“qcjqtvb”通过精心收集,向本站投稿了15篇六年级下册分数应用题说课稿,这次小编在这里给大家整理后的六年级下册分数应用题说课稿,供大家阅读参考。
- 目录
篇1:六年级下册分数应用题说课稿
六年级下册分数应用题说课稿
一、说教材
1、教学内容:九义小学数学第十一册第42页例4分数连除应用题的教学。
2、教材地位。本课是一节新授课。这里出现的分数连除应用题是连续求一个数的几分之几是多少的分数连乘应用题的逆解题。它是在前面学的已知一个数的几分之几是多少求这个数的一步应用题的基础上发展起来的,即两个已知一个数的几分之几是多少求这个数的应用题的复合。紧接着出现的例5为分数乘除复合应用题,是求一个数的几分之几是多少,以及已知一个数的几分之几是多少求这个数的复合。
2、教学目标
⑴使学生掌握分数连除应用题的结构及数量关系,学会分析解答分数连除应用题,发展学生思维能力。
⑵过程与方法,引导学生充分自主探索,分组讨论,观察分析和比较,在自主学习中探究,在探究中发展提高。
⑶通过过师生交流总结,让学生获得学习数学的成功体验。紧密联系生活实际,让学生体会到生活中处处有数学,处处用数学。让学生养成认真审题、积极思考的良好学习习惯。
3、教学重点、难点
⑴理解应用题的数量关系,并能正确解答分数连除应用题。
⑵找出所求数量与已知条件间的相等关系。
二、说教法和学法
整堂课始终贯彻学生为主体,教师为主导的训练思维为主线的原则。
1、自主探索,寻求方法。
让学生充分自主探索,寻求分数连除应用题的解答思路和方法。
2、设计教法,体现主体。
整堂课的设计,时时考虑到以学生为主体,教师只是个领路人。并注重到学生间的相互合作和交流,做到互相评议,各抒已见,取长补短,共同提高。
3、分层练习,注重发展。
练习有层次,由尝试练习到发展练习,再巩固练习和应用练习,层层递进。
4、运用设备,增加容量。
三、说教学过程
(一)、复习旧知识
1、判断单位1的练习。(口答)
(1)黑羊的只数是白羊只数的。(指名说出要用黑羊的'只数和白羊的只数比,白羊的只数是单位1)
(2)一年级人数占全校人数的。(指名说出要用一年级的人数和全校人数比,全校人数是单位1)
(3)汽车速度相当于飞机速度的。(指名说出要用汽车的速度和飞机的速度比,收音机的速度是单位1)
2、准备练习题。
嘉川小学石桥基点校有教师24人,是中心校教师人数的,中心校有教师多少人?中心校教师人数是全镇教师数的,全镇有教师多少人?
指定一名学生读题,全班学生在练习本上解答,然后订正。再指名分析、判断,每一步中要强调把哪个数量看作单位1,单位1是已知的还是求知的?所以用什么方法解答?
(二)、导入新课采用直接导入法
同学们已经学习了已知一个数的几分之几是多少,求这个数的一步应用题,这节课我们接着学习分数连除应用题。
(三)、进行新课
1、出示尝试题。(由准备练习题变化而成)
嘉川小学石桥基点校教师人数是中心校的,中心校教师人数是全镇的。石桥基点校有教师24人,全镇有教师多少人?
教师:这道题目就是我们这节课要学习的新知识,它是由两道一步运算的应用题复合而成的两步计算的应用题。能解答吗?怎么分析题里的数量关系?解题的格式是怎样的呢?请你学习课本第42页例4,它能帮助你解答这类题目。
2、自学课本。请带着以下问题自学例4。
思考:
⑴全镇的人数和哪个组的人数有关系?有什么关系?谁是单位1?
⑵中心校的人数还和哪个组的人数有关系?有什么关系?谁是单位1?
⑶用什么方法解答?根据什么列式?方程x=8中,x表示什么?
⑷还有不同的解法吗?
3、尝试练习。
全班同学动手尝试,教师巡视检查,抽取有代表性的(对或错)解法在视频展示台展示,为讨论提供情景。
4、学生讨论。
板演的学生说出解题思路。
学生间评议尝试题练习中学习的情况,哪种方法对,道理是什么?哪种方法错,是什么原因?经过激烈争论,弄清大部分问题,个别问题还未解决的,多为本节课的难点,是教师讲解的重点。
5、教师讲解。
⑴教师引导学生说出怎样用线段图标出题中的条件和问题。
找出已知条件和所求问题。
提问:这道题里有几个数量?需要用几条线段来表示?
(引导学生说出题里有三个数量,需要用三条线段来表示)
提问:先根据哪个条件来画线段,表示哪个组的人数?
(根据中心校的人数是全镇教师数的2/7。可以画出表示全镇和中心校的教师人数。)
提问:根据这个条件确定谁为单位1?先画哪个组的人数?(全镇教师人数为单位1,先画全镇教师人数。)
教师画一条线段表示全镇的人数后提问:再画哪个组的人数?怎样画?(把表示全镇人数的这条线段平均分成3份,再画一条与其中1份同样长的线段表示中心校的人数。)
教师画出表示中心校人数的线段,说明可以把它画在表示全镇人数的线段的下面。
提问:现在该画表示哪个组人数的线段?根据哪个条件来画?怎样画?(启发学生把表示中心校人数的线段平均分成5份,画出与这样的4份同样长的线段,就表示石桥基点校的人数。)教师画出表示石桥基点校人数的线段,说明石桥基点校要和中心校比,所以要画在最下面。
提问:还有什么已知条件没画出来?这道题的问题是什么?谁能在线段图上表示出来?
通过以上一系列提问完成下面的线段图。
⑵找出单位1的量,结合线段图理解数量关系、解题思路和解题方法。
⑶学生发问。
(四)、第二次尝试
试一试:商店运来一批水果。苹果的筐数是橘子筐数的,梨的筐数是苹果筐数的2倍。运来梨16筐,运来橘子多少筐?
1、指导学生用线段图表示题意。
2、学生先尝试解答,再说出解题思路。
3、集体评析、校对。
4、引导学生比较试一试与第一次尝试的题材目,找出相同点和不同点。
(五)、巩固练习
1、基本训练:做课本第44页第1题,独立完成。
2、开放性练习。
⑴根据算式选择条件和问题:
停车场里有36辆小汽车,。大汽车的数量是运货车数量的,运货车有多少辆?
(解:设运货车有x辆。)
x=36是大汽车数量的4倍。
x4=36是大汽车数量的。
提问:有什么想说的吗?(引导学生指出跟前面学习的和做过的题目有什么区别:前面的题目中,两个数量之间都是几分之几的关系,这题中是大汽车的4倍。)
⑵观察下面的表格,自编分数连除的应用题,并列式不解答。
(六)、课堂总结
教师:今天我们学习的应用题有什么特点?(使学生明确今天学习的应用题是由以前学过的两道分数除法应用题复合成的。)
教师:遇到这样的应用题,分析解答时应该注意什么?(启发学生说出要弄清题目有哪三个数量,它们之间有什么样的关系,找出题目里数量间的相等关系,再确定设哪个量为x,并列出方程或直接用连除法算式解答。)
(七)、作业
练习十三第2、3题。
篇2:小学六年级数学说课稿《分数应用题》
人教版小学六年级数学说课稿《分数应用题》
一、说教材
1、教学内容:九义小学数学第十一册第42页例4—分数连除应用题的教学,
2、教材地位。本课是一节新授课。这里出现的分数连除应用题是连续求一个数的几分之几是多少的分数连乘应用题的逆解题。它是在前面学的已知一个数的几分之几是多少求这个数的一步应用题的基础上发展起来的,即两个已知一个数的几分之几是多少求这个数的应用题的复合。紧接着出现的例5为分数乘除复合应用题,是求一个数的几分之几是多少,以及已知一个数的几分之几是多少求这个数的复合。
2、教学目标
⑴使学生掌握分数连除应用题的结构及数量关系,学会分析解答分数连除应用题,发展学生思维能力。
⑵过程与方法,引导学生充分自主探索,分组讨论,观察分析和比较,在自主学习中探究,在探究中发展提高。
⑶通过过师生交流总结,让学生获得学习数学的`成功体验。紧密联系生活实际,让学生体会到生活中处处有数学,处处用数学。让学生养成认真审题、积极思考的良好学习习惯。
3、教学重点、难点
⑴理解应用题的数量关系,并能正确解答分数连除应用题。
⑵找出所求数量与已知条件间的相等关系。
二、说教法和学法
整堂课始终贯彻“学生为主体,教师为主导”的训练思维为主线的原则。
1、自主探索,寻求方法。
让学生充分自主探索,寻求分数连除应用题的解答思路和方法。
2、设计教法,体现主体。
整堂课的设计,时时考虑到以学生为主体,教师只是个领路人。并注重到学生间的相互合作和交流,做到互相评议,各抒已见,取长补短,共同提高。
3、分层练习,注重发展。
练习有层次,由尝试练习到发展练习,再巩固练习和应用练习,层层递进。
4、运用设备,增加容量。
三、说教学过程
(一)、复习旧知识
1、判断单位“1”的练习。(口答)
(1)黑羊的只数是白羊只数的。(指名说出要用黑羊的只数和白羊的只数比,白羊的只数是单位“1”)
(2)一年级人数占全校人数的。(指名说出要用一年级的人数和全校人数比,全校人数是单位“1”)
(3)汽车速度相当于飞机速度的。(指名说出要用汽车的速度和飞机的速度比,收音机的速度是单位“1”)
2、准备练习题。
“嘉川小学石桥基点校有教师24人,是中心校教师人数的,中心校有教师多少人?中心校教师人数是全镇教师数的,全镇有教师多少人?
指定一名学生读题,全班学生在练习本上解答,然后订正。再指名分析、判断,每一步中要强调把哪个数量看作单位“1”,单位“1是已知的还是求知的?所以用什么方法解答?
(二)、导入新课——采用直接导入法
同学们已经学习了“已知一个数的几分之几是多少,求这个数”的一步应用题,这节课我们接着学习——分数连除应用题,
(三)、进行新课
1、出示尝试题。(由准备练习题变化而成)
“嘉川小学石桥基点校教师人数是中心校的,中心校教师人数是全镇的。石桥基点校有教师24人,全镇有教师多少人?
教师:这道题目就是我们这节课要学习的新知识,它是由两道一步运算的应用题复合而成的两步计算的应用题。能解答吗?怎么分析题里的数量关系?解题的格式是怎样的呢?请你学习课本第42页例4,它能帮助你解答这类题目。
2、自学课本。请带着以下问题自学例4。
思考:
⑴全镇的人数和哪个组的人数有关系?有什么关系?谁是单位“1”?
⑵中心校的人数还和哪个组的人数有关系?有什么关系?谁是单位“1”?
⑶用什么方法解答?根据什么列式?方程x××=8中,“x×”表示什么?
⑷还有不同的解法吗?
3、尝试练习。
全班同学动手尝试,教师巡视检查,抽取有代表性的(对或错)解法在视频展示台展示,为讨论提供情景。
4、学生讨论。
板演的学生说出解题思路。
学生间评议尝试题练习中学习的情况,哪种方法对,道理是什么?哪种方法错,是什么原因?经过激烈争论,弄清大部分问题,个别问题还未解决的,多为本节课的难点,是教师讲解的重点。
5、教师讲解。
⑴教师引导学生说出怎样用线段图标出题中的条件和问题。
找出已知条件和所求问题。
提问:这道题里有几个数量?需要用几条线段来表示?
(引导学生说出题里有三个数量,需要用三条线段来表示)
提问:先根据哪个条件来画线段,表示哪个组的人数?
(根据“中心校的人数是全镇教师数的2/7。”可以画出表示全镇和中心校的教师人数。)
提问:根据这个条件确定谁为单位“1”?先画哪个组的人数?(全镇教师人数为单位“1”,先画全镇教师人数。)
教师画一条线段表示全镇的人数后提问:再画哪个组的人数?怎样画?(把表示全镇人数的这条线段平均分成3份,再画一条与其中1份同样长的线段表示中心校的人数。)
教师画出表示中心校人数的线段,说明可以把它画在表示全镇人数的线段的下面。
提问:现在该画表示哪个组人数的线段?根据哪个条件来画?怎样画?(启发学生把表示中心校人数的线段平均分成5份,画出与这样的4份同样长的线段,就表示石桥基点校的人数。)教师画出表示石桥基点校人数的线段,说明石桥基点校要和中心校比,所以要画在最下面。
提问:还有什么已知条件没画出来?这道题的问题是什么?谁能在线段图上表示出来?
通过以上一系列提问完成下面的线段图。
⑵找出单位“1”的量,结合线段图理解数量关系、解题思路和解题方法。
篇3:分数除法应用题说课稿
例3:白海货运码头有一批货物,运走了,还剩240吨,这批货物原有多少吨?
(一)解:设这批货物原有X吨。(二)240÷(9-5)×9
X ― X = 240 =
X = 240 =
我这样板书,对启迪学生思维,开发学生智力,增强学生的记忆,加深对所学的知识的理解,都起到了“画龙点睛”的作用。
篇4:《分数乘法应用题》说课稿
《分数乘法应用题》说课稿
一、说教材
1、教学内容:九年义务教育六年制小学数学第十一册第一单元分数乘法应用题第一课时:“求一个数的几分之几是多少的应用题”,课本第14页例1,练习四第1――5题。
2、教材所处地位和作用
本节课所学的分数乘法应用题是求一个数的几分之几是多少的应用题,它是一个数乘分数的意义在实际中的运用,同时还是学习“已知一个数的几分之几是多少求这个数”的应用题以及今后学习较复杂的分数应用的基础。因此使学生掌握这种应用题的解答方法有重要的'意义。
3、教学目标。
根据《大纲》的要求和教材特点,确定如下教学目标:
(1)、使学生能根据一个数乘分数的意义,理解“求一个数的几分之几是多少”的应用题的数量关系。
(2)、在理解的基础上,掌握解题方法,能正确解答这类应用题。
(3)、让学生进一步体验数学与日常生活的密切联系,体验数学问题的探索性和挑战性,从而激发学生学习数学的兴趣,以主动参与数学活动。
4、教材的重点和难点
根据《大纲》的要求和教材的特点,结合本班学生的实际情况,确定使学生在理解题意的基础上,分析数量关系,掌握解题思路是本节重点,其中分析数量关系,找准单位“1”是本节课的难点。
二、说教法。
俗话说:教学有法,但无定法,贵在得法。为了突出重点,分散难点,我遵循学生的认识规律及分数应用题的特点,在教学中采用如下几点教法:
1、有目的的运用迁移规律,启发引导的方法组织教学,教给学生获取知识的方法,引导学生进行观察、分析、概括,培养学生的思维能力。
2、采用“尝试教学法”,利用学生好奇心和求知心切的特点,让学生通过画线段直观上理解弄清数量关系,掌握例题的解题思路。然后通过各种形式的巩固练习,使学生真正理解和掌握所学知识。
三、说学法
叶圣陶先生的数学核心思想是:“教是为了不教。”这正体现了现代教学的目标不是使学生“学会”,而是让学生“会学”,也就是通过课堂教学教给学生正确科学的学习方法,培养其良好的学习习惯。
本节的教学,使学生掌握以下学法:学会通过画线段图、观察、分析、归纳最后概括出此类应用题的解答方法。掌握解题技能,发展智力,提高解题能力。
四、说教学程序
(一)、出示复习题
1、列式计算
(1)20的1/5是多少?(2)6的3/4是多少?
(通过复习,使学生唤起回忆,巩固一个数乘分数的意义,沟通新知识,为学好分数应用题打下好的基础。)
(二)探究新知
1、出示例1:学校买来100千克白菜,吃了4/5,吃了多少千克白菜?
(1)学生读题、审题,明确条件和要求问题。
(2)通过画线段图,帮助学生弄清数量关系。指名多位学生说说该把哪个数量看作单位“1”?吃了4/5是指吃了哪个数量的4/5。
(3)学生尝试练习解答,师巡视,指名学生板演。
(4)引导学生归纳“求一个数的几分之几是多少的应用题”的解题方法。
小结:求一个数的几分之几是多少的应用题,根据分数乘法的意义,用乘法计算。即:单位“1”×几/几=几分之几的对应量。
(通过画线段图,让学生直观地理解弄清数量关系,让学生自己去找出题中的“单位1”,充分发挥学生的主体作用,让学生自己去探索发现知识的规律,特别是差生,先让他们发表见解,给他们创造成功的机会,使不同的人在数学上得到不同的发展。学生尝试独立解答同样体现了学生的主体作用。利用“反馈信息”,教师进行精讲小结,归纳,解决疑难,揭示解题方法。)
(三)巩固练习
1、做教科书第14页“做一做”第1、2题。
2、做练习四的第1.4.5题。
(让学生独立完成,充分发挥学生的主体作用,使学生进一步掌握求一个数的几分之几是多少的解题方法。)
篇5:分数除法应用题说课稿
一、说教材
我教学的内容是小学数学第十一册第二单元分数除法应用题例1、例2。这部分内容是在学过分数除法的意义和计算法则、分数乘法应用题、用方程解已知一个数的几分之几是多少求这个数的文字题的基础上进行教学的。同求一个数的几分之几是多少的应用题一样,本小节教学的一个数的几分之几是多少求这个数的应用题,也是由于分数乘法意义的扩展,相应地除法意义的具体含义也有了扩展而产生的新的应用题。
教学目标是:
(1)会分析简单的分数除法应用题数量关系。
(2)能列方程正确解答简单的分数除法应用题。
(3)培养学生初步的逻辑思维能力。教学重点是:能用方程正确解答分数除法应用题。
教学难点是:
确定单位“1”、分析数量关系
二、说教法:
本节课我贯彻“以学生为主体,教师为主导,训练思维为主线”的原则
1、自主探究、寻求方法
让学生充分自主探究、寻求分数除法的解题方法。
2、设计教法体现主体
课堂设计以学生为主体,教师是领路人,注重学生间的合作与交流各抒已见、取长补短、共同提高。
3、分层练习、注重发展
练习有层次,由尝试练习到综合练习到发展练习,层层深入。
三、说教程:
一、导言:
以前我们学过了分数应用题,这节课我们继续研究分数应用题,(板书:分数应用题)。
二、复习:
1、说说下面各题中应该把哪个看作单位“1”,数量之间相等关系怎样?
①吃了一筐白菜的2/5。
②一本书的价格正好是一支钢笔价格的2/5。
③小明体内的水分占体重的4/5。
三、自主探究、解决问题
1、教学例1
①小明体内所含的水分是28千克,占体重的4/5,他的体重是多少千克?
仔细观察看一看有没有什么发现?
独立做,做完组内交流,组长分好工,做好记录,看看哪个小组方法多,你们小组准备由谁发言,用几句话表达自己小组的方法。
小结:老师也认为用方程解比较容易,因为它的解题思路与我们以前学的分数乘法应用题的思路是一致的,也是根据题中的叙述的条件明确把谁看作单位1,然后根据一个数乘分数的意义列出等量关系式,由于单位1是未知的,要设成x,列出方程进行解答。这也是我们本节课所要掌握的已知一个数的几分之几是多少求这个数的'应用题用方程解的方法。
2、教学例2。
②小明买一条裤子是75元,是一件上衣的2/3,一件上衣是多少钱?
(看题)(独立完成后说说自己的想法)
3、比较例1、例2有什么不同。
师:例1、例2虽然存在着不同指出,但是解题方法是类似的。我们再做两道题看看是不是这样。(投影出示做一做1、2)。请两名同学在投影片上做,其他同学在本上做,做后请同学叙述怎样做的,为什么这样做。
小结:通过以上的学习,同学们觉得分数应用题在解答时的关键是什么?
四、练习
4、判断下列说法是否正确。
五、总结全课
师:好了,同学们,这节课我们学习了列方程来解已知一个数的几分之几是多少,求这个数的应用题,学好这部分知识对于提高我们解决问题的能力,发展我们的思维有着重要的作用,同学们表现得非常好,希望你们继续努力。
篇6:分数除法应用题说课稿
一、说教材
这部分内容,是在学生学过分数除法的意义和计算法则、分数乘法应用题、用方程解“已知一个数的几分之几是多少,求这个数”的文字题的基础上进行教学的。同求一个数的几分之几是多少的应用题一样,本小节的教学的“已知一个数的几分之几是多少,求这个数是多少”的应用题,也是由于分数乘法意义的扩展,相应的除法意义的具体含义也有了扩展,从而产生了新的应用题。这类应用题历来是学生学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数应用题的能力,也有助于发展学生思维的广度。
二、说教学目标和教学重、难点
(一)教学目标(出示多媒体)
1、知识目标:使学生学会用方程解答“已知一个数的几分之几是多少,求这个数的分数除法应用题,并掌握检验的方法。
2、能力目标:培养学生的观察尝试、创新的能力。
3、情感目标:让学生通过两种方法解答应用题的体会,感受获得成功体会的经历,树立学好数学的信心,有良好的数学情操。
(二)教学重点(出示多媒体)
用方程解答“已知一个数的几分之几是多少,求这个数”的分数除法应用题,也是由于分数除法意义的扩展,相应的除法的意义的具体含义也有所扩展,而产生新的应用题。掌握这类应用题的结构特征,能用方程和算术方法解决,是难点所在。
三、说教法、学法。
为了真正地落实新课程标准,把课堂的主动权还给学生,激发学生求知的欲望,使探索发现成为学生自身发展的需要,让他们主动参与探索学习的过程,变教为主为学为主,提高获取知识的本领,因此本节课我主要采用自主探索的方法进行教学,从而达到教是为了不教的.目的。六年级学生已具备了较强的动手操作能力和观察推理能力,并且仍具有好玩、好奇的特征,因此我主要指导学生采取以下的学法,使学生不仅“学会”,更要“会学”。以分组合作的形式,充分调动学生的感官,让学生积极主动地参与知识的产生和发展过程,有充分的时间讨论、思考,自己主动的获取知识,获得成功的体验,感到学习带来的快乐,真正实现教师角色的转变,使学生成为课堂的主人。
四、说教学过程
(一)引出新知
好的开始是成功的一半。新课的引入是课堂教学的重要环节,是一堂课成功的起点。
第一个环节:复习旧知,促进迁移
该环节主要复习与新知有密切联系的旧知,为新知的探究铺路搭桥,激发学生探究新知的欲望,调动学生的学习积极性,设计如下:
1、根据题意写出下面的数量关系。
共三个小题,让学生思考后口答,教师板书数量关系。
2、出示与例题有关的分数乘法应用题。学生练习后,提问:这道题为什么用乘法计算?怎样用图表示已知条件和问题,把谁看作单位“1”?
第二个环节:创设情境,探究新知
对小学生来说,通过自己的探索获取新知,就是一种再创造,第二个环节的教学,我设计如下层次展开:
第一层次:独立探索
出示例3后,激励:老师相信同学们一定会解决这个难题,开始行动吧!先放手让学生尝试列式计算。教师提示可根据复习题的数量关系式,用未知数X帮助自己解这道题。
第二层次:合作探索
在学生计算出例3的结果后,再组织学生分组合作,讨论交流是怎么做的?为什么这样做?我做得对吗?存在什么疑问?
在此基础上,教师引导学生学习如何画图表示题意,找数量关系,根据数量关系列方程。该环节是学生学习时的难点所在,只有让学生深入理解题意,了解此类题型的结构特征,把握题中所含的数量关系,才能真正把知识内化为能力,做到举一反三,运用自如。我如此设计,正基于此。这样做既培养了学生的团结合作的精神,又培养了学生的分析推理调整的能力。
第三层次:尝试练习
让学生独立完成教材117页的第3题,个别学生板演,教师在学生完成后集体点评,强调学习的难点。
第三个环节:变式练习,巩固深化
练习的设计要抓基础知识与发展创新能力紧密结合起来,以达到发展思维,形成技能的目标。在此环节我设计了如下练习:
1、定位练习。
仿照例3出示类似的两道应用题,要求学生读题,画图,深入理解题里的数量关系,列出数量关系式。强化难点,形成技能。
2、提高题:同来互相编题,互相解答。
通过以上练习,促使学生将新的知识溶入到已有认知结构中,以利于更好的迁移和运用。
第四个环节课堂作业反馈信息
完成课本练习二十三第4-7题
(三)说“诱思探究”在本节课的具体体现
1、以学生为主体,教学中多次引导学生尝试练习,引导学生把旧知与新知进行对比;引导学生自主探索,亲身体验,切实把学生推向学习探索的第一线。体现了“诱思探究”对当代课堂教学的要求。
2、设计多层次,多形式的练习,促使知识的形成和内化。教学中,我做到复习铺垫练,新知尝试练,难点强化练,是练习面向全体学生,人人参与,全员动手,从而使学生的创新能力培养得到了落实。
五、说板书设计
分数除法应用题
例3:白海货运码头有一批货物,运走了,还剩240吨,这批货物原有多少吨?运走了剩下240吨?
(一)解:设这批货物原有X吨。(二)240÷(9-5)×9
我这样板书,对启迪学生思维,开发学生智力,增强学生的记忆,加深对所学的知识的理解,都起到了“画龙点睛”的作用。
篇7:六年级分数应用题教案设计
教学目标
1.理解以“和倍”问题为基础的分数应用题的解题思路.会列方程解答此类应用题.
2.培养学生的迁移类推能力.
3.培养学生运用所学的知识解决生活中的实际问题的能力.
教学重点
理解应用的数量关系,找到题目中的等量关系.
教学难点
找准题中的等量关系.
教学过程
一、复习。(用含有字母的式子表示)
1、果园里有苹果树x棵,梨树的棵数是苹果树棵数的3/4。梨树有|棵。
苹果树和梨树一共有()棵。
2、饲养小组养了黑兔a只,白兔的只数是黑兔的5倍,白兔有()只;黑兔和白兔一共有()只。
二、生活引入.
上一年,有一位学生问我|:“老师,您今年有多少岁啦?我说:我和杨莹的年龄和是42岁,杨莹的年龄是我的年龄的2/5。你能算出老师的年龄是多少岁吗?那杨莹的年龄又是多少岁呢?
1.老师说:你能解决这个问题吗?通过今天知识的学习,你们就能知道了.
2.板书课题:分数除法应用题。
3、学生读题,理解题意弄清谁是单位”1“,画出线段图.
4、分层指导。
思考:(1)根据我和杨莹的年龄和是42岁这个条件找到它的等量关系吗?
(2)根据杨莹的年龄是我的年龄的2/5这个条件,可以把谁设为?老师、杨莹的岁数用含有的式子怎么表示?
5.学生练习,集体订正,说明思路。
三、尝试练习
(一)出示例3
例3.饲养小组养的白兔和黑兔共有18只,其中黑兔的只数是白兔的.白兔和黑兔
各有几只?
1.读题,理解题意弄清谁是单位”1“,画出线段图.
2.小组回答:
(1)根据饲养小组养白兔和黑兔共有18只这个条件找到它的等量关系吗?
(2)根据黑兔的只数是白兔的这个条件,可以把谁设为?白兔、黑兔的只数用含
有的式子怎么表示?
3.学生练习。
4.学生打开书本对答。(65页)
解:设白兔的只数为只,黑兔的只数是.
白兔只数+黑兔只数=总只数
答:白兔有15只,黑兔有3只.
4.教师提问:这道题还可以怎样列式?
18÷(1+)什么意思?
(二)写出下面应用题的等量关系,只列出含有未知数的等式,不解答.
1.商店运来苹果和沙果350筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?
2.商店运来的苹果比沙果多60筐,其中沙果的筐数是苹果的,苹果和沙果各有多
少筐?
教师归纳:今天学习的应用题在解答时要根据分率句确定单位”1“,把单位”1“设为.
另一个数就是几分之几.根据已知条件列出方程解答.
四、巩固练习.
(一)变式练习
小文买一支钢笔和一支圆珠笔,买钢笔的价钱比买圆珠笔多13元,圆珠笔的单价是钢笔的6/19,圆珠笔和钢笔各多少元?
(二)对比练习
1.李明家九月份用水18吨,十月份用的水是九月份的,九月份和十月份一共用水多
少吨?
2.李明家九月份和十月份共用水34吨,九月份的用水吨数是十月份的,九月份、十月份各用水多少吨?
(三)选择练习
果园里苹果树和桃树共350棵,其中苹果的棵数是桃树的,桃树有多少棵?
解:设桃树有棵.
A.B.
C.D.
五、质疑总结.
1.用方程解这类题的关键是什么?
2.用算术方法解答时应注意什么?
六、板书设计
分数除法应用题
解:设老师的年龄是岁.
......老师年龄
42-30=12......杨莹的年龄
答:老师30岁,杨莹12岁.
六年级分数应用题教案设计二
教学目标:
使学生比较系统地掌握分数应用题的解答方法。弄清稍复杂的分数应用题是从基本题扩展而来的,抓住关键提高学生的辩别能力。
使学生能够正确地选择适当的方法解答分数(百分数)应用题。
教学过程:
指导学习例题
基本复习
谁能根据这两个已知条件提出简单的用分烽解的问题并列出相应的算式。(水彩画是蜡笔画的几分之几?50/80;蜡笔画是水彩画的几分之几?80/50)
稍复杂分数应用题的复习:
根据上面已知条件,教师提出“蜡笔画比水彩画多几分之几”谁会列式并算出结果?(学生列式教师板书(80-50)÷50=3/5)如果提出“水彩画比蜡笔画少几分之几”又该怎样列式?结果又是多少?学生列式教师板书(80-50)÷80=3/8)
提问:解答以上问题列式的关键是什么?关键弄清哪个量是哪个量、哪个量比哪个量多(少)几分之几。“是”和“比”后面的量就看作单位“1”的量做除数,前面的量则做被除数。
稍有变化的复习题:根据上面总结的解题关键,我们来讨论下面两个问题。(教材111页的两道小题,可一一出示后让学生列式解答。)
总结解答方法:
找准题中单位“1”的量。
看单位“1”的量是已知还是未知。(单位“1”的量是已知就用乘法解答,否则可用方程解)
单位“1”的量×几分之几=几分之几的量
完成教材111页例4的“想一想”:
教师强调说明解题方法一样。因为这里的分数与百分数都是表示两个数的相除关系,实质是一样的,只是形式不同,如最前面的基本题中最后结果要化成百分数。
3.巩固练习
只列式说得数
完成教材113页的“做一做”。
小军看一本240页的书,第一天看了全书的1/5,第二天看了全书的1/4。
1)240×1/5求的是( )。
2)240×(1/4-1/5)求的是( )。
3)240×(1/4+1/5)求的是( )。
4)240×(1-1/4-1/5)求的是( )。
解答下面各题
一根铁丝第一次截去全长的3/7,第二次截去3/7米,还剩下全长的3/7。这根铁丝有多长?
光明学校的男生数占全校学生的33%,比女生少170人,女生有多少人?
(此二题可供班级中优等生解答,对学习有困难的同学可做教材练习二十八第一题。)
4.全课总结(略)
篇8:六年级分数应用题教案设计
教学目标
1、进一步理解分数应用题的数量关系,加深解答分数应用题的一般规律。
2、进一步掌握已知一个数的几分之几是多少求这个数的应用题的解题思路。
3、进一步培养学生解决问题和分析、推理等思维能力,提高解题能力。
教学重难点
进一步理解分数应用题的数量关系,加深解答分数应用题的一般规律。
教学准备
教学过程设计
教学内容
师生活动
备注
一、复习铺垫
二、教学新课
三、巩固练习
四、课堂小结
五、作业
1、复习
出示复习题(见幻灯)
问:解答这道题是怎样想的?为什么列方程解?
2、揭示课题
解答分数应用题,要先确定单位“1”,再找出题目中的数量关系式,然后列式。这节课就继续按照这样的思路来学习分数应用题。
1、教学例2
(1)学生读题,找条件和问题。
(2)找关键句,说数量关系。
(3)学生画线段图。
(4)学生独立列式、计算。
(5)小结:这道题的解题思路是怎样的?
2、教学试一试。
(1)学生读题,找条件和问题。
(2)找关键句,说数量关系。
(3)学生画线段图。
(4)学生独立列式、计算。
3、小结
问:通过上面的学习,你认为解答分数应用题该怎么去思考?
1、做练习十第6题
2、做“练一练”
3、做练习十第9题
问:列方程解是怎样想的?
这节课学习了什么内容?解答分数应用题一般要怎样想?今天学习的这类应用题可以有哪些方法解答?
练习使7、8、10
课后感受
例2比较简单,从学生的掌握情况来看,“试一试”稍有一些难度。所以本节课的重点放在了“试一试”的分析上。的确通过画线段图的分析,学生对此类题目有了一定的解题思路。
篇9:分数应用题
课 型
新授课
要点提示
备课人
严正祥
备课时间
9月3日
教学内容:教材第三15―17页例1、例2和“练一练”、练习三第1―6题
教学目标:
1、使学生初步认识分数乘法应用题的特点,理解分数乘法应用题法应用题的解题思路和解题方法,认识分数分数乘法应用题的基本数量关系。
2、使学生分析推理和判断等思维能力得到进一步发展,并初步认识求一个数的几分之几是多少的应用题和求一个数的几倍是多少的应用题之间的联系。
教学重点:理解分数乘法应用题的解题思路和解题方法。
教学难点:初步认识求一个数的几分之几是多少的应用题和求一个数的几倍是多少的应用题之间的联系。
教具准备:直尺、小黑板、投影片
教学过程:
一、复习引新
1、 每句话里把哪个量看作单位“1”?其中分数表示的.具体意义是什么?
(1) 一块布料,用去3/5。
(2) 一块地3/7种西红柿。
2、 做15页复习题。
问:为什么要用乘法算?这里的一个数和分数相乘表示的是什么意义?
3、 引入新课。
根据一个数和分数相乘可以表示一个数的几分之几是多少,就需要用乘法计算。这节课就根据这样的道理,学习分数的应用题。(板书课题)
二、教学新课
1、教学例1。
(1)出示例1。
请大家找一找,这道题的条件有哪些,求什么问题?
(2)教学解法一。
问:从图上看用4/5,是用去谁的?就是把20米平均分成几份,用去其中的几份?
(3)教学解法二。
请同学们看线段图,讨论可以怎样解答,把它试做一下。
组织学生交流自己的解法和思路。
师帮助学生理解解题思路和方法。
(4)解法比较。
这两种解法实际都是表示把20米平均分成5份,求其中的4份是多少。
2、练一练”第1题。
指名说一说是怎样想的,并强调为什么把全班学生人数看做单位“1”。
3、教学例2。
(1)出示例2。学生读题。
问:有哪几个条件,求什么问题?
根据“一只小鸡的重量是小鸭的2/3”,要先画出表示哪一个量的线段?看着线段图,
(2)按例1想的过程讨论一下,题里把哪个数量看作单位“1”,求小鸡的重量就是求什么?
指名说一说分析过程,
4、教学“想一想”。
(1)让学生找一找,谁是谁的几分之几。
问:用线段图表示题目的意思,要先画哪个数量的线段?为什么?
(2)大家讨论,哪个数量是单位“1”?怎样列式解答?
(3)3/2是什么分数?
条件里一个数量是另一个数量的几分之几,可以是真分数,也可以是假分数。
(1)做“练一练”第2题。
(2)小结。
想一想,这里有哪两种重量,可以画几条线段来表示题意?据哪个条件确定单位“1”的量,接着怎样想,用什么方法解答?
你从上面几题的解答里,发现在分数应用题里,怎样求单位“1”这个数量的几分之几是多少?
师总结。
巩固练习
(3)说一说下面各题里的单位“1”的量。
看了一本书页数5/6。
杨树的棵数是杉数的3/8。
(4)做练习三第1题。
指名板演,其余学生在练习本上。
集体订正,让学生说一说是怎样想的,数量关系式是怎样的。
(5) 练习三第5题。
问:三道算式有什么相同的地方?为什么都用小乘法算?
三、全课总结。
四、课堂作业:
练习三的1、2、3、4。
板书设计:
分数应用题
先确定单位“1”,接着再想要求的数量是单位“1”这
个数量的几分之几,根据一个数和分数相乘可以表示求一个
数的几分之几是多少,用单位“1”的量乘几分之几。
单位“1”的量×几分之几=对应的量
教学后记:
篇10:分数应用题
先确定单位“1”,接着再想要求的数量是单位“1”这
个数量的几分之几,根据一个数和分数相乘可以表示求一个
数的几分之几是多少,用单位“1”的量乘几分之几。
单位“1”的量×几分之几=对应的量
教学后记:
要点提示
篇11:分数应用题
课 型
新授课
要点提示
备课人
严正祥
备课时间
9月3日
教学内容:教材第三15―17页例1、例2和“练一练”、练习三第1―6题
教学目标 :
1、使学生初步认识分数乘法应用题的特点,理解分数乘法应用题法应用题的解题思路和解题方法,认识分数分数乘法应用题的基本数量关系。
2、使学生分析推理和判断等思维能力得到进一步发展,并初步认识求一个数的几分之几是多少的应用题和求一个数的几倍是多少的应用题之间的联系。
教学重点:理解分数乘法应用题的解题思路和解题方法。
教学难点 :初步认识求一个数的几分之几是多少的应用题和求一个数的几倍是多少的应用题之间的联系。
教具准备:直尺、小黑板、投影片
教学过程 :
一、复习引新
1、 每句话里把哪个量看作单位“1”?其中分数表示的具体意义是什么?
(1) 一块布料,用去3/5。
(2) 一块地3/7种西红柿。
2、 做15页复习题。
问:为什么要用乘法算?这里的一个数和分数相乘表示的是什么意义?
3、 引入新课。
根据一个数和分数相乘可以表示一个数的几分之几是多少,就需要用乘法计算。这节课就根据这样的道理,学习分数的应用题。(板书课题)
二、教学新课
1、教学例1。
(1)出示例1。
请大家找一找,这道题的条件有哪些,求什么问题?
(2)教学解法一。
问:从图上看用4/5,是用去谁的?就是把20米平均分成几份,用去其中的几份?
(3)教学解法二。
请同学们看线段图,讨论可以怎样解答,把它试做一下。
组织学生交流自己的解法和思路。
师帮助学生理解解题思路和方法。
(4)解法比较。
这两种解法实际都是表示把20米平均分成5份,求其中的4份是多少。
2、练一练”第1题。
指名说一说是怎样想的,并强调为什么把全班学生人数看做单位“1”。
3、教学例2。
(1)出示例2。学生读题。
问:有哪几个条件,求什么问题?
根据“一只小鸡的重量是小鸭的2/3”,要先画出表示哪一个量的线段?看着线段图,
(2)按例1想的过程讨论一下,题里把哪个数量看作单位“1”,求小鸡的重量就是求什么?
指名说一说分析过程,
4、教学“想一想”。
(1)让学生找一找,谁是谁的几分之几。
问:用线段图表示题目的意思,要先画哪个数量的'线段?为什么?
(2)大家讨论,哪个数量是单位“1”?怎样列式解答?
(3)3/2是什么分数?
条件里一个数量是另一个数量的几分之几,可以是真分数,也可以是假分数。
(1)做“练一练”第2题。
(2)小结。
想一想,这里有哪两种重量,可以画几条线段来表示题意?据哪个条件确定单位“1”的量,接着怎样想,用什么方法解答?
你从上面几题的解答里,发现在分数应用题里,怎样求单位“1”这个数量的几分之几是多少?
师总结。
巩固练习
(3)说一说下面各题里的单位“1”的量。
看了一本书页数5/6。
杨树的棵数是杉数的3/8。
(4)做练习三第1题。
指名板演,其余学生在练习本上。
集体订正,让学生说一说是怎样想的,数量关系式是怎样的。
(5) 练习三第5题。
问:三道算式有什么相同的地方?为什么都用小乘法算?
三、全课总结。
四、课堂作业 :
练习三的1、2、3、4。
板书设计 :
篇12:六年级数学稍复杂的分数应用题说课稿
关于六年级数学稍复杂的分数应用题说课稿
一、说教材
1、教学内容
《稍复杂的分数应用题》是在简单的求一个数的几分之几是多少的分数乘法应用题的基础上进行教学的。它包括两个例题,分别让学生通过两种方法解答,这两种解法反映了两种不同的思路,使学生更加明确稍复杂的分数应用题的解答方法。
2、教学目标
【知识与技能】
使学生在理解的基础上学会解答稍复杂的求一个数的几分之几是多少的分数乘法应用题,提高学生解答应用题的能力。
【过程与方法】
经历分析、解答的过程,体验解题的一般方法及规律。
【情感态度和价值观】
感悟数学知识内在联系,数学来自生活,增强数学意识,培养学生爱国情怀。
3、教学重点和难点
重点:根据一个数乘分数的意义分析应用题。
突破方法:结合已有的知识经验,引导学生画线段图帮助分析和理解。
难点:掌握稍复杂分数应用题的解题方法。
突破方法:引导学生在解题过程中通过画线段图去理解和掌握。
二、说教法和学法
整堂课始终贯彻“学生为主体,教师为主导”的训练思维为主线的原则。
1、自主探索,寻求方法。
让学生充分自主探索,寻求稍复杂分数应用题的解答思路和方法。
2、设计教法,体现主体。
整堂课以学生为主体,教师处于主导地位。并注重学生间的相互合作和交流,做到互相评议,各抒已见,取长补短,共同提高。
3、分层练习,注重发展。
练习分层次,由基本练习到巩固练习,再到综合应用和开放练习,层层深入,不断提高学生解题思路的发展与解题方法的提高。
4、运用设备,增强感官。
三、说教学设计
(一)谈话导入,激发兴趣。
1.欣赏录像
2、认识吉祥物
教学设想:
通过北京奥运会吉祥物的宣传片激发学生学习兴趣,让学生在吉祥物的带领下学习数学知识,增强学科趣味性,提高学生学习的积极性,促进学生对北京奥运会的向往。
(二)复习旧知,做好铺垫。
判断单位“1”的练习。( 口答)
谁是单位“1”并说出数量关系
在上届奥运会上中国队
1.获得32枚金牌,是获得奖牌总数的六十三分之三十二。
2.获得铜牌的枚数是银牌的十七分之十四。
3.获得银牌和铜牌的总枚数是奖牌总数的六十三分之三十一。
教学设想:
此环节我利用上届奥运会中国体育代表团取得的奖牌情况,将各奖牌分布情况用分数的形式展示出来,让学生说说单位“1”的量以及数量关系,使学生体验数学知识于生活,只要善于发现,在我们我们身边处处有数学。
(三)探究新知,确定目标。
1、学习例题4
教学设想:
在教学例题4的过程中,我利用大熊猫晶晶与学生对话的形式引出复习题中的已知条件,让学生根据所提供的信息,提出一步计算的数学问题,同时让学生画出线段图,并明确线段图中每个部分,这样的安排,一是为学生学习新知打下基础,揭示课题,二是便于让例题4与复习题进行比较,从而能够将以前学习的分数应用题和现在学习的分数应用题正确的区分开来。具体过程如下:
熊猫视频引入:大家好!我是熊猫晶晶,你知道我在中国哪个省最多吗?
全国约有2000只,四川省占其中的四分之三。
(1)从这组信息中你知道了什么?
(2)你能提出一步计算的数学问题? (四川省约有多少只?)
(3)怎样解答?你是怎样想的?
(4)你能画出线段图吗?(学生说老师画)
(5)还能提出一步计算的数学问题?(其他省占几分之几?)
(6)你是怎样解答?从线段图上你能看到吗?
揭示部分课题:分数应用题(这是我们以前学习的一步的分数应用题,板书课题,今天我们继续学习分数应用题)
教学设想:
在提出两步计算的数学问题时,我充分利用课堂中已有资源进行教学,让学生在刚才的一步计算的分数应用题的线段图上,进一步分析。新的问题还能在原来的线段上表示出来吗?从而使学生对线段图做进一步的修改,在修改线段图的过程中,也是学生审题,分析数量关系的过程,学生经历这样一个思维过程,也就能找到在线段图中隐藏的一些数量关系。通过这些数量关系,学生也就能顺利的列出算式并解答出来。在应用题学习过程中,如何让学生学会分析题意,理解题意,并能根据线段图找到数量关系,是解答稍复杂的分数应用题的关键,这也是本节课最终需要解决的地方。具体过程如下:
(7)你能提出两步计算的`数学问题?
(8)线段图变不变?在线段图上你能找到哪些数量关系式?(学生独立思考,小组讨论)
(9)你能解答出来吗?你的依据是什么?
(10)比较两种解法的相同点和不同点。
教学设想:
学生在教师的引导下,分别用不同的思路列出了两种不同的解法,对这两种解法的比较是十分重要的,让学生说出两种解法的区别与联系,也就是进一步对学生进行数量关系的训练,让学生明确两种解法虽然是两种不同的思路,但数量关系都是一样的,第一种是用总数减去四川省的只数,得到其他省的只数;第二种是用单位“1”减去四川省占总数的几分之几,再求出其他省的只数。这样的分析,对学生进一步形成解稍复杂的答应用题的方法是有很大帮助的,也从另一方面为学生提供了解答稍复杂的分数应用题的一般规律。
师述:两种解法,虽然它们的思路不一样,但我们可以利用这两种解法互相检验,使我们的解答过程更加准确!
揭示整个课题:刚才大家共同解答的分数应用题就是我们今天要学习的稍复杂的分数应用题。补充课题:稍复杂的
2.学习例题5(欢欢)
教学设想:
例题5的学习是在例题4的基础上进行的,表面上两个例题似乎没有什么内在的联系,但实际上他们之间既有区别,也有联系。在例题5的设计上,我本着尊重教材,创造性的使用教材的原则,将例题5进行了一些改动,这样做的目的,一是想让例题5更加有趣味性,更能贴近学生生活实际,二是想培养学生对20奥运会的爱国情怀。为了增强例题4与例题5内在的联系,我抛出一个问题:例题5中的两个量能不能象例题4那样在一条线段上表示呢?学生就能明确例题5在画线段图时,必须要画两条线段分别来表示两个量,这个指导过程教师是必须要有的,因为在今后的稍复杂的分数应用题中,学生如何通过画线段图帮助解答是十分有必要的,紧接着就是明确这两个量先画哪个量?每个量如何画的问题,在这个环节,我放手让学生自己利用画出的线段图列式计算,通过尝试,学生列出了两种不同的解法,在分别对这两种解法进行比较,使学生更加明确稍复杂的分数应用题解答方法。具体过程如下:
导语:你知道他是谁吗?出示图片!
师:今天张老师不和他比跨栏,你们猜张老师和他比什么?(比心跳)
(1)出示例题5
运动员与普通人心脏跳动次数是不一样的,跨栏冠军刘翔每分钟约跳55次,张老师每分钟心跳的次数比刘翔多五分之四,张老师每分钟心跳多少次?
(2)出示“思考”帮助学生画线段图
①题中两个量,先画哪个量?怎样画?
②题中另一个量又该怎样画呢?画长些还是短些?长多少?短多少呢?
(3)学生自主完成线段图,列出算式并解答。
(4)小组汇报。
(5)比较两种算法:你比较喜欢哪种算法?为什么?
设想:
(四)实践应用,拓展提高:
教学设想:
在练习这一环节,我十分注重“双基”的训练,基本知识与基本能力的训练要渗透到每一节数学课中,让学生打好基础,逐步提高。同时在练习题呈现方式上体现呈现的多样性。
1.基本训练:
(1)参加2008年北京奥运会男运动员人数占五分之三。
女运动员人数=运动员总人数 -( )
女运动员人数=运动员总人数×( )
(2)鸟巢和水立方共耗资10亿人民币,其中水立方耗资是总数的五分之二。
鸟巢的耗资=总数 -( ) 鸟巢的耗资=总数×( )
(3)修建鸟巢,原来用钢材50万吨,现在用的钢材比原来节约五分之一。
现在用的钢材量=原来钢材量-节约的钢材量
现在用的钢材量=原来钢材量×( )
2.巩固应用:
参加北京奥运会男运动员约有4000人,女运动员人数比男运动员多四分之一,女运动员比男运动员多多少人?女运动员有多少人?(线段图展示)
3.开放作业(我的2008)
在上届雅典奥运会上,我国共获得32枚金牌,17枚银牌,14枚铜牌,共63枚奖牌的好成绩。在2008年国家体育总局根据备战情况,特提出以下目标:
2008年奖牌总数比上届多九分之二
2008年金牌总数比上届多八分之一
上届奥运会上我国传统项目共获得23枚金牌,2008年这些传统项目要比上届多二十三分之三
你能算出我们国家在2008年北京奥运会的奖牌目标吗?
(五)全课小结,回顾所学:
师:通过今天的学习,你有什么收获吗?
(六)课堂作业:
P70页第三题 P70页第四题
篇13:六年级数学稍复杂的分数应用题说课稿
一、说教材
1、教学内容
《稍复杂的分数应用题》是在简单的求一个数的几分之几是多少的分数乘法应用题的基础上进行教学的。它包括两个例题,分别让学生通过两种方法解答,这两种解法反映了两种不同的思路,使学生更加明确稍复杂的分数应用题的解答方法。
2、教学目标
知识与技能:使学生在理解的基础上学会解答稍复杂的求一个数的几分之几是多少的分数乘法应用题,提高学生解答应用题的能力。
过程与方法:经历分析、解答的过程,体验解题的一般方法及规律。
情感态度和价值观:感悟数学知识内在联系,数学来自生活,增强数学意识,培养学生爱国情怀。
3、教学重点和难点
重点:根据一个数乘分数的意义分析应用题。
突破方法:结合已有的知识经验,引导学生画线段图帮助分析和理解。
难点:掌握稍复杂分数应用题的解题方法。
突破方法:引导学生在解题过程中通过画线段图去理解和掌握。
二、说教法和学法
整堂课始终贯彻“学生为主体,教师为主导”的训练思维为主线的原则。
1、自主探索,寻求方法。
让学生充分自主探索,寻求稍复杂分数应用题的解答思路和方法。
2、设计教法,体现主体。
整堂课以学生为主体,教师处于主导地位。并注重学生间的相互合作和交流,做到互相评议,各抒已见,取长补短,共同提高。
3、分层练习,注重发展。
练习分层次,由基本练习到巩固练习,再到综合应用和开放练习,层层深入,不断提高学生解题思路的'发展与解题方法的提高。
4、运用设备,增强感官。
三、说教学设计
(一)谈话导入,激发兴趣。
1、欣赏录像。
2、认识吉祥物。
教学设想:
通过北京奥运会吉祥物的宣传片激发学生学习兴趣,让学生在吉祥物的带领下学习数学知识,增强学科趣味性,提高学生学习的积极性,促进学生对2008年北京奥运会的向往。
(二)复习旧知,做好铺垫。
判断单位“1”的练习。(口答)
谁是单位“1”并说出数量关系。
在上届奥运会上中国队。
1.获得32枚金牌,是获得奖牌总数的六十三分之三十二。
2.获得铜牌的枚数是银牌的十七分之十四。
3.获得银牌和铜牌的总枚数是奖牌总数的六十三分之三十一。
教学设想:
此环节我利用上届奥运会中国体育代表团取得的奖牌情况,将各奖牌分布情况用分数的形式展示出来,让学生说说单位“1”的量以及数量关系,使学生体验数学知识于生活,只要善于发现,在我们我们身边处处有数学。
(三)探究新知,确定目标。
1、学习例题4
教学设想:
在教学例题4的过程中,我利用大熊猫晶晶与学生对话的形式引出复习题中的已知条件,让学生根据所提供的信息,提出一步计算的数学问题,同时让学生画出线段图,并明确线段图中每个部分,这样的安排,一是为学生学习新知打下基础,揭示课题,二是便于让例题4与复习题进行比较,从而能够将以前学习的分数应用题和现在学习的分数应用题正确的区分开来。具体过程如下:
熊猫视频引入:大家好!我是熊猫晶晶,你知道我在中国哪个省最多吗?
20全国约有2000只,四川省占其中的四分之三。
(1)从这组信息中你知道了什么?
(2)你能提出一步计算的数学问题?(四川省约有多少只?)
(3)怎样解答?你是怎样想的?
(4)你能画出线段图吗?(学生说老师画)
(5)还能提出一步计算的数学问题?(其他省占几分之几?)
(6)你是怎样解答?从线段图上你能看到吗?
揭示部分课题:分数应用题。(这是我们以前学习的一步的分数应用题,板书课题,今天我们继续学习分数应用题)
教学设想:
在提出两步计算的数学问题时,我充分利用课堂中已有资源进行教学,让学生在刚才的一步计算的分数应用题的线段图上,进一步分析。新的问题还能在原来的线段上表示出来吗?从而使学生对线段图做进一步的修改,在修改线段图的过程中,也是学生审题,分析数量关系的过程,学生经历这样一个思维过程,也就能找到在线段图中隐藏的一些数量关系。通过这些数量关系,学生也就能顺利的列出算式并解答出来。在应用题学习过程中,如何让学生学会分析题意,理解题意,并能根据线段图找到数量关系,是解答稍复杂的分数应用题的关键,这也是本节课最终需要解决的地方。具体过程如下:
(7)你能提出两步计算的数学问题?
(8)线段图变不变?在线段图上你能找到哪些数量关系式?(学生独立思考,小组讨论)
(9)你能解答出来吗?你的依据是什么?
(10)比较两种解法的相同点和不同点。
教学设想:
学生在教师的引导下,分别用不同的思路列出了两种不同的解法,对这两种解法的比较是十分重要的,让学生说出两种解法的区别与联系,也就是进一步对学生进行数量关系的训练,让学生明确两种解法虽然是两种不同的思路,但数量关系都是一样的,第一种是用总数减去四川省的只数,得到其他省的只数;第二种是用单位“1”减去四川省占总数的几分之几,再求出其他省的只数。这样的分析,对学生进一步形成解稍复杂的答应用题的方法是有很大帮助的,也从另一方面为学生提供了解答稍复杂的分数应用题的一般规律。
师述:两种解法,虽然它们的思路不一样,但我们可以利用这两种解法互相检验,使我们的解答过程更加准确!
揭示整个课题:刚才大家共同解答的分数应用题就是我们今天要学习的稍复杂的分数应用题。补充课题:稍复杂的。
2、学习例题5(欢欢)
教学设想:
例题5的学习是在例题4的基础上进行的,表面上两个例题似乎没有什么内在的联系,但实际上他们之间既有区别,也有联系。在例题5的设计上,我本着尊重教材,创造性的使用教材的原则,将例题5进行了一些改动,这样做的目的,一是想让例题5更加有趣味性,更能贴近学生生活实际,二是想培养学生对2008年奥运会的爱国情怀。为了增强例题4与例题5内在的联系,我抛出一个问题:例题5中的两个量能不能象例题4那样在一条线段上表示呢?学生就能明确例题5在画线段图时,必须要画两条线段分别来表示两个量,这个指导过程教师是必须要有的,因为在今后的稍复杂的分数应用题中,学生如何通过画线段图帮助解答是十分有必要的,紧接着就是明确这两个量先画哪个量?每个量如何画的问题,在这个环节,我放手让学生自己利用画出的线段图列式计算,通过尝试,学生列出了两种不同的解法,在分别对这两种解法进行比较,使学生更加明确稍复杂的分数应用题解答方法。具体过程如下:
(1)出示例题5。
运动员与普通人心脏跳动次数是不一样的,跨栏冠军刘翔每分钟约跳55次,张老师每分钟心跳的次数比刘翔多五分之四,张老师每分钟心跳多少次?
(2)出示“思考”帮助学生画线段图。
①题中两个量,先画哪个量?怎样画?
②题中另一个量又该怎样画呢?画长些还是短些?长多少?短多少呢?
(3)学生自主完成线段图,列出算式并解答。
(4)小组汇报。
(5)比较两种算法:你比较喜欢哪种算法?为什么?
设想:
(四)实践应用,拓展提高:
教学设想:
在练习这一环节,我十分注重“双基”的训练,基本知识与基本能力的训练要渗透到每一节数学课中,让学生打好基础,逐步提高。同时在练习题呈现方式上体现呈现的多样性。
1.基本训练:
(1)参加2008年北京奥运会男运动员人数占五分之三。
女运动员人数=运动员总人数 -( )
女运动员人数=运动员总人数×( )
(2)鸟巢和水立方共耗资10亿人民币,其中水立方耗资是总数的五分之二。
鸟巢的耗资=总数 -( ) 鸟巢的耗资=总数×( )
(3)修建鸟巢,原来用钢材50万吨,现在用的钢材比原来节约五分之一。
现在用的钢材量=原来钢材量-节约的钢材量
现在用的钢材量=原来钢材量×( )
2.巩固应用:
参加北京奥运会男运动员约有4000人,女运动员人数比男运动员多四分之一,女运动员比男运动员多多少人?女运动员有多少人?(线段图展示)
3.开放作业:(我的2008)
在上届雅典奥运会上,我国共获得32枚金牌,17枚银牌,14枚铜牌,共63枚奖牌的好成绩。在2008年国家体育总局根据备战情况,特提出以下目标:
2008年奖牌总数比上届多九分之二
2008年金牌总数比上届多八分之一
上届奥运会上我国传统项目共获得23枚金牌,2008年这些传统项目要比上届多二十三分之三
你能算出我们国家在2008年北京奥运会的奖牌目标吗?
(五)全课小结,回顾所学:
师:通过今天的学习,你有什么收获吗?
(六)课堂作业:
P70页第三题 P70页第四题
篇14:分数应用题(人教版六年级教案设计)
教学目标
1.使学生学会用方程方法和算术方法解答两步计算的分数一般应用题.
2.培养学生分析、解答两步计算的分数应用题的能力和知识迁移的能力.
3.培养学生的推理能力.
教学重点
培养学生分析、解答两步计算的分数应用题的能力
教学难点
使学生正确地解答两步计算的分数一般应用题.
教学过程
一、复习引新
(一)全体学生列式解答,再说一说列式的依据.
两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?
13÷2-5
=6.5-5
=1.5(千米)
根据:路程÷相遇时间-甲速度=乙速度
(二)教师提问:谁来说一说相遇问题的三量关系?
速度和×相遇时间=总路程
总路程÷相遇时间=速度和
总路程÷速度和=相遇时间
(三)引新
刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为 小时)
二、讲授新课
(一)教学例1
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过 小时相遇.甲每小时行5千米,乙每小时行多少千米?
1.读题,分析数量关系.
2.学生尝试解答.
方法一:解:设乙每小时行 千米.
方法二: (千米)
3.质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?
相同:解题思路和解题方法相同;
不同:数据不同,由整数变成分数.
4.练习
甲、乙两车同时从相距90千米的两地相对开出, 小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?
(二)教学例2
例2.一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的 ,这批水果有多少千克?
1.学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系.
由此得出:一批水果的重量 第一次+第二次
2.列式解答
方法一:解:设这批水果有 千克
方法二:
3.以组为单位说一说解题的思路和依据.
4.练习
六年级一班有男生23人,女生22人,全班学生占六年级学生总数的 .六年级有学生多少人?
三、巩固练习
(一)写出下列各题的等量关系式并列出算式
1.甲、乙两车同时从相距184千米的两地相对开出, 小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?
2.打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的 .这部书稿有多少页?
(二)选择适当的方法计算下面各题
1.一根长绳,第一次截去它的 ,第二次截去 米,还剩7米,这根绳子长多少米?
2.甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行 千米,两人多少小时后相遇?
四、课堂小结
今天我们学习的分数应用题和以前所学的知识有什么联系?有什么区别?
五、课后作业
1.商店运来苹果4吨,比运来的橘子的2倍少 吨.运来橘子多少吨?
2.一套西装160元,其中裤子的价格是上衣的 .上衣和裤子的价格各是多少元?
六、板书设计
分数应用题
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过
小时相遇.甲每小时行5千米,乙每小时行多少千米? 例2.一个水果店运一批水果,第一次运了50千克,第二次运了
70千克,两次正好运了这批水果 的 ,这批水果有多少千克?
解:设乙每小时行 千米
答:,乙每小时行 千米.
解:设这批水果有 千克
答
篇15:六年级分数应用题带答案
1、分析:用去1/2和5桶,还剩30%,可以理解为,5桶所占的分率为1-1/2-30% (从单位1中去掉1/2和30%),当然,也可以画线段图来理解。所以列式为:5÷(1-1/2-30%)
2、分析:第一次截去它的7/10,第二次又截去余下的1/3(题中的7/10的单位1为“它”也就是一根钢管10米,1/3的单位1是第一次截去后余下的钢管的长度,两个分数的单位1不相同,所以要统一单位1,即都转化为这根钢管的几分之几),显然,“第一次截去它的7/10”不用再转化了,重点是“第二次又截去余下的1/3”转化为第二次截去了这根钢管的几分之几,解决了这个问题,就迎刃而解了。
第二次截去了余下(就是1-7/10)的.1/3,就是第二次截去了1×(1-7/10)×1/3,就是第二次截去了这根钢管的(1-7/10)×1/3=1/10
所以10对应的分率为
单位1减去第一次截去了单位1的几分之几再减去第二次借去了单位的几分之几
列式为:(1-7/10)×1/3=1/10
10÷(1-7/10-1/10)
=省略自己计算
3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?
分析:由题中的“完成了全长的2/3后,离中点16.5千米”条件可知道,2/3已经超过了中点1/2,画线段图可以理解,16.5千米对应的分率为2/3-1/2
所以列式为16.5÷(2/3-1/2)
4、师徒两人合做一批零件,徒弟做了,比师傅少做21个,这批零件有多少个?
分析:由题意“徒弟做了总数的2/7,比师傅少做21个”意味着,师傅做了徒弟做的数量(总数的2/7)再加上21个,
徒弟(总数的2/7)和师傅(总数的2/7再加上21个)共做了这批零件就是单位1
可以理解为,21个零件所占的分率为1-2/7-2/7
所以列式为21÷(1-2/7-2/7)
5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?
分析:要想求出两次共取出多少袋?必须先知道单位1也就是总数是多少?所以先求单位1这批化肥总数是多少?
由题意分析,找准已经量和其所对应的分率各式多少就很容易求出单位1了。
第一次(总数的2/5),第二次(总数的1/3少12袋),剩下24袋,
这意味着,12袋和24袋对应的分率为单位1中去掉2/5再去掉1/3
所以列式(12+24)÷(1-2/5-1/3)但这是求的单位1这批化肥的总数结果为135袋
再求两次共取出多少袋?
135×2/5+135×1/3-12=87(袋)(大家要写详细过程)
6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?
分析:由题意想到数量关系:总路程÷ 速度和=相遇时间
总路程已经知道为1152千米
速度和为货车和客车的速度和,货车已知为每小时行72千米,先求客车的速度是解决这个问题的重要点(在这句话”货车每小时行72千米,比客车快 2/7”中,客车的速度为单位1,求单位1所以客车的速度为72÷(1+2/7)可以画线段图来理解)
所以列式客车的速度72÷(1+2/7)=56千米/ 时
1152÷(72+56)=9(小时)
这个题很经典,必须弄明白。
7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?
分析:这类问题有很多种解法,只要合理答案符合就可。
我们把这类问题转化成比的思想来解答。由“裤子的价格是上衣的3/5”,可以知道上衣的价格与裤子的价格的比为5:3,一件上衣比裤子贵160元,也就是160元对应的份数为(5-3)份,所以先求一份再求裤子所对应的3份
列式为160÷(5-3)×3=240(元)
当然这类的问题也可以用分数的思想,列方程来解决
解:设上衣的价格为x元(最后我解释为什么设上衣的价格,而不设问题中所问的一条裤子的价格为x元呢?)
根据数量关系:一件上衣的价格-一条裤子的价格=160 列出方程
X - 3/5x =160
解出x=400
裤子的价格为3/5x=400×3/5=240(注意这里不带单位,为什么?我们常常讲这里不解释了)
可能还有别的思路,希望能拿来和大家分享,合理就是对的。
8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?
答案:72只。
9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?
答案:两天共挖:60米
还剩:20米。
注意事项
①分母一定不能为0,因为分母相当于除数。否则等式无法成立,分子可以等于0,因为分子相当于被除数。相当于0除以任何一个数,不论分母是多少,答案都是0。
②分数中的分子或分母经过约分后不能出现无理数(如2的平方根),否则就不是分数。
③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)
分数化小数
最简分数化小数是先看分母的素因数有哪些,如果只有2和5,那么就能化成有限小数,如果不是,就不能化成有限小数。不是最简分数的一定要约分方可判断。
有以下方法:
分母是特殊数字的(如2、4、8、10、100、1000等)
1、分母是2、4、8等,利用分数的基本性质,分母和分子同时乘以5、25、125等数,分母就转成10、100、1000的数,直接换成小数。
2、利用分数与除法的关系:分子/分母=小数
★ 分数应用题说课稿
★ 分数应用题带答案
六年级下册分数应用题说课稿(集锦15篇)




