(  ).   A. B. C. D. 6. 函数 是 函数. (填“奇”、“偶”或“非奇非偶”) 7.函数 的反函数的图象过点 ,则a的值为   . ※能力提高 8.已知 ,讨论 的单调性.               9.我们知道,人们对声音有不同的感觉,这与它的强度有关系. 声音的强度I用瓦/平方米( )表示. 但在实际测量中,常用声音的'强度水平表示,它们满足以下公式:  (单位为分贝), ,其中 ,这是人们平均能听到的最小强度,是听觉的开端. 回答以下问题: (1)树叶沙沙声的强度是 ,耳语的强度是 ,恬静的无限电广播的强度为 . 试分别求出它们的强度水平. (2)在某一新建的安静小区规定:小区内的公共场所声音的强度水平必须保持在50分贝以下,试求声音强度I的范围为多少?                 ※探究创新 10. 已知函数 其中 .(1)求函数 的定义域;  (2)判断 的奇偶性,并说明理由;(3)求使 成立的 的集合.

对数函数课件

对数函数及其性质说课稿

对数函数性质教学反思

数学对数函数教师教学反思

教案网

教案模板格式

教案

教案模板

再别康桥教案

窦娥冤教案

对数函数教案(共13篇)

欢迎下载DOC格式的对数函数教案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档