【导语】“水穷云起”通过精心收集,向本站投稿了12篇求圆柱的表面积 说课稿(人教版六年级下册),下面是小编收集整理后的求圆柱的表面积 说课稿(人教版六年级下册),供大家参考借鉴,欢迎大家分享。
- 目录
篇1:求圆柱的表面积 说课稿(人教版六年级下册)
圆柱的表面积
课前准备 教师自带纸质空心圆柱、课前吩咐学生用纸自制圆柱
教学目标 1、理解圆柱的侧面积和表面积的含义.
2、掌握圆柱侧面积和表面积的计算方法.
3、会正确计算圆柱的侧面积和表面积.
教学重点 理解求表面积、侧面积的计算方法,并能正确进行计算.
教学难点 侧面积公式的推导过程、运用圆柱表面积有关知识解决实际问题.
1、学习内容紧密联系生活实际。
2、学习的方式以动手实践、自主探索与小组讨论为主。
教学内容
一铺垫孕伏、创设情境 1 复习上节课的内容
提出问题:(1)举例说出生活中有哪些实物是圆柱体
(2)请同学说出圆柱的特征以及圆柱表面积的组成
二、、引导探究、学习新知 1 实例:如图做一个圆柱形有盖纸盒,至少需要用多大面积的纸板(接口不计)
画图:在黑板上画一高为10厘米、半径为5厘米的圆柱
说明题目的实质:即已知圆柱的高位10厘米、半径为5厘米,求圆柱的表面积,进一步说明问题是怎样求出侧面。
2让学生拿出自制的圆柱摸摸圆柱的侧面,让大家猜想一下圆柱的侧面展开图是一个什么图形。
3 请大家把上节课老师吩咐做的圆柱模型沿着一条任意一条直线剪开,看看侧面是什么图形。
有三种:长方形、正方形、平行四边形(并画出三种图形)
4对这三种图形的面积进行求解并与圆柱的底面周长联系起来,推导出圆柱侧面积的公式。出示:圆柱的侧面积=底面周长×高
三、课堂比拼、增添活力 将全班同学分成两个组:甲组和乙组,以下题目只需列式子不需要计算,以举手的形式进行抢答,看哪组更厉害。
题目部分:
1 一圆柱杯子的高为4厘米,底面半径为6厘米,求圆柱的表面积。
2 小明家有一个圆柱形无盖的油桶,经小明测量高为8厘米,底面半径为5厘米,现在小明想知道这个油桶的总面积,你能帮帮他吗?
3求下列圆柱体的表面积。(单位:厘米)
4 求下列圆柱体的侧面积
①C=9.42厘米,h=5厘米。
②d=8米,h=3米。
③r=2分米,h=6分米
四 联系生活、实践应用 学生在下面完成,老师进行讲解。
1 制作一个底面直径20厘米、长50厘米的圆柱形同风管,至少要用多少平方厘米铁皮?
2砌一个圆柱形的水池,底面直径2.5迷,深3米。在池的周围与底面抹上水泥,抹水泥的面积是多少平方米?
3 油桶的表面要刷上防锈油漆,每平方米需要用防锈油漆0.2千克,油桶的底面直径为0.6米、高为1米,漆一个油桶大约需要多少防锈油漆?(结果保留两位小数)
五 课后任务 让学生回去用纸片任意制作一个圆柱,用尺片量出直径和高,计算出表面积,明天带过来。
六 教学与反思 1有长方体、正方体的表面积做基础,学生能较快把握好圆柱体表面积的算法。大部分同学已有了初步的空间想象力,学起来很轻松。反差较大的是少数几个缺乏空间想象力,对侧面积即侧面展开图的长和宽与圆柱的关系难以理解,不能顺利进行计算。这部分人需要在教学中出现更多直观的演示。
2 在做题目的过程当中要注意一些关键的词语,如“无盖、管状圆柱”等,要学会灵活运用。
3 同学们在以后的生活中应多多观察生活中的圆柱体,并试着运用所学的知识去帮爸爸妈妈解决问题。
篇2:小学六年级下册《圆柱的表面积》说课稿
小学六年级下册《圆柱的表面积》说课稿
各位评委,各位老师,大家好,今天我说课的题目是《圆柱的表面积》,我将从说教材、说教法,说学法,说教学程序,说板书设计,说反思等六个方面来介绍我的构思和见解。
一、说教材
1、教材分析
《圆柱的表面积》是北师版小学六年级下册第一单元的一个内容,是在学生学习了面的旋转,了解了点、线、面体之间的关系,和认识了圆柱、圆锥的基本特征后,安排的一节探索活动课。通过让学生观察、想象、操作等活动,运用迁移规律掌握圆柱的侧面积、表面积的计算方法,并加以应用,以解决生活中实际问题。学好这部分内容,可以进一步发展学生的空间观念,为学生学习其它几何知识打下坚实的基础。
2、学习目标
1、知识目标
知识目标有二。第一、理解圆柱体表面积的含义,并了解侧面展开图的形状,掌握圆柱体侧面积和表面积的计算,这是本节的重点。第二、理解侧面展开图与圆柱体各部分间的关系,这是本节课的难点。
2、情感目标
通过观察、想象、操作等活动,让学生体验到数学知识的广泛性,探索性和挑战性,体会数学与生活的联系,从而培养学生大胆猜想和顽强学习的毅力等等。
二、说教法
教无定法,贵在得法,为让学生能轻松愉快地学,积极主地探索、根据学生实情,我采用成功教学法,以手动操作,自主探索,合作交流,直观演示等方式为主,在加上老师的适时点拨,学生间的互相补充,评价等方式为辅,帮助学生学习,从而达到学习目标
学具准备:小圆柱体、剪刀、直尺等。
三、说学法
教给学生一个好的学习方法,胜做一百道题,可以让他们在今后的学习中永远立于不败之地,为此,本节课,我注重了对学生以下学法的指导。
1.动手操作,自主探索。
记得南宋诗人陆游在《冬夜读书示子聿》中写道: “古人学问无遗力, 少壮工夫老始成。 纸上得来终觉浅, 绝知此事要躬行”。说的就是知识的取得贵在实践,数学中的很多知识,不能仅靠老师的赐予,老师应多鼓励学生去探索、去发现、只有自己的亲身体验,才能深知原因为何!
2.合作交流
俗话说:三个臭皮匠,顶个诸葛亮。一个人的力量是有限的,而众人的智慧是无穷的,通过小组的'合作、交流、讨论,可以让知识展现得更加明彻,让同学们理解得更透、掌握得更牢。从而有助于同学们理解教学重点 。
3.直观演示法
我们知道立体图形的知识是相当抽象的一个内容,学生在理解上由于空间观念不强,所以很难想象,为此,我要求学生用操作,演示的方法学习,这样可以更直观地展示知识,从而有助于学生突破学习中的难点。
四、说教学程序
由于上一节课同学们已认识了圆柱的有关特征,我课下也会让学生自己动手做一个小圆柱。所以教本课时,为吸引学生,调动其积极性,我设计了这样一个情景:上节课老师让大家做的小圆柱体都做好了吗?同学们肯定会高兴拿出自己的杰作,向我炫耀一番,这时我会夸奖几个做得较好的,但话锋一转,又问:你知道你做的这个小圆柱体用了多少纸板吗?同学们肯定会大为失色,茫茫然,从而引出本课的课题——《圆柱的表面积》。为让学生明确学习目标。我会用这样的一句话来过渡:“学习好比远航,没有目标就没有方向,谁能给大家指明今天的学习方向”。从而让学生明晰今天的学习目标。
在目标明确后,我会让他们根据老师指定的自学方法进入今天的自学环节。同学们在边观察、边操作、边想象中进入合作学习,这时候老师会走下讲台,和他们一起学习、探究。并适时辅导在学习上走弯路的同学。在短短的10分钟后,就开始了质疑-解疑的环节,对于一般的疑点我会找学生及时解答,而对于难一些的问题就让他们小组合作,讨论交流完成,让同学们在自学中初次尝到成功的喜悦。
根据成功教学案的设计原则,学什么量什么,为此我在量学中设计了几道填空题,目的是让同学们把在自学中获得的知识、发现和收获用文字的形式表达出来。学习方式为:先独立完成再合作交流。我一直认为导学的环节是学生展示、汇报的时间,为调动其积极性,我会这样来激励:“同学们,通过你们的合作学习相信你们有了很多的收获,何不趁此机会展示一番呢?”同学们受此激励兴趣大发,会把自己的发现和收获一同汇报,有的说思路,有的说方法,有的说提醒,有的说注意点…..过程精彩纷呈,高潮迭起,老师只作为一个活动的组织者和引导者,这样就真正做到了以学生为主体,老师为主导的教学思路。
用学中,为检查同学们在三次学习后的学习效果,在此我设计了两道习题,以让90%的同学能做会为主,通过及时的巩固,可以让知识掌握的更加牢固。学习方式为:两生板演,后讲解解题思路。为满足不同层次学生的学习渴望,真正实现“让每一个学生成功”的办学思想,在测学中我设计了三类题目:基础过关,综合应用、拓展拔高。既达到了巩固的目的,又满足了优秀学生吃不饱的现象,真正实现为每一个学生成功而服务。
五、说板书
板书能加强教学的直观性,能唤起学生的注意力,增强学生的记忆力和理解力,为此我的板书设计以简单明了为根本宗旨,重在重点突出,清晰易记。板书如下:
圆柱的表面积
圆柱的表面积=侧面积+2个底面积
圆柱的侧面积=长方形的面积(展开后)
= 长 × 宽
=底面周长×高
用字母表示 : S侧=ch
篇3:小学六年级数学下册圆柱的表面积说课稿
今天,我说课的题目是《圆柱的表面积》。秉持着一切为了学生,为了学生一切的教育理念,我将从教材分析、教学目标、教学过程等几个方面对本节课加以阐述。
首先我来说说对教材的.理解。
本节课是学生初次接触圆柱这个几何体,要求学生认识掌握圆柱的特征,进而在理解的基础上掌握圆柱的侧面积、表面积的计算方法。本节课的学习以长方形和圆的面积为基础,又为后面学习一些其它几何体作了铺垫。
一堂成功的课,不仅要熟悉教材,还需要老师充分的了解学生。
本节课的授课对象是小学五年级的学生,该年龄段的学生正处于从具体形象思维向抽象逻辑思维过渡的阶段,他们的观察能力。想象能力和概括能力都有了一定的发展。但同时该年龄段的学生好动,注意力易分散。所以在教学中我抓住这些特点运用直观生动的形象,使学生们的注意力始终集中在课堂上。
依据前面对教材的分析和对学情的把握,我确定了如下三维教学目标:
知识与技能:掌握圆柱体侧面积、表面积的计算方法。
过程与方法:通过动手操作、合作交流,发展学生的空间观念以及事物间相互联系相互转化的观点。
情感态度与价值观:经历对圆柱体侧面计算的积探索,体验学习数学的乐趣,培养创新意识。
基于以上对教材、学情的分析,结合教学目标,我将本节课的重难点确定为:
重点:掌握圆柱的表面积计算方法。
难点:圆柱体侧面积公式的推导。
为了教学目标的顺利实现,并遵循着“学生为主体,老师为主导”的教学原则,本节课我采用情景教学法、启发法、讲授法等多种教学方法,引导学生动手操作、讨论交流。
新课标指出,教学过程是教师引导学生进行学习活动的过程,是教师和学生间交往互动、共同发展的过程。为有序的进行教学,本节课,我共设计了以下四个环节
(一)创设情景,导入新课
我用多媒体直观展示一盒可比克薯片,引导学生观察圆柱形纸筒外包装,并顺势提问学生,做这样的圆柱体至少需要多少纸板?利用学生熟悉且感兴趣的事物激发起学生的学习兴趣,由此引出本节课题。
(二)本着“重结论的同时更重过程”的理念,带领学生进入启发诱导,探索新知环节
根据学生实际情况,将前后四人分为一组,每组发放一个与屏幕上大小一样的圆柱形纸筒和一把剪刀。
先让学生思考怎样求圆柱体侧面积?然后引导学生把圆柱形纸筒沿着高剪开,看看变成什么图形。提醒学生用剪刀时要注意安全。我进行巡视,并予以指导。学生汇报交流。并让大家都举起自己的小成果展示给大家看。然后用多媒体演示圆柱转化成长方形和两个底面的过程。
接着让学生思考,剪开后的各部分图形与圆柱的各部分有什么关系?让学生充分表达自己的想法。对学生的回答给予赞扬,并完善:圆柱的侧面展开后是一个长方形,长方形的长就是圆柱底面的周长,长方形的宽就是圆柱的高。而且又一次用到了“转化”。
让学生尝试着写出侧面积怎样算?他们会比较容易的写出 圆柱侧面积=底面周长×高
也就是圆的周长乘高。
我紧接着再问学生,圆柱的表面积能求出来了吗?让学生先在练习本上写,然后请同学分享。并归纳:圆柱的表面积=侧面积+底面积×2。通过学生自己动手探索及我的一系列追问,促使学生主动思考,成功掌握了本节重点。
(三)巩固练习
为让每一位学生都有不同程度的提高,我设置了不同层次的练习题:
首先,基本练习。计算手中圆柱的侧面积和表面积。同位之间,做的慢的要给做的快的捶捶背。
其次,加强练习。用多媒体展示一道应用题,让学生做一做。
最后,拓展提升题。
(四)小结
让学生谈收获,我及时评价,共同完善。
然后,给学生布置一个小任务,让学生把今天的收获带回家,分享给父母,并与父母一起尝试着制作一个圆柱体,被计算出其表面积。通过学生与父母一起动手,一方面巩固今天所学知识,更重要的是促进家长与学生间的情感交流。
(五)最后,说一下我的板书:
圆柱的表面积
圆柱的侧面积=圆的周长×高
圆柱的表面积=侧面积+底面积×2
我的板书清晰明了的向同学们呈现了本节课的知识点。
篇4:小学六年级数学下册圆柱的表面积说课稿
一、说教材分析:
圆柱表面积的计算是九年义务教育六年制小学数学第十二册第二单元的学习内容,应当在学生掌握了长方形以及圆的面积计算的基础上进行教学。这部分内容的学习为后面学习一些立体几何知识打下基础。
二、说教学目标:
根据《数学课程标准》的理念学生的学习目标应将知识与技能、过程与方法、情感态度与价值观这三方面融为一体,为了落实这几点,本节课我们的教学目标制定如下:
1、知识与技能。
通过想象和操作等活动,加深对圆柱特征的认识,理解圆柱表面积的的含义,知道圆柱的侧面展开后可以是一个长方形。
2、过程与方法。
学生通过触摸、观察、操作等多种方法提高分析、概括的能力,理解空间观念,并能利用知识合理灵活地分析、解决实际问题。结合具体的情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
3、情感态度与价值观
让学生亲身体验到数学活动充满着探索性和挑战性,通过自主探索和合作交流,使他们敢于发表自己的见解,能够从交流中获益。通过学生们自己的认识来制定教学目标符合学生学习数学的认知规律,让他们亲身经历问题的解决过程,提高他们对问题的感性认识,经过一系列的实践和计算,提高他们对问题的理性认识。能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中的一些简单的实际问题,体会数学与生活的联系;培养学生的观察、操作、想象能力,发展学生的空间观念,渗透转化的思想。也可以培养学生良好的个性品质,包括大胆猜想勇于探索的创新精神,顽强的学习毅力等。
三、说教学重点与难点:
圆柱体的侧面积和表面积在本课教材中占重要地位,它们是学习其它几何知识的基础。所以本课的重点是:探索圆柱体侧面积、表面积的计算方法,并能运用圆柱侧面积和表面积的计算方法解决生活中的一些简单的实际问题。
由于圆柱体的侧面积计算较为抽象,加之学生的空间想象力不够丰富,所以本课的难点是:理解圆柱侧面展开的多样性,将展开图与圆柱的各部分联系起来,并推导出圆柱体侧面积和表面积的计算公式。而解决这一难点的关键是:把圆柱体的侧面展开后所得到的长方形各部分同圆柱体各部分间的关系。
四、说教学目标:
为了更好的突出重点突破难点并遵循学生为主体,教师为主导的教学原则,要按照学生从感性认识到理性认识、从特殊到一般的认识规律,遵循启发式引导学生展开思维、探究证明思路、循序渐进的教学方法,最大限度提高学生的参与率。这样的教学方法主要是让学生主动、自觉地学习,让他们在学习中学会学习,这实际上式交给了学生自由飞翔的翅膀,交给了他们点石成金的金指头。
五、说学习方法:
在本课的学习活动中注重培养学生的空间观念、想象力、动手操作能力、探索能力和推理概括能力。所以学生的学法以学生自备的圆柱形纸盒、长方形纸、剪刀等学具为载体,在老师的引导下进行学习活动。学习活动以小组共同探索、交流讨论、合作学习为主要形式,教师适时进行点拨,创设平等、自主、和谐的教学环境,通过学生的动手操作、观察、比较、推理、概括等充分调动学生多种感官的参与,让学生全面参与新知的发生、发展和形成过程,并学会操作、观察、比较、分析和概括,学会想象,学会与人交往。在活动中获得成功的体验,从而培养学生学习数学的兴趣,得到人人学有价值的数学这个目的。
六、说教学过程:
在我们的课堂教学中我们应以学生的发展为本,以学生的活动为主线,让学生充分的参与到课堂活动中来,为了落实这几点,我按以下四个阶段完成本课。
(一)温故而引新,巧妙入境。
这个过程我展示3个方面的复习内容:
(1)我知道圆柱的特征是
(2)圆的周长怎样计算?圆的面积又是怎样计算的呢?说一说,并用字母表示出来。
(3)你知道长方形的面积怎样计算吗?
以上设计让学生逐题完成,通过个人汇报集体评价的形式来进行。让学生在复习中进一步掌握圆柱的特征,回顾圆的周长和面积的计算方法及长方形的面积的计算方法。这些知识完全与圆柱的侧面积和表面积的计算有关,为下一步探索圆柱的侧面积和表面积计算方法作好铺垫,同时也让学生领会到新旧知识之间的联系,充分体现数学知识的前后连贯性。
(二)设置悬念,创设探究情境,激发学生的探究欲望,引出本课的探究主题。
在此我用富有激励性的语言来引导学生:
请你拿出自己准备的圆柱形纸盒,这是我给大家准备的一个模型,现在我请大家帮助我设计一个你手中的模型一样的圆柱形纸盒,你能告诉我你需要多大面积的纸吗?(让学生沉思一会儿后请学生起来汇报,发表自己的意见,根据学生的回答,慢慢引导学生理解这实际上是求圆柱的表面积,然后引导学生分别说一说自己对圆柱表面积的认识。)
你知道圆柱的表面积指的是什么吗?(这样通过说一说让学生理解圆柱的表面积的含义,进而引出新课,揭示课题。)
这就是我们今天研究的主题《圆柱的表面积》。
这样设计让学生明白探究的必要性,让学生明确探究目的和探究方向,同时又具有挑战性,能激发学生的探究兴趣。
(三)动手操作,合作研究,汇报交流,发现联系,总结方法。
1、动手操作。
你知道圆柱的侧面是个什么面吗?你能想办法让它成为我们认识的图形吗?请你用手中的长方形纸、剪刀动手做一做,试试看。
让学生自己动手进行尝试,教师进行巡视、引导和点拨,通过学生动手将圆柱的侧面展开成平面图形的过程(比如让学生想办法把圆柱的侧面展开,或者用长方形纸卷成一个圆柱的侧面,或用大卷的塑料胶带做演示),来感受化曲为直的思想,获得直观的感受。
2、合作研究。
如果沿着圆柱的一条高把圆柱的侧面展开,会得到什么图形呢?请你和你的同伴说说看。
3、汇报交流。
让学生把自己的展开结果展示给大家看。
4、进行推理,总结方法。
引导学生通过测量圆柱底面周长和侧面展开后得到的长方形的长或用彩色笔做记号的方法,让学生自己分析出圆柱的底面周长和侧面展开成的长方形的长之间的关系。然后引导学生进行概括总结:你知道长方形的面积怎样计算吗?那么圆柱的侧面积又是怎样计算的呢?
因为有了上述的探究过程,学生很自然而然的就会概括出圆柱的侧面积的计算方法:底面周长乘高,也就是圆的周长乘高。学生概括出公式以后让学生写下来,并读一读,用黑板展示出来。然后让学生思考:要求圆柱的侧面积需要知道哪些条件呢?
引出例1:已知一个圆柱的底面直径是0.5m,高是1.8m,求它的侧面积。(得数保留两位小数)
5、归纳新知。
你现在知道怎样求圆柱的表面积了吗?先自己写出你的研究结果,再和同伴交流交流,然后向大家展示你的成果,让大家分享你的成功,通过独立思考同伴交流全班汇报总结,促进构建。
这是作为新课必要的一个环节,通过学生自己总结和评价,既加深了学生对新知识的理解和消化,又让学生体验到学习数学的价值和兴趣。结合板书,让学生说说本课学到的知识,并说出是怎样学到的。
这一环节的目的是让学生对本课所学的知识有系统的认识,培养学生整理知识的能力,引导学生总结学习方法,达到学会学习的目的。
篇5:《圆柱的表面积》教学设计与反思 (人教版六年级下册)
《圆柱的表面积》教学设计与反思
教学内容:P13-14页例3-例4,完成“做一做”及练习二的部分习题。
教学目标:
1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
教学重点:掌握圆柱侧面积和表面积的计算方法。
教学难点:运用所学的知识解决简单的实际问题。
教学过程:
一、复习
1.指名学生说出圆柱的特征.
2.口头回答下面问题.
(1)一个圆形花池,直径是5米,周长是多少?
(2)长方形的面积怎样计算?
板书:长方形的面积=长×宽.
二、新课
1.圆柱的侧面积。
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2.侧面积练习:练习七第5题
(1)学生审题,回答下面的问题:
① 这两道题分别已知什么,求什么?
② 计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3. 理解圆柱表面积的含义.
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
4.教学例4
(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
① 侧面积:3.14×20×28=1758.4(平方厘米)
② 底面积:3.14×(20÷2)2=314(平方厘米)
③ 表面积:1758.4+314=2072.4≈2080(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
三、巩固练习
1.做第14页“做一做”。(求表面积包括哪些部分?)
2. 练习七第6题。
板书:
圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
例4:① 侧面积:3.14×20×28=1758.4(平方厘米)
② 底面积:3.14×(20÷2)2=314(平方厘米)
③ 表面积:1758.4+314=2072.4≈2080(平方厘米)
《圆柱的表面积》教学反思
本课用课前预习课上小组内交流汇报的教学方式组织教学,课前布置了《圆柱的表面积》预习提纲 :1、什么是圆柱的表面积?2、沿着圆柱的高剪开圆柱的侧面,侧面展开图是什么形状?3、怎样求圆柱的侧面积? 4、怎样求圆柱的底面面积?5、怎样求圆柱的表面积?
课上学生很快讨论出圆柱体表面积的计算方法。由于学生在之前的学习中已经接触了“化曲为直”的数学方法,所以把圆柱体的侧面展开成长方形(或正方形)学生已经能想象和深刻理解,并且通过想象和推理能够明确展开的长方形的长(宽)就是圆柱体底面的周长,展开的长方形的宽(长)就是圆柱体的高,因此,学生对于怎样求圆柱体的表面积能够理解和初步掌握。
但是,通过学生尝试计算圆柱体表面积的过程中,仍然存在许多问题,第一:学生对于圆柱体的表面积的计算方法虽然初步掌握但是很不熟练,具体表现在求圆的面积和圆的周长时,特别容易出现混淆,原因就是对求圆的面积和圆的周长的计算办法掌握欠熟练,特别是求圆的面积时,部分学生总是忘记把半径进行平方,或者是直接用给出的直径去平方,这都是对圆的面积计算办法掌握不熟练的表现;第二:学生的计算能力和计算正确率都有待提高,由于在计算过程中出现了圆周率,又有半径的平方的计算,所以很多学生的计算正确率很低。原因就是学生的口算能力、笔算能力都没有形成技能,只掌握计算方法但不能熟练准确的计算,这都是学生能够准确求出圆柱体表面积的障碍。
针对这种情况,我打算采取这样的办法:第一:强化学生对圆的面积和圆的周长、圆柱侧面积的计算办法。第二:在计算时提醒学生仔细认真,出错时要找出出错的原因,对证改错。同时结合课前三分钟计算的时间,加强学生的计算练习。
总之,让学生熟练准确的计算圆柱的表面积和侧面积,可以为下一步学习和计算圆柱的体积扫清障碍。
篇6:圆柱和圆锥的教材分析 说课稿(人教版六年级下册)
人教版小学数学六年级下册第二单元教材分析
各位领导、老师下午好:
今天我说课的内容是人教版小学数学六年级下册第二单元《圆柱与圆锥》。下面我将从说课标、说教材、说建议三个方面进行教材分析。
一、教学内容。
第二单元《圆柱与圆锥》属于《空间与图形》版块中图形的计算。包括:
圆柱认识、圆柱的表面积、圆柱的体积、圆锥的认识、圆锥的体积。
二、教学目标。
1、单元教学目标:
知识目标:认识圆柱和圆锥,掌握他们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
能力目标:探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
情感目标:通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
2、教学重点:
(1)圆柱的表面积、体积的计算。
(2)圆锥体积的计算。
3、教学难点:
(1)圆柱的表面积和体积的计算公式的推导
(2)圆锥体积的计算公式的推导。
(3)圆柱与圆锥的体积之间的关系
三、学情分析。
本单元是在学生已经掌握了长方体、正方体、圆的有关知识的基础上编排的,是小学阶段学习几何知识的最后一部分内容。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体,这些都是本单元知识学习的重要基础。学习圆柱和圆锥的知识扩大了学生认识形体的范围,增加了形体的知识,促进空间观念的进一步发展。
四、说教材
一、特点一:结合具体情境,和操作活动,初步认识点、线、面和体的关系
课标教材新增设了一个由平面图形旋转得到立体图形。这一内容的增加能使学生对立体图形有个完整的认识。分别在教材的11页和24页,通过快速转动贴有长方形纸和直角三角形纸的小棒,使学生从旋转的角度全面地认识圆柱和圆锥,感受平面图形与立体图形的转换。在做转动纸片活动时,我们采取的方法是先让学生猜测,再操作。教学这一环节时我们分了三步进行:①猜一猜:转出来是什么形状?②自己动手快速转动小棒,验证自己的猜想。③强化辨析:出示
4 2 3 2
2 4 2 3
问:这两个长方形分别以4或2为轴旋转,得到的圆柱体一样吗?为什么?
多找几个学生回答,最后得出结论:以长方形的哪条边为轴旋转,哪条边就是圆柱的高,那么另一条边是圆柱的底面半径。
最后再让学生具体说说上面两个长方形旋转后得到的圆柱的底面半径和高分别是多少?
通过上面三步层层递进,让学生对由平面图形到立体图形有了完整的认识。(圆锥的教学跟圆柱类似,在这就不再多做解释。)
二、从例题选材和公式推导的呈现形式方面的变化角度。
加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。
课标教材中例题的选取也加强了与生活的联系,除了26页例3沿用老教材的例题外,其他例题均来自与生活。如,对圆柱、圆锥的认识。教材均通过列举大量生活中的圆柱、圆锥形实物,在学生观察思考这些物体形状的共同特点,并从实物中抽象出它们的几何图形的基础上引入。还有表面积实际应用中的例4,计算一顶厨师帽所需的面料;圆柱体积实际应用中的例6,问杯子里能不能装下一袋奶?这些都是学生熟悉的生活中的数学问题。
另外,课标教材中公式推导的呈现形式跟老教材也有所不同。在以往这些部分内容的编排更侧重于理解和掌握图形的特征和表面积、体积的计算方法,而对于促进学生空间观念的发展在学习素材和实践操作方面都显不够。实验教材加强了动手实践、自主探索,让学生经历知识的形成过程,获得更多的自主探索和空间观念的训练机会。例如,圆柱的特征,是让学生动手实验、自主探索得到的。在教学圆柱展开图的特征时,教材从让学生自主探索“圆柱的侧面展开后是什么形状?”开始,让学生动手操作,剪一剪并展开观察,再把展开得到的长方形重新包上,探索并发现此长方形的长等于圆柱底面的周长,宽等于圆柱的高。这就为进一步探索圆柱表面积的计算方法打下基础,也加深了学生对圆柱特征的认识,锻炼了学生空间想像的能力。
再比如在教学圆柱表面积的时候,是通过一系列的问题来激发学生的学习探究欲望,圆柱的侧面展开后是什么形状?长方形的长、宽与什么有关?有什么关系?圆柱的表面积指的是什么?怎样计算呢?在推导圆锥体积时则创设了一个问题情境“如何知道像铅锤这样的物体的体积?”来引导学生探索圆锥的体积公式。
我们要充分利用教材提供给我们的教学资源,加强与实际生活的联系,加强了对图形特征、求表面积和体积方法的探索过程,重视运用所学知识解决实际问题的意识与能力的训练。
三、关于习题的编写和处理
课标教材相对老教材来讲,从习题的选材,到呈现的形式上更贴近学生的生活,符合学生的认知特点,如情景图,丰富多彩的形式,简洁明了的文字(条件和问题的提出多以插图的形式呈现出来)……这些都激发了学生无穷的解答兴趣。其中好多题目都是从学生熟悉的日常生活中提炼出来的,通过这些题目的练习更能使学生体会到学习数学的重要性和必要性。课标教材虽然有很多值得肯定的地方,但我们认为也有些许不足,比如习题只兼顾到联系生活实际,没有考虑到学生计算的基础,有些习题数据偏大,给学生的计算其实是增加了难度,对于这些题目我会具体谈谈我们的一些做法,供大家参考。下面我就其中一些习题及处理形式跟大家交流,主要说一说新增加的习题,大家可以看着课本。
1、教材练习二中的第4题,考查学生对圆柱侧面的长与圆柱底面周长的关系的掌握情况。学生判断后,重点让学生谈谈理由。还可以让学生想一想,如果把第2、3个图形围起来,会出现什么情况?加强对圆柱侧面的长与圆柱底面周长的关系的理解,发展空间观念。
第6题,计算下面各圆柱的表面积。三道题的条件其实是相同的,都是已知直径和高,这样学生练习起来比较单一,因此我们把其中条件进行了修改,第一小题直径12改成了已知圆周长12.56;第二小题直径5改成了半径2.5。这样三种情况学生都进行尝试,相对来说比较全面。
第7~10题,是解决实际问题。关键是帮助学生理解问题的实际含义,把它转化为数学问题,弄清求的是圆柱哪些部分的面积。可以通过教具或图形帮助学生直观理解。比如第7题,就可以用圆柱形纸筒代替压路机前轮滚动一周,使学生看到所压路面的面积就是前轮的侧面积。
第11题,是新增加的一个题目,对学生来说问题不大,很容易判断出是什么形状,万一有困难或争议大的,可以事先准备些实物,现场演示来帮助理解。
第16题,要让学生理解计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。
第17题,要提示学生注意是上下底面分别留出了78.5平方厘米的口,应减去的部分是两个78.5。这道题有两种解法:一种是用圆柱的表面积减去2个78.5,另一种是用圆柱的侧面积加上下两个圆环的面积。学生选择自己比较容易理解的方法去做。
2、教材练习三中一些习题的说明和教学建议。
第3题,虽然题目简单,但学生计算起来难度较大。
第8题,这道题关键是要学生理解求减少的土石方就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2 m,高为0.25 m的圆柱。
第11题,教学前要准备实物或教具。让学生通过观察,在独立思考的基础上,可以小组交流,最后汇报方法,学生得出了两种方法,一是用大圆柱的体积减去中空的小圆柱的体积,二是用横截面的面积(即圆环的面积)乘钢管的长来计算,不管哪种方法都应该给予肯定,这时候要让学生选取自己喜欢的方法进行。
在进行这一单元的整理和复习时,仍然要借助直观的教具和学具等帮助学生回顾、总结图形的特征和计算方法。比如,复习圆柱的表面积时,让学生根据圆柱的展开图,写出计算侧面积和表面积的计算公式,以帮助学生理解和记忆。同时还要注意知识间的联系与区别。圆锥的体积计算公式学生容易忘记乘 ,因此复习时,一方面要引导学生回忆圆锥体积计算公式的推导过程,另一方面也可以加强有关圆锥、圆柱体积关系的对比练习。在对这部分进行复习时可以补充类似课本27页第4题,28页第7题那样的练习,以帮助学生弄清圆柱圆锥体积的关系。另外,圆柱的表面积和体积也是两个容易混淆的概念,复习时,要通过具体例子加以区别。完成第29页第3题后,可让学生说一说它们之间的联系和区别,以便分清概念和所用的公式及计量单位。其中的第1问求至少用多少布料?要让学生根据给的图来判断是求几个面的面积。
第4题,求一块蜂窝煤的体积,让学生通过讨论交流后得出两种方法:一是用大圆柱体积减去12个小圆柱的体积,二是用大圆面积减去12个小圆的面积先得出来底面积,再底面积乘高得出体积。计算起来特别繁杂。
四、加强动手操作,让学生经历探索知识的过程,培养自主解决问题的能力。
这一单元特别加强了对图形特征、计算方法的探索。为此,教学时,应放手让学生经历探索知识的过程,在观察、操作、推理、想像过程中掌握知识、发展空间观念。
如,对圆柱的表面积、圆柱、圆锥体积的教学,教材注意拓宽学生的探索空间,加强对图形计算方法的探索,加强在操作中对问题的思考。例如对圆柱表面积的教学,教材一开始就提出问题:圆柱的侧面展开后是什么形状?让学生动手操作,剪一剪展开观察,再进一步探索:长方形的长、宽与什么有关?有什么关系?长方形的长与圆柱底面的周长的关系,宽与圆柱的高的关系是学生在自主操作、观察与探索过程中获取的。在此基础上教材又提出进一步探索的问题:圆柱的表面积怎么计算呢?使学生探索得出:圆柱的表面积=圆柱的侧面积+两个底面的面积,圆柱的侧面积=底面周长×高。
又如圆锥体积的教学,教材首先创设了一个问题情境“如何知道像铅锤这样的物体的体积?”引导学生探索,并给出提示:圆锥的体积和圆柱的体积有没有关系?然后引导学生通过实验,探究圆锥和圆柱体积之间的关系。教学时,要大胆放手让学生探究,注意提供给学生积极思考,充分参与探索活动的时间和空间。其中圆锥的体积等于与它等底等高的圆柱体积的 这一结论应让学生在经历试验探究的过程中获取,要改变只按教材说明进行演示得出结论的做法。
还有,在认识圆柱和圆锥时,教材增加了用长方形(或三角形)的硬纸贴在木棒上快速转动的活动。也应该让学生制作一个简单的学具,亲自转一转,从操作的过程中得出结论。
六、具体安排
整理和复习
课时安排建议:一课时。
1、引导归纳总结,形成知识网络。
2、借助直观手段帮助学生回顾、总结图形的特征及计算方法。
3、注意知识之间的内在联系与区别。
6、温馨提示。
(1)本单元在整理复习时,不仅要关注图形的计算方法,更要 图形计算公式的的推导过程。
(2)要注意区分圆柱体积计算公式和侧面积计算公式。
“数学游戏”──“剪大洞”
教材(第31页)则是让学生在动手实践过程中,体会图形变换的奇妙,等等。让学生有更多的机会应用数学知识,进行自主探索的实践,并通过这些活动获得自己成功、能力增强等良好体验,从而逐步增强学好数学、会用数学的信心。
篇7:求圆柱的表面积说课稿
求圆柱的表面积说课稿
一、教材与学情分析
1、教材分析
本节课的教学内容是在学生认识掌握圆柱基本的特征,进而在理解的基础上掌握圆柱的侧面积、表面积的计算方法。教材是在学生掌握长方形面积、圆的周长和面积计算方法的基础上安排的,因而要以上述知识为基础,运用转化、迁移的方法理解和掌握圆柱体的侧面积、表面积的计算方法,并且能运用这一知识解决一些简单的实际问题。另外学好这部分内容,可以进一步发展学生的空间观念,为以后学习其它几何形体打下坚实的基础。本课教材分圆柱表面积的含义,计算方法和表面积的实际应用三部分内容。
2、学情分析:
为了使教学设计更贴近学情,有效的完成教学目标,我在课前对学生的知识基础和学习经验进行了调研,这是课前调研的内容和统计的结果:从调研结果可以看出学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积指的是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过奥数的。由此可知,学生对圆柱的表面积了解的比较少,存在着一定的困难。
二、教学目标
因此,依据教材和学情,我制定了如下教学目标。
知识目标:在探究活动中,使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
能力目标:培养学生观察、操作、概括的能力,以及利用知识合理灵活地分析、解决实际问题的能力。
情感目标:培养学生初步的逻辑思维能力和空间观念,向学生渗透事物间的相互联系和相互转化的观点。
三、教学重点:能应用圆柱体侧面积、表面积的计算方法解决实际问题。
四、教学难点:探究圆柱体侧面积、表面积的计算方法。
五、教具准备:每组一套学具(包括能组成圆柱体的长方形、正方形、平行四边形和多个圆及其他图形)
六、教学主要环节:
为有效的落实教学目标,突破教学重、难点,在本节课中,我共设计了四个环节。
(一)激趣导入,初步感受
(二)动手操作,探求新知
(三)巩固应用,拓展提高
(四)回顾整理,总结收获
第一环节:激趣导入,初步感受
平面图形的面积学生已经会求了,而圆柱的侧面是个“曲面”,怎么样才能求出这个“曲面”的面积就成了圆柱表面积教学过程中的难点。于是让圆柱的侧面“由曲变直”,使新知识在一定的条件下统一起来就成了一个关键性的问题。
课前,我发给每组学生一份材料袋,并对他们说:“同学们你们想不想亲手制作一个圆柱体?老师为你们准备了一些材料,请你们四人合作,制作一个圆柱。柱体部分的接缝可用胶条粘好,上下两个底直接搭在柱体上下就可以了,不用粘上。在制作的过程中思考一个问题:你们是如何选择材料的?你有什么新的发现?
这样一来,把学生理解上的难点“由曲变直”,转化为“由直变曲”,根据学生的生活经验,“由直变曲”会容易的多。通过他们自己制作圆柱,直观了解曲面和平面之间的关系,有利于突破教学难点。同时提高了学生的学习兴趣。
学生带着兴趣,开始尝试,兴趣有了,自主探究的欲望自然也就强烈了。
第二环节:动手操作,探求新知:这是本节课的核心,也是重、难点所在,我主要通过4个层次来完成,使学生在小组探究的活动中,归纳圆柱体表面积的计算方法。
第一层次:小组探究,自主发现
学生在操作过程中很容易想到用长方形或正方形卷起来做成圆柱的侧面,然后选择合适的圆作为两个底,但对于学生能否想到利用平行四边形做侧面,学生的认识可能仍不清晰。因此,在小组探究时,我会到小组中巡视了解学生制作情况,及时对学生进行适时的启发引导,在这样的小组活动中,学生不仅对圆柱体有了更加准确的认识,也提高了合作、探究的能力及观察、概括的能力。
第二层次:小组汇报,总结归纳
在小组探究的基础上,分组汇报讨论结果,共分三种情况
分别选择长方形、正方形、平行四边形作为圆柱体的侧面把它卷成圆筒,再选正好能和圆筒对上的同样大小的两个圆。
在学生汇报完后,我让学生思考一个问题,为什么上下两个底面的圆必须是大小相等的两个圆?不相等行不行?
通过动手操作,让学生从感官上加深对表面积的认识,为总结圆柱表面积公式打下基础。
然后,我直接提出问题:你会求它的侧面积吗?你是怎么推导出来的?这里还是让学生自主探究,学生很有可能无从下手去思考,我及时点拨学生引导他们发现长方形的长和宽与用它卷成的圆柱形纸筒的底面周长和高的关系。这样抓住新旧知识内在联系,安排学生动手操作,引导学生在发现问题后及时动脑思考,不仅激发学生兴趣,同时也促进了学生思维能力的发展。通过老师的点拨,学生能够找到这两者的内在关系,学生汇报时,由课件配合,让学生从视觉上进一步感受到长方形的长就是圆柱的底面周长,宽是圆柱的高。如果展开是平行四边形,平行四边形的底就是圆柱的底面周长,高是圆柱的高;如果展开的是正方形,正方形的一个边长就是圆柱的底面周长,另一个边长就是圆柱的高。从而推导出圆柱的侧面积公式就是底面周长×高。这一教学过程学生亲自参与知识的获取中,真正理解了公式的由来,感受到重新创造数学的乐趣,增强了学好数学的信心。
在研究完圆柱侧面积的推导后,我又让学生来摸摸这个圆柱的表面,然后小结:我们摸过的所有这些面的面积和就是这个圆柱体的表面积。这里让学生摸的`过程就是学生对表面积的认识过程,由于前面已经做了足够的铺垫,在学生理解了侧面积计算方法的基础上,我让学生独立想办法求出圆柱体的表面积。在学生活动的过程中,我巡视、指导,帮助有困难的学生。
在本环节中,在学生的眼、手、脑等多种感官参与感知活动中,探究的精神得到了张扬,自主学习的能力得到了实在的体现与培养。教学的重点、难点在学生的亲历探究实践中得到了突破。
第三层次:及时巩固,内化知识
在教学重难点基本突破后,让学生根据材料中给出的信息,计算本组制作的圆柱体的表面积,然后全班交流,因为学生利用的材料不同,因此涉及到的信息比较全面,侧面展开图有长方形,有正方形,还有平行四边形。这样就使学生巩固了对圆柱体表面积的理解。
第四层次:尝试应用,解决问题
由于本课的教学重点是能应用圆柱体侧面积、表面积的计算方法来解决实际问题,生活中不仅有不缺面的圆柱体,而且还有只有侧面的圆柱体和只有一个底面的圆柱体。能够准确的判断所求圆柱的表面积共几个面对于学生来说是个难点。因此我利用学生手中的圆柱体进行了一系列的拓展练习,首先我拿出一个学生做好的圆柱,把其中一个底拿走,引导学生思考怎样求这个圆柱的表面积?为什么?通过观察,学生很容易发现这个圆柱体的表面积就用侧面积加一个底面积就可以了。接着再引导学生思考生活中哪些物体跟这个圆柱类似?(如水桶、圆柱体的笔筒)在这里我安排的一道求水桶表面积的练习。
这样一来,使学生在丰富的感性认识的基础上,自主解决了只有一个底面的圆柱体类型的实际问题。
然后用同样的方法,解决只有侧面的圆柱体这一类型的实际问题。同样还是拿出一个学生做好的圆柱,把其中两个底都拿走,问学生求这个圆柱的。表面积怎么求?生活中哪些物体跟这个圆柱类似?(烟囱,钢管内、外部的表面积)我也安排了一道求烟囱表面积的练习。
在前面的学习中,学生经历了自主观察并解决了生活中的一些实际问题,为了便于学生更好的区分他们,于是我引导学生按照圆柱体的面给圆柱体分分类:第一类是不缺面的圆柱体、第二类是缺一个底面的圆柱体、第三类是缺两个底面的圆柱体。为了更好区分,更好记忆,我又引导学生分别给它们起个名字:不缺面的就叫它全面圆柱体,缺一个底面的最典型物体就是水桶,我们就叫他水桶圆柱体,缺两面的最典型物体是烟囱,我们就叫他烟囱圆柱体。最后引导学生归纳出这三种圆柱体的表面积的求法:
在这一系列的总结、概括、归纳中,学生完善了认识,全面了解了各类圆柱体的区别及表面积的计算方法,进而提高学生的总结、归纳的能力。
第三环节:巩固应用,拓展提高
根据以上内容,我准备在实践练习中安排四个层次的内容。
1.一组已知底面半径、直径、周长和高求侧面积、表面积的对比习题,加深学生对圆柱表面积的理解,提高求表面积的技能。
2.一道求烟囱圆柱体表面积的习题。学生进行练习后,追问:为什么只求侧面积就可以了。
3.求一个用塑料薄膜覆盖的蔬菜大棚表面积的习题,追问:为什么求完全面圆柱体表面积后还要除以2。使学生养成灵活计算圆柱的表面积的习惯,培养实际应用的能力。
4最后安排的是一个拓展题,求帽子的表面积。这个表面积是由一个水桶型的圆柱体和一个环形的表面积组成的。把圆柱体表面积和我们以前学过的环形面积及组合图形的知识揉和在一起,培养了学生多角度思考问题的能力。
第四环节:回顾整理,总结收获
在一节课即将结束时,我引导学生回顾整个学习的过程,学习时运用的数学思想,使学生在一节课的学习中不仅有知识上的积累,还能在学习方法上有所收获,使学生感受到学习数学的快乐和价值。
以上就是我对这一部分内容的理解与分析,谢谢各位老师!
篇8:圆柱的表面积(人教版六年级教案设计)
教学目标
1.认识掌握圆柱各部分名称,建立圆柱体空间概念;
2.掌握圆柱体侧面积、表面积的计算方法,并能具体应用。
教学重点和难点
1.教学重点:推导圆柱体侧面积的计算方法。
2.教学难点:圆柱体侧面积公式的推导过程。
教学过程设计
(一)复习准备
师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?
生:长方形。
师把长方形贴在黑板上。
师:面积如何求?
生:长方形面积=长×宽。(师板书)
师又拿出正方形,问相同的问题,然后把这个正方形贴在长方形旁边。再拿出圆形。
师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?
然后把圆形贴在长方形上面。再出一些练习题进行圆面积和周长的计算。强调计量单位。
师又拿出长方体、正方体。当拿出圆柱体时,同学们都能回答是圆柱体。接着让他们举一些日常生活中经常见到的圆柱形物体。再让他们拿出自己事先准备的圆柱体(如果提出似是而非的问题时,先不要进行讨论。)这时老师也拿出一些实物:手电筒里的反光罩、罐头盒、小鼓、印章、烟囱的半个拐脖,问这些实物叫不叫圆柱体?为什么不叫圆柱体?
师:今天我们就来学习一种新的形体--圆柱体。(板书课题--圆柱)
(二)学习新课
1.圆柱体的认识。
师:现在找一个同学到前面摸一摸圆柱体有哪几个面。(指名上前摸。)
生:上、下两个面和周围一个面。
师:上、下两个面是什么形状?它们的面积大小怎样?
生:上、下两个面是圆形,面积相等。
师:我们把圆柱上、下两个面叫做底面。(板书:底面)
师:周围的这个面是个曲面。我们把周围的这个面叫做侧面。(板书:侧面)
师:我们把一个圆在平面上滚动一周,痕迹是一条线段。如果把这个圆柱在平面上滚动一周,它的侧面留下的痕迹将是一个什么形状?同学们可以自己用手中的学具动手滚一下,能体会出是一个什么形状?
生:是一个长方形。
师演示:将圆柱体侧面展开得到一个长方形。(与黑板贴的长方形一样大。)
师接着拿出两个高矮不一样的圆柱体。
师问:为什么有高有矮呢?由什么决定的?
生:由高决定的。
师:什么是圆柱的高呢?(板书:高。写在长方形宽处。)看看书上是怎么讲的。(看书第50页,找同学回答。)老师在圆柱侧面上画一条垂直于底面的线段,这条线段就是这个圆柱的高。
师出示投影,让学生指出高。
师:圆柱的高有多少条?
生:无数条。
师:高都相等吗?
生:都相等。
师:现在我们来回答刚才举的一些物体不是圆柱体的原因。(先让同学们说自己手中的,最好让本人说,然后再说老师手中的实物。)
师:我们讲的圆柱体都是直圆柱。
2.圆柱的侧面积。
(1)推导公式。
师:圆柱侧面图是一个长方形。下面同学们四人一组对照手中的圆柱体学具进行讨论。
讨论题目是:
a:这个长方形与圆柱体有哪些关系?
b:你能推导出圆柱体侧面积计算方法吗?
然后学生汇报讨论结果。
生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。
老师板书公式。
(2)利用公式计算。
例1 一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)
老师在黑板上板演。
下面同学们进行练习。投影练习题:
①一圆柱底面半径是5厘米,高5厘米,求侧面积。
②一圆柱底面半径是2分米,高是直径的2倍,求它的侧面积。
③一圆柱底面周长是12厘米,高12厘米,求它的侧面积。
师:你能知道第③题圆柱侧面展开图是什么图形吗?
3.圆柱的表面积。
师在课题“圆柱”后面接着写“的表面积”。
(1)推导公式。
师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体平面展开图,让同学们进行讨论。)
生汇报讨论结果,老师板书公式:
S表=S侧+2S圆
(2)利用公式计算。
(投影出示)
例2 计算圆柱体的表面积(见下图)。(单位:厘米)
同学说思路,老师板书,注意每一步结果写计量单位。
解 ①侧面积:2×3.14×5×15=471(平方厘米)
②底面积:3.14×52=78.5(平方厘米)
③表面积:471+78.5×2=628(平方厘米)
答:它的表面积是628平方厘米。
例3 一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)
同学说思路,列式。老师把正确的解答用投影打出来。
(1)水桶的侧面积
3.14×20×24=1507.2(平方厘米)
(2)水桶的底面积
3.14×(20÷2)2
=3.14×102
=3.14×100
=314(平方厘米)
(3)需要铁皮
1507.2+314=1821.2≈1900(平方厘米)
答:做这个水桶要用铁皮1900平方厘米。
小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?
(三)巩固反馈
(1)看书第54页第1题。
(2)投影,指出下面圆柱体的高是几?
(3)有一节直径10厘米的烟囱,长3米。这节烟囱用铁皮多少平方米?(只列式)
(4)一种轧道机,后轮直径1.32米,长1.27米。如果后轮每分钟转动6周,每分钟可轧路面多少平方米?(只列式)
(5)做一对无盖水桶,要求底面半径15厘米,高4分米。至少需用铁皮多少平方分米?(结果保留一位小数。)
(6)一种圆柱形小油漆桶,底面周长50.24厘米,高20厘米。每个桶用铁皮多少平方分米?(四人讨论后口头回答。)
学生做,老师巡视,找几个同学把题写在玻璃片上,然后全体订正。
思考题:
(1)你要做一个圆柱体,先确定什么条件?你是怎样做的?
(2)我们在学习圆面积时,用两个完全一样的圆拼成一个近似长方形的方法推导出圆面积的公式,你能用这种方法推导出求圆柱体的表面积的另外一种计算方法吗?并用此方法做第(6)题,比较哪种方法简便?
提示:
课堂教学设计说明
本节课的教学设计分三个层次。
第一层次,使学生认识圆柱体底面、侧面和高。通过让学生观察实物和教具,以及插图和自己举日常生活中的实例,并让学生亲自动手摸一摸、看一看,使学生能准确地掌握圆柱体的特征。
第二层次,推导圆柱体的侧面积计算公式和表面积计算方法。
首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。老师用圆柱体在黑板上贴有长方形处滚动一周,使学生了解到这个长方形的长就是底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形面积公式很自然地推导出求圆柱体的侧面积公式。在这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求圆柱的表面积的计算方法。使学生认识到立体转平面、形变量不变的辩证关系,培养同学们的观察分析能力。
第三层次是针对本节课所学知识设计的一些联系实际的应用题。安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。同时计量单位有所不同。这样培养学生认真审题的好习惯,提高学生灵活应用能力,有利于发展学生的空间概念。
板书设计
篇9:小学六年级《圆柱的表面积》说课稿
一、教材分析:
圆柱表面积的计算是九年义务教育六年制小学数学第十二册第二单元的学习内容,应当在学生掌握了长方形以及圆的面积计算的基础上进行教学。这部分内容的学习为后面学习一些立体几何知识打下基础。
二、教学目标:
根据《数学课程标准》的理念学生的学习目标应将知识与技能、过程与方法、情感态度与价值观这三方面融为一体,为了落实这几点,本节课我们的教学目标制定如下:
1、知识与技能。
通过想象和操作等活动,加深对圆柱特征的认识,理解圆柱表面积的的含义,知道圆柱的侧面展开后可以是一个长方形。
2、过程与方法。
学生通过触摸、观察、操作等多种方法提高分析、概括的能力,理解空间观念,并能利用知识合理灵活地分析、解决实际问题。结合具体的情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
3、情感态度与价值观
让学生亲身体验到数学活动充满着探索性和挑战性,通过自主探索和合作交流,使他们敢于发表自己的见解,能够从交流中获益。通过学生们自己的认识来制定教学目标符合学生学习数学的认知规律,让他们亲身经历问题的解决过程,提高他们对问题的感性认识,经过一系列的实践和计算,提高他们对问题的理性认识。能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中的一些简单的实际问题,体会数学与生活的联系;培养学生的观察、操作、想象能力,发展学生的空间观念,渗透转化的思想。也可以培养学生良好的个性品质,包括大胆猜想勇于探索的创新精神,顽强的学习毅力等。
三、教学重点与难点:
圆柱体的侧面积和表面积在本课教材中占重要地位,它们是学习其它几何知识的基础。所以本课的重点是:探索圆柱体侧面积、表面积的计算方法,并能运用圆柱侧面积和表面积的计算方法解决生活中的一些简单的实际问题。
由于圆柱体的侧面积计算较为抽象,加之学生的空间想象力不够丰富,所以本课的难点是:理解圆柱侧面展开的多样性,将展开图与圆柱的各部分联系起来,并推导出圆柱体侧面积和表面积的计算公式。而解决这一难点的关键是:把圆柱体的侧面展开后所得到的长方形各部分同圆柱体各部分间的关系。
四、教学目标:
为了更好的突出重点突破难点并遵循学生为主体,教师为主导的教学原则,要按照学生从感性认识到理性认识、从特殊到一般的认识规律,遵循启发式引导学生展开思维、探究证明思路、循序渐进的教学方法,最大限度提高学生的参与率。这样的教学方法主要是让学生主动、自觉地学习,让他们在学习中学会学习,这实际上式交给了学生自由飞翔的翅膀,交给了他们点石成金的金指头。
五、学习方法:
在本课的学习活动中注重培养学生的空间观念、想象力、动手操作能力、探索能力和推理概括能力。所以学生的学法以学生自备的圆柱形纸盒、长方形纸、剪刀等学具为载体,在老师的引导下进行学习活动。学习活动以小组共同探索、交流讨论、合作学习为主要形式,教师适时进行点拨,创设平等、自主、和谐的教学环境,通过学生的动手操作、观察、比较、推理、概括等充分调动学生多种感官的参与,让学生全面参与新知的发生、发展和形成过程,并学会操作、观察、比较、分析和概括,学会想象,学会与人交往。在活动中获得成功的体验,从而培养学生学习数学的兴趣,得到人人学有价值的数学这个目的。
六、教学过程:
在我们的课堂教学中我们应以学生的发展为本,以学生的活动为主线,让学生充分的参与到课堂活动中来,为了落实这几点,我按以下四个阶段完成本课。
(一)温故而引新,巧妙入境。
这个过程我展示3个方面的复习内容:
(1)我知道圆柱的特征是
(2)圆的周长怎样计算?圆的面积又是怎样计算的呢?说一说,并用字母表示出来。
(3)你知道长方形的面积怎样计算吗?
以上设计让学生逐题完成,通过个人汇报集体评价的形式来进行。让学生在复习中进一步掌握圆柱的特征,回顾圆的周长和面积的计算方法及长方形的面积的计算方法。这些知识完全与圆柱的侧面积和表面积的计算有关,为下一步探索圆柱的侧面积和表面积计算方法作好铺垫,同时也让学生领会到新旧知识之间的联系,充分体现数学知识的前后连贯性。
(二)设置悬念,创设探究情境,激发学生的探究欲望,引出本课的探究主题。
在此我用富有激励性的语言来引导学生:
请你拿出自己准备的圆柱形纸盒,这是我给大家准备的一个模型,现在我请大家帮助我设计一个你手中的模型一样的圆柱形纸盒,你能告诉我你需要多大面积的纸吗?(让学生沉思一会儿后请学生起来汇报,发表自己的意见,根据学生的回答,慢慢引导学生理解这实际上是求圆柱的表面积,然后引导学生分别说一说自己对圆柱表面积的认识。)
你知道圆柱的表面积指的是什么吗?(这样通过说一说让学生理解圆柱的表面积的含义,进而引出新课,揭示课题。)
这就是我们今天研究的主题《圆柱的表面积》。
这样设计让学生明白探究的必要性,让学生明确探究目的和探究方向,同时又具有挑战性,能激发学生的探究兴趣。
(三)动手操作,合作研究,汇报交流,发现联系,总结方法。
1、动手操作。
你知道圆柱的侧面是个什么面吗?你能想办法让它成为我们认识的图形吗?请你用手中的长方形纸、剪刀动手做一做,试试看。
让学生自己动手进行尝试,教师进行巡视、引导和点拨,通过学生动手将圆柱的侧面展开成平面图形的过程(比如让学生想办法把圆柱的侧面展开,或者用长方形纸卷成一个圆柱的侧面,或用大卷的塑料胶带做演示),来感受化曲为直的思想,获得直观的感受。
2、合作研究。
如果沿着圆柱的一条高把圆柱的侧面展开,会得到什么图形呢?请你和你的同伴说说看。
3、汇报交流。
让学生把自己的展开结果展示给大家看。
4、进行推理,总结方法。
引导学生通过测量圆柱底面周长和侧面展开后得到的长方形的长或用彩色笔做记号的方法,让学生自己分析出圆柱的底面周长和侧面展开成的长方形的长之间的关系。然后引导学生进行概括总结:你知道长方形的面积怎样计算吗?那么圆柱的侧面积又是怎样计算的呢?
因为有了上述的探究过程,学生很自然而然的就会概括出圆柱的侧面积的计算方法:底面周长乘高,也就是圆的周长乘高。学生概括出公式以后让学生写下来,并读一读,用黑板展示出来。然后让学生思考:要求圆柱的侧面积需要知道哪些条件呢?
引出例1:已知一个圆柱的底面直径是0.5m,高是1.8m,求它的侧面积。(得数保留两位小数)
5、归纳新知。
你现在知道怎样求圆柱的表面积了吗?先自己写出你的研究结果,再和同伴交流交流,然后向大家展示你的成果,让大家分享你的成功
通过独立思考同伴交流全班汇报总结公式来完成。(这一环节,使学生动手、动口、动脑等多种感官参与活动,做到了在动手操作中发现,在合作中学习,在交流中成长,这样能够更好的突破难点。)完成后让学生动手根据自己探究的结果完成例2、
6、联系生活,巩固练习,培养能力。
这一环节是巩固内化空间基础知识,培养拓展空间思维,形成学生对空间的感受能力,学习关于空间几何一些简单知识点的重要环节。因而我设计的练习题在注重知识运用的前提下,注意联系学生的生活实际,使学生能够把所学的知识运用于解决生活中的实际问题中。让他们感受到数学与生活的紧密联系数学来源于生活又作用于生活。这一过程我安排了课本上例3.让学生学会用数学知识解决生活中的实际问题,同时让学生明白在实际生活中计算圆柱的表面积时要具体问题具体分析,要结合实际进行计算,讲解进一法的意义和使用范围。
(四)全课总结,促进构建。
这是作为新课必要的一个环节,通过学生自己总结和评价,既加深了学生对新知识的理解和消化,又让学生体验到学习数学的价值和兴趣。结合板书,让学生说说本课学到的知识,并说出是怎样学到的。
这一环节的目的是让学生对本课所学的知识有系统的认识,培养学生整理知识的能力,引导学生总结学习方法,达到学会学习的目的。
篇10:小学六年级《圆柱的表面积》说课稿
教学内容:
九年义务教育六年制小学数学第12册33~34页例1、例2、例3的“做一做”及练习七的`第2~5题。
教学目标:
1、知识目标:理解圆柱的侧面积和表面积的含义;掌握圆柱的侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。
2、能力目标:能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
3、德育目标:渗透事物之间联系的辩证唯物主义观点,使学生感悟到数学知识内在联系的逻辑之美,增强审美意识。
教学重点:理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点:能灵活运用表面积、侧面积的有关知识解决实际问题。
教学设想:
本课是在学生认识了圆柱,学习了圆、长方形等几何图形的基础上进行的。通过学习可以发展学生的观念,提高学生解决实际问题的能力。并为以后学习圆柱的体积计算打下良好的基础。本节课由于学生缺乏空间想象能力,计算繁琐,易使学生感到枯燥无味。因此,我在教学中充分调动学生的积极主动性,让学生在自主动手操作中发现问题,自主探索解决问题的途径以解决所遇到的数学问题。
遵循学生的认知规律,组织合理有效的教学程序
(1)抓住关键,动手操作,突破难点
圆柱的表面积等于侧面积加两个底面积的和,圆柱的底面是两个相等的圆。对于圆面积的计算是学生已有的知识,学生以前学过的面都是“平面”而圆柱的侧面却是个“曲面”。怎么样才能求出这个“曲面”的面积就成了圆柱表面积教学过程中的难点。于是让圆柱的侧面“由曲变直”,使新知识在一定的条件下统一起来就成了一个关键性的问题。通过教具演示,把侧面展开可以使侧面“由曲变直”,但学生缺乏这方面的生活经验,接受起来思维障碍较大。所以我反其道而行之,采用实验法,让学生卷一卷、分一分,把一张长方形的纸卷成一个尽可能粗的圆柱形的纸筒。使学生在操作的过程中感知:在一定的条件下,平面也可以“由直变曲”,那么反过来曲面当然也可以“由曲变直”。又经过引导学生观察、比较,讨论长方形纸的长和宽与用它卷成的圆柱形纸筒的底面周长和高的关系,学生认识圆柱的侧面已经水到渠成,得到圆柱的侧面积等于底面周长乘以高。
这样抓住新旧知识内在联系,安排学生动手操作,引导学生在发现问题后及时动脑思考,不仅激发学生兴趣,同时也促进了学生思维能力的发展。
(2)及时练习,巩固提高,形成能力
学生的能力主要表现在获取知识和应用知识的过程中。求圆柱侧面积,由于已知条件的不同,有多种不同的计算方法,但用圆柱的底面周长乘以高是最直接的方法,通过练习处理好新知识与旧知识的结合,解决好已有技能在新情况下的运用,将对培养学生分析综合的能力,减轻学生的记忆负担起重要作用。因此,我在引导学生推导出圆柱侧面积的计算方法之后,及时安排了练习,使学生通过练习牢固掌握求圆柱侧面积的基本方法。对于题中没有直接告诉底面周长的,并没有一一进行方法的指导,只需把基本方法加以推广,知道如果没有直接告诉底面周长时,应用已知底面直径(或半径)求周长的方法,先求出底面周长,然后再求侧面积就可以了。这样就提高了学生运用基本数学知识灵活解决实际问题的能力,并减轻了学生学习中不必要的记忆负担。这一点既减轻学生过重负担又提高课堂教学效率。
(3)通过讨论,多向交流,培养独立思考能力
为提高课堂教学效率,培养学生能力,我在教学中注意研究如何引导学生独立钻研问题。对于课本上的例题,可以提供给学生作为讨论和思考的材料,都尽量让学生独立去探讨。因此,教学时提出了“除了侧面外圆柱还有几个面?”“什么叫做圆柱的表面积?”“怎么样求圆柱的表面积?”等三个问题让学生分组讨论,进行独立的探索。在“怎么样求圆柱的表面积?”这个问题时,有的同学得出圆柱的表面积等于侧面积加上两个底面积;有的同学则会联系圆的面积公式推导过程,把圆柱的两个底面分成若干个小扇形后拼成一个与侧面同长的长方形,然后与侧面再拼成一个大长方形,那么整个圆柱的表面积=底面周长×(圆柱的高+底面半径),用字母表示即S=2лr×(h+r)。这样学生不仅亲自参与了对新知的探索使知识掌握得更加牢固,还对旧知进行再创造并萌发了创新意识,培养了学生的创新思维和创新能力。
(4)联系生活,迁移知识,感悟生活数学乐趣
小学数学的教学内容绝大多数可以联系学生的生活实际,教师应找准每节教材内容与学生生活实际的“切入点”,调动学生学习数学的兴趣和参与的积极性。所以在教完例2后,我让学生举例说出日常生活中,哪些物体是没有两个底面的圆柱体。出示例3让学生认真审题,并说水桶有几个面,再计算出用了多少材料,学生计算完后,要求得数保留整百平方厘米。启发学生看书发现新问题,讨论计算使用材料取近似值时,要用“四舍五入”法还是用“进一法”。从而使学生理解“进一法”的意义。接着出示拓展延伸练习:制作一个高1.5米,直径0.2米的圆柱形烟囱,需要多少平方米铁皮?最后让每一位学生小组合作制作一个圆柱体水桶并评选出最佳作品展示。
课堂小结后,我提出“大家想一想,还有什么办法能求出计算圆柱体的表面积?”(例如,可以把圆柱切开,拼成近似的长方体,由长方体的表面积计算公式推导出圆柱的表面积计算公式)这个问题让学生知道了解决问题的方法是多种的,也有利于挖掘优生的潜能,还能为求圆柱的体积埋下伏笔。
总而言之,这节课充分调动了学生的手、眼、口、脑,借助学具让学生动手去实践,动脑去想,发现问题,解决问题。
篇11:小学六年级《圆柱的表面积》说课稿
一、教材分析
《圆柱的表面积》是九年义务教材六年制第十二册第三单元的教学内容,是在学生认识了圆柱的特征,能看懂圆柱的平面图,认识圆柱的侧面展开图的基础上,进行教学的。从教材上看,教材先安排理解圆柱的侧面展开图的认识,然后圆柱的侧面和展开图的比较,认识到圆柱的侧面,就是它的长方形。还要会计算圆柱的侧面积。通过圆柱的侧面展开图让学生观察图形,发展学生的空间观念;思考圆柱的表面积,就是由圆柱的侧面积加上两个圆的面积。通过侧面展开图的操作,学生了解了圆柱的侧面积相当于长方形面积。长方形的长就是圆柱底面周长,长方形的宽相当于圆柱的高。使学生理解和掌握圆柱的表面积是由哪几部分组成的(一个侧面积加上两个底面积),求表面积,要先求侧面积,再求圆的面积。这也就突出了重点。难点就是理解表面积的计算后,能够解决现实生活中的实际问题。关键是通过对圆柱侧面展开图的认识,培养了学生的空间想象能力、概括思维能力、分析综合等数学能力。
二、教学程序
为了充分体现教师的主导和学生的主体作用,能让学生积
极主动、生动活泼地参与到教学过程中来,我设计了复习旧知、实验导课;沟通知识、探索新知;应用求表面积、解决问题;巩固练习、逐步深化。
1、复习旧知、实验导课。
(1)指名学生说出圆柱的特征。
(2)口头回答问题:
A、一个圆形花池,直径是5米,周长是多少?
B、长方形的面积怎样计算?
(3)通过上节课认识了圆柱,圆柱的侧面展开图是一个长方形。这个长方形与圆柱有关系吗?圆柱的侧面积怎样计算呢?今天我们就来学习有关圆柱的侧面积和表面积的计算。
2、沟通知识、探索新知。
(1)理解表面积的含义。
(2)动手操作寻找计算圆柱表面积,计算公式。
A、学生通过看展开图后,知道圆柱的表面积是由圆柱的侧面积加上两个底面积得到的。B、学生通过看展开图知道圆柱的侧面积就等于这个长方形的面积,让同学们找出它们的对应关系后,然后同学们自己动手计算圆柱的侧面积。C、分析圆柱的表面积又是由哪几个部分组成的。同学们认识到圆柱的表面积是由上、下两个底面和侧面组成。通过课件侧面展开图,找出这个图中长方形的长和宽、圆柱底面积是如何求的。让同学们自己讨论计算结果。
3、应用求表面积、解决问题。
出示例3,让同学们找出这题已知什么?求什么?具体分析
水桶是无盖,说明什么?如果这个水桶展开,会有哪几个部分?让同学们自己动手做。
4、巩固练习、逐步深化。
做41页“做一做”1、2题。
5、完成作业、强化新知。
练习十第2、3、4、5题。
三、说教法
课堂采用了多种教学方法,但主要通过实验法、练习法、
启发谈话法、课件来完成教学目的。
1、课堂首先通过启发谈话导入新课,解答例题运用启发式教学和练习法。
2、通过侧面展开图的实验,使学生发现圆柱的侧面展开图,就是一个长方形,求出长方形的面积,圆柱的侧面积也就算出来了。
3、教学例题,都让同学们自己讨论、分析、解答。
四、说学法
实验操作,每个同学通过自己动手做侧面展开图分析圆柱的表面积,直观感受到圆柱的侧面积与这个长方形的关系,为下一步计算表面积,发展了学生的空间想象能力。
1、由直观演示,让同学自己动手计算圆柱的侧面积,然后联系到圆柱的表面积的计算,分几进行。
2、通过实验直观了解,解决生活中的实际问题。
篇12:圆柱的表面积2(人教版六年级教案设计)
教学目标
1.理解圆柱的侧面积和表面积的含义.
2.掌握圆柱侧面积和表面积的计算方法.
3.会正确计算圆柱的侧面积和表面积.
教学重点
理解求表面积、侧面积的计算方法,并能正确进行计算.
教学难点
能灵活运用表面积、侧面积的有关知识解决实际问题.
教学过程
一、复习准备
(一)口答下列各题(只列式不计算).
1.圆的半径是5厘米,周长是多少?面积是多少?
2.圆的直径是3分米,周长是多少?面积是多少?
(二)长方形的面积计算公式是什么?
(三)回忆圆柱体的特征.
二、探究新知
(一)圆柱的侧面积.
1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.
2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高.
(二)教学例1.
1.出示例1
例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积.(得数保留两位小数)
2.学生独立解答
教师板书: 3.14×0.5×1.8
=1.75×l.8
≈2.83(平方米)
答:它的侧面积约是2.83平方米.
3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.
(三)圆柱的表面积.
1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积.
2.比较圆柱体的表面积和侧面积的区别.
圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积.
(四)教学例2.
1.出示例2
例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
2.学生独立解答
侧面积:2×3.14×5×15=471(平方厘米)
底面积:3.14× =78.5(平方厘米)
表面积:471+78.5×2=628(平方厘米)
答:它的表面积是628平方厘米.
3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.
(五)教学例3.
1.出示例3
例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)
2.教师提问:解答这道题应注意什么?
这道题是求做这个水桶要用铁皮多少平方厘米.实际上是求这个圆柱形水桶的表面积.题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积.
3.学生解答,教师板书.
水桶的侧面积:3.14×20×24=1507.2(平方厘米)
水桶的底面积:3.14×
=3.14×
=3.14×100
=314(平方厘米)
需要铁皮:1507.2+314=1821.2≈1900(平方厘米)
答:做这个水桶要用1900平方厘米.
4.教师说明:这里不能用“四舍五入”法取近似值.在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.
5.“四舍五入”法与“进一法”有什么不同.
(1)“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去.
(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.
三、课堂小结
这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题.圆柱的表面积在实际应用时要注意什么呢?
★ 圆柱表面积的公式
求圆柱的表面积 说课稿(人教版六年级下册)(共12篇)




