《重叠问题》的教学反思

时间:2021-04-12 09:03:21 作者:青泠 教学心得 收藏本文 下载本文

“青泠”通过精心收集,向本站投稿了17篇《重叠问题》的教学反思,下面是小编为大家整理后的《重叠问题》的教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

篇1: 《重叠问题》教学反思

我在准备这节课的时候查阅了很多资料和视频。感觉一些设计上起来比较费时费力。效果不明显。有的则热闹有余思考深度不足。当我看到《小学数学教育》第10期的时候,上海市静安区教育学院曹培英老师的一段文字给我了很大启发:从没见过韦恩图的学生,很少能自发想到用“圈”来表示数量关系。为此,很多教师设想了种种启发方式,如“请呼啦圈帮忙”。

其实,这个“圈”还是教师给出的。既然学生头脑中还没有用圈表示的图,那就给两个圈,只要他们能恰当运用不就得了。走出了硬要让学生自己想到说出,以显示教学水平的误区。一切变得简单!

《集合―重叠问题》中渗透的集合思想是数学中最基本的思想,虽然学生在计数和计算的学习中,已经接触过集合思想,但学生在低年级接触的集合思想更多是一一对应的思想,对于两个集合间的运算,尤其是交集的体会并不多。学生在早期学习数学时就已经开始运用集合的思想方法。如:分类的思想与方法。

一、开启数学寻根之旅,延伸数学思想的脉络。

新《课程标准》强调让学生“人人学习有用的数学”,“把数学作为人们日常生活中交流信息的手段和工具”,“重视从学生的生活经验和已有知识中学习数学和理解数学”等等。

二、让学生在简单的数学问题中建构数学思想。

新课程标准指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”

三、利用一起作业进行在线检测,理解、巩固重叠问题基本方法。

通过画面回忆的方式,孩子们和我一起梳理了本课知识脉络。从分类到集合再到重叠问题。从中发现规律,学以致用。因为本次活动要突出学科与信息技术的深度融合。

四、让学生立足当下,放眼世界,爱上数学!

数学教学主要侧重的是知识、方法和能力。而我在本课教学中还巧妙的进行了价值观教育。让孩子们意识到集合无处不在。我们也身处同学圈、朋友圈、亲人圈等各种集合。

作为信息化的技术手段的应用,千万不要盲目跟风,被所谓的技术和设备所绑架。一定要选择最适合师生,最能提高效率的技术为我所用。比如在线检测,当堂分析数据,选取易错点进行重点分析讲解。还比如拍照上传,展示不同方法或者学生的错误。能够节省很多时间。再比如学生评价奖励,适度使用能够激发学生兴趣,提升学习效率。

篇2: 《重叠问题》教学反思

总体这一节课,感觉比较成功,学生们思考问题都很积极,捕捉信息的能力比较强,但也有不足。总体有这么几点体会:

一、让学生体验知识的产生过程

用统计学生使用电脑的问题导入新课,并在此过程中发现问题的冲突。让学生不自觉的体会到了新的知识。学习任何知识的最佳途径是由自己去发现。因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。每个学生都有自己的生活经验和知识基础,而对同一个问题每个有各自不同的思维方式,他们的自主建构是任何人都无法替代。

二、让课堂成为学生展示个性才能的舞台

多让孩子发言,多听听孩子们的想法,要为学生提供平等、宽松、自由的课堂氛围,还要做一名善意的鼓励者和欣赏者。唯有如此,学生探索知识的过程才会充满知识的过程才会充满精彩,数学课堂才能成为学生学习的乐园,成为学生充分表现和发挥个性的舞台。

不足之处:

在处理最后“拓展提升”问题的时候,有部分学生没有往“重叠问题”上思考,说明我在前面教学过程中,对教学重点强调的还不够坚决,徐峰老师在点评时也说,在教学过程中要抓住重点不断强化,这样学生对教学目标的落实才会到位。在以后教学过程中我要注意这一点。

篇3: 《重叠问题》教学反思

上完这节课后,感觉最近的教学心态很不好,一直在懈怠状态,教学的热情一直在低迷中,已经对于很多的事情都麻木了。而这一次的公开课,给了我一个警钟,知道了自己的缺乏,同时发现了自己平时在课堂中教学方式和教学语言存在的许多不足之处。不谈整节课的教材主要谈谈上课时的处理方式和教学语言方面。

一、太“麻烦”学生了――有效的设疑

现阶段随堂课上惯了,很多时候对于课堂中存在的问题老师都是停留于教授学生而学生是被动的接受的状态,时常有的心态是上课时间来不及了干嘛一定是要学生讲,自己讲解算了,太“麻烦”学生了。忘记了怎样的学习是学生自我的学习?纯粹的接受得来的是一些木讷、缺乏思考能力的学生,这是我所希望的吗?所以在这节课上一直卡在的地方就是怎样引出“为什么要调整表格就是调整表格的必要性,也就是韦恩图的优越性在哪里”,从而怎样去突出这张表格的不足之处就是我要去解决的问题。所以主要就是让学生体会到在原来表格中找重复的人的麻烦,从学生的找的过程中有的学生慢些、有的快些,用“为什么会找的慢?”“你能给找的慢的学生怎样的意见或建议?”这两个问题去让学生感受体验调整表格的初衷,从而引出了韦恩图的雏形表格。

二、太“忽视”学生了――有效的.评价语

外出听课时,名师的课总是有一种不能用言语表达的魅力,除了教学的设计很大程度上是源于他们的激励、随和的课堂评价语,有效激励性的评价语是良好的课堂氛围的催化剂。在试教了几次后,大的环节没有变动,在评价语方面备课备到了许多的细节,针对每一个学生的回答,都有事先预设的评价语方式,如:在课前交流时对于学生的回答评价“你不仅是个多才多艺的孩子,而且语言表达的可真清楚”;在汇报交流学生作品时评价“你的作品可真好有这么多人喜欢,让老师也能一眼看出谁重复了,谢谢你的作品,请坐,大家掌声欢送”;在听别人的发言时评价“你的耳朵可真会听!”一次次的激励使学生上课时更有学习的动力和兴趣。

三、太“小看”学生了――有效的预设

课堂中的许多“小意外”是一节课的亮点、笑点,同样也是一节课的盲点、卡点,不要“小看”我们的学生在课堂中的每一次发言。在课堂中时常存在着这样或那样的小意外,随时考验着教师的教学功底。而在这节课上真的是出现各种各样的意外,如:当出现要选每个班要选5人参加跳绳,6人参加踢毽子,问一共要选几人?就有个学生出现了说是“30,5×6=30”顿感无语;在利用韦恩图去计算一共要几人时,就因为多说了一句“谁还有不同的方法”使学生出现各种完全按照答案去凑算式的结果,无语了。课堂中的每一次闪光点或是卡点其实很多时候是看教师是否有各种有效的预设。

每一次的开课是一次提醒和提高,在不断修正和改进中进步。我想在数学教学的路上我还有很长的路要走。

篇4:《重叠问题》教学反思

一、创设问题情境,激发探索创新的兴趣

当我请学生仔细思考老师在选拔5名同学踢毽子和6名同学跳绳时可能遇到什么情况的时候,有些同学开始想到了重复选择的现象,从而初步对总人数是11人这个答案产生了初步的怀疑。接下来出示三(1)班的学生名单,让学生观察。从而找出重复的运动员,再问:现在你还肯定是11人吗?学生从当初的毫不犹豫到了犹豫不决。而我此时也没有及时给出答案,而又创设了另一个问题情境,让学生通过一次任务来引出韦恩图,在通过认识韦恩图各部分来计算总人数,从而使学生的思维的碰撞中得到发展。学生在一次次的肯定中,学习动机得到激励,进而产生更强的学习动机。

二、注重知识的形成过程,提供学生实践操作的机会

现代教育理论主张让学生动手去做科学,而不是用耳朵听科学。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。小学生思维发展的特点是:从具体形象思维为主要形式向抽象逻辑思维为主要形式过渡,小学低年级学生的思维虽然有了抽象的成分,但仍然是以具体形象思维为主。于是,借助直观图成了我这堂课突出重点和突破难点的重要策略。我通过以上过程让学生经历集合图的产生过程并充分感知体验集合图的作用,再解决问题。

三、注重解决问题方法的多样化,发展学生思维

不同的学生有不同的思维方式以及不同的发展潜能。教学中关注学生的这些个性差异,应允许学生存在思维方式的多样化和思维水平的不同层次。在探讨计算方法时,学生在算法时更多的是两部分相加再减去重叠部分,也有一部分同学是三部分相加求出总人数,还有一些同学用一部分减去重复人数再加另一部分。在这里我采取学生独立完成,教师巡视的方法。特别留意算法很特别的学生,给予他们表达的机会,体现了算法的多样性。新课改下的数学课不仅是让学生掌握固定的运算方法,也要发展学生的思维能力,让课堂焕发生命的活力。

篇5:《重叠问题》教学反思

“数学广角”(第一课时)是义务教育课程实验教科书人教版数学三年级下册开始新增设的一个内容,涉及的重叠问题是日常生活中应用比较广泛的数学知识。教材例1编排的意图是借助学生熟悉的题材,通过统计表的方式列出参加语文小组和数学小组的学生名单,和实际参加这两个课外小组总人数不相符合引起学生的认知冲突,渗透并初步体会集合的有关思想,并利用直观图的方式求出两个小组的总人数。

集合是比较系统、抽象的数学思想方法,针对三年级学生的认知水平,在这里只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了,教学时老师不需要使用集合、集合的元素、基数、交集、并集等数学化的语言进行描述。本节课设计时我立足于培养学生良好的数学思维能力,从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理、交流等活动寻找解决问题的方法,从不同的方法中选择最优方案,在解决问题中初步体会数学方法的应用价值,初步体会集合思想。

综上分析,本课的教学目标定位为:

1、经历集合图的产生过程,使学生借助直观图利用集体的思想方法解决简单的实际问题。

2、使学生掌握解决重合问题的一些基本策略,体验解决问题策略的多样性。

3、培养学生善于观察、善于思考,养成良好的学习习惯。

“重叠问题”以前是属于数学兴趣课的内容,所以学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,而现在是放在数学教材里,那么如何准确地把握教材,更好地完全教学要求,对我们来说是个挑战。

在设计教案前,我一直在想一个问题:如何使让学生水到渠成地去解决重叠问题,使学生不是在模式上会做,而是在理解上会做。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。

小学生思维发展的特点是:从具体形象思维为主要形式向抽象逻辑思维为主要形式过渡,小学低年级学生的思维虽然有了抽象的成分,但仍然是以具体形象思维为主。于是,“借助直观图”成了我这堂课突出重点和突破难点的重要策略。那么如何“借助直观图”呢?课堂初创设情境:森林里举行动物运动会,出示了参加跑步和参加跳高的两组动物信息,要求学生算算参加跑步和参加跳高的一共有多少种小动物,学生发现有几只小动物是重复的。于是,我设计了一个让学生用喜欢的方法画一画小动物参加比赛的情况,让学生经历集合图的产生过程并充分感知体验集合图的作用,把具体问题上升到抽象问题,再解决问题。

在第二个环节探讨计算方法时,学生在算法时更多的是三部分相加求出总人数,而不是两部分相加再减去重叠部分。再反思地去研读教材,发现对于教材的理解还是不够到位的,抛弃了题目中的数学信息,更多地强调集合圈的作用和理解,才引起了这个问题。在今后把握教材时,应该理解好主次的关系,更准确、到位地把握。

篇6:《重叠问题》教学反思

《重叠问题》的设计新颖,我从学生的认知经验出发,来恰当的确定教学目标。为了便于教学目标有效的落实,本节课从问题的引入到问题的拓展都紧紧围绕游戏来展开。问题的设计层层递进,一环扣一环,学生在解决问题的过程中既感受到用集合图来解决问题的价值,又能让学生掌握使用集合图解决重叠问题的方法。由于本节课弱化了让学生探究、经历“韦恩图”产生的过程的环节,就给学生留足了时间,来让学生交流、反思,体验“韦恩图”的价值和拓展对“韦恩图”的认知,尤其是最后的巩固、拓展题的呈现,结合了学生的实际,顺其自然,把学生思维的触角引向深入。本节课充分的落实了简单的设计,深刻的引领的教学理念。具体说有一下特点:

1、在问题的解决过程中,注重图、算式、文字的有效结合。

本节课的设计意在充分发挥集合图的作用,但同时加强学生对文字信息的理解。通过让学生贴一贴,说一说,想一想等方式让学生在头脑中建立韦恩图的表象,从而真正达到图、文,算式的有效结合。既沟通了学生已有的知识经验间的联系,又让学生体会到、算式之间的联系,为建立数学模型搭建了很好的平台。

2、在了解、尊重学生已有的知识经验的基础上来确定合理的'教学目标。

本节课我把让学生经历“韦恩图”产生的过程,调整为:唤醒学生已有的生活经验,沟通已有知识经验间联系,来让学生感知“韦恩图”价值、作用以及运用“韦恩图”来解决实际问题能力,这是基于该教师深入理解教材、了解学生基础上的。

首先,学生在一到三年级都没有接触过让学生经历用画图的方法来解决问题的教学内容。如线段图、表格等,学生较多接触的都是一些实物图片,在学习新知时自然也不会想到用两个抽象的集合圈来表示两个数据之间的关系的,而更多的是用文字或创造一些文字加图的形式来表示。

其次,学生在一二年级积累的经验往往都是计算和数数,更何况问题情景中是让学生“算”人数的,学生自然要用到以前的计算方法了,同时学生在这之前也初步接触过一些统计表,而统计表所用到的数据也都是各自独立的互不包含的,直接用加减法就能解决的。而今天要用加减法解决两个量中出现互相包含关系的题时,自然有一定的难度了。

总之,我溯本求源,找准了学生的认知起点和困惑点,寻找出符合学生学习的有效的教学途径。在导入环节寻找出新知生长的结点,既唤醒学生已有的知识经验,又让学生感知新知的生长点就在此而生。在探究环节,让已有的知识经验成为学习新知的助力器。课前需要知学、然后再知教。怎样去知学?又怎样去知教?是需要课前花足时间去思考的事情。知道了要学什么,怎样去学,方知该怎样去教!

篇7:《重叠问题》教学反思

教材上安排首先通过统计表的方式列出参加语文小组和数学小组的学生名单,通过统计表可以看出:参加语文小组的有8人,参加数学小组的有9人。但实际上参加这两个课外小组的总人数却不是17人,引起学生的认知冲突。然后教材利用直观图把这两个课外小组的关系直观地表示出来。从图上可以很清楚地看出,有3名学生同时属于这两个小组,所以计算总人数时只能计算一次。第二环节探讨计算方法,根据参加语文、数学活动小组的人数,及两个活动小组都参加的人数这三个数据计算总人数。

在设计教案前,我一直在想一个问题:如何使让学生水到渠成地去解决重叠问题,使学生不是在模式上会做,而是在理解上会做。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。

课堂初出示了喜欢玩碰碰车和喜欢玩旋转木马两组同学的信息,要求学生说说喜欢玩碰碰车的和喜欢玩旋转木马的一共有多少人呢,学生发现有几个名字是重复的。于是,我设计了一个贴一贴的游戏,通过帮同学找找位置,引起思维冲突两种都喜欢的小朋友应该放在哪里呢?,再通过让学生用喜欢的方法画一画(可以用符号,数字,文字)小朋友喜欢的游戏情况,让学生经历集合图的产生过程并充分感知体验集合图的作用,把具体问题上升到抽象问题,再解决问题,整个过程就环环紧扣,教学效果也扎实有效地达到。

在第二个环节探讨计算方法时,学生在算法时更多的是三部分相加求出总人数,而不是两部分相加再减去重叠部分。再反思地去研读教材,发现对于教材的理解还是不够到位的,抛弃了题目中的数学信息,更多地强调集合圈的作用和理解,才引起了这个问题。在今后把握教材时,应该理解好主次的关系,更准确、到位地把握。

任何一堂课在反思的时候,都有成功点也有不足和遗憾。不足和遗憾并不可怕,更多地反思如何更好地运用教学策略完成教学目标才是我们需要去做的。

篇8:《重叠问题》教学反思

陶行知先生说:“在‘做’上教,乃是真教;在‘做’上学,方是真学。”“教的法子要根据学的法子,学的法子要根据做的法子”。本节课我关注学生的思维方式,关注学生的情感体验,关注学生的探究过程,力争让学生成为学习的主人。

一、创设问题情境,设置认知冲突。

“知之者不如好知者,好知者不如乐知者”,从某种意义上来讲,教师教学中成败的关键很大程度上取决于能否激发学生对数学学习产生的浓厚兴趣。当学生解决喜欢这两个项目一共有多少人时,由于直观思维,跳入了教师有意设置的“陷阱”,都回答出有 人,而教师适时指出不是 人,答案有了争议,学生的认知出现了冲突,学生都想正确的答案是多少,从而使学生的思维得到了发展。提倡学生思维的开放性和创造性,鼓励学生根据自己的已有知识经验和独特体验,用自己的方法来发现创造。学生在一次次的肯定中,学习动机得到激励,进而产生更强的学习动机。

二、让学生体验知识的产生过程

学习任何知识的最佳途径是由自己去发现。因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。每个学生都有自己的生活经验和知识基础,而对同一个问题每个学生有各自不同的思维方式,他们的自主建构是任何人都无法替代。在设计教案前,我一直在想一个问题:如何使让学生水到渠成地去解决重叠问题,使学生不是在模式上会做,而是在理解上会做。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。让学生经历集合图的产生过程并充分感知体验集合图的作用,使学生借助直观图利用集合的思想方法解决简单的实际问题。通过让学生在情境体验中“学”、在解决问题中“悟”。调动了学生学习的主动性,激发了学生的竞争意识和表现意识,使学生发现问题、探索问题、解决问题的能力得到提高,思维也更加活跃。

三、把评价和优化的权利还给了学生。

多次试讲我总是迫不及待地作出很主观的并且带有某种权威口吻的断定,这是很不科学而且也很不民主的,评价应该更多地让学生自主进行,如果过多或过早地进行评价会影响学生学习的主动性,阻碍学生思维的发展。本节教学,我注意让学生根据自己的任知结构、已有经验和自己的个性喜好来自评、互评,教师只做适时的引导、点拨。他们在一次次的自我认识、自我评价和自我控制的过程中,逐渐提高认知的能力。

篇9:《重叠问题》教学反思

《数学广角——重叠问题》是人教版三年级新教材数学广角新增加的内容。教材的编排顺序是,首先通过统计表的方式列出参加语文小组和数学小组的学生名单,通过统计表可以看出:参加语文小组的有8人,参加数学小组的有9人。但实际上参加这两个课外小组的总人数却不是17人,引起学生的认知冲突。然后教材利用直观图把这两个课外小组的关系直观地表示出来。从图上可以很清楚地看出,有3名学生同时属于这两个小组,所以计算总人数时只能计算一次。第二环节探讨计算方法,根据参加语文、数学活动小组的人数,及两个活动小组都参加的人数这三个数据计算总人数。

“重叠问题”以前是属于数学兴趣课的内容,所以学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,而现在是放在数学教材里,那么如何准确地把握教材,更好地完全教学要求,对我们来说是个挑战。

在设计教案前,我一直在想一个问题:如何使让学生水到渠成地去解决重叠问题,使学生不是在模式上会做,而是在理解上会做。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。

小学生思维发展的特点是:从具体形象思维为主要形式向抽象逻辑思维为主要形式过渡,小学低年级学生的思维虽然有了抽象的成分,但仍然是以具体形象思维为主。于是,“借助直观图”成了我这堂课突出重点和突破难点的重要策略。那么如何“借助直观图”呢?课堂初出示了“喜欢玩碰碰车”和“喜欢玩旋转木马”两组同学的信息,要求学生说说喜欢玩碰碰车的和喜欢玩旋转木马的一共有多少人呢,学生发现有几个名字是重复的。于是,我设计了一个“贴一贴”的游戏,通过帮同学找找位置,引起思维冲突“两种都喜欢的小朋友应该放在哪里呢?”,再通过让学生用喜欢的方法画一画(可以用符号,数字,文字)小朋友喜欢的游戏情况,让学生经历集合图的产生过程并充分感知体验集合图的作用,把具体问题上升到抽象问题,再解决问题,整个过程就环环紧扣,教学效果也扎实有效地达到。

在第二个环节探讨计算方法时,学生在算法时更多的是三部分相加求出总人数,而不是两部分相加再减去重叠部分。再反思地去研读教材,发现对于教材的理解还是不够到位的,抛弃了题目中的'数学信息,更多地强调集合圈的作用和理解,才引起了这个问题。在今后把握教材时,应该理解好主次的关系,更准确、到位地把握。

任何一堂课在反思的时候,都有成功点也有不足和遗憾。不足和遗憾并不可怕,更多地反思如何更好地运用教学策略完成教学目标才是我们需要去做的。

篇10:《重叠问题》教学反思

《重叠问题》的设计新颖,我从学生的认知经验出发,来恰当的确定教学目标,任妮《重叠问题》教学反思。为了便于教学目标有效的落实,本节课从问题的引入到问题的拓展都紧紧围绕游戏来展开。问题的设计层层递进,一环扣一环,学生在解决问题的过程中既感受到用集合图来解决问题的价值,又能让学生掌握使用集合图解决重叠问题的方法。由于本节课弱化了让学生探究、经历“韦恩图”产生的过程的环节,就给学生留足了时间,来让学生交流、反思,体验“韦恩图”的价值和拓展对“韦恩图”的认知,尤其是最后的巩固、拓展题的呈现,结合了学生的实际,顺其自然,把学生思维的触角引向深入。本节课充分的落实了简单的设计,深刻的引领的教学理念。具体说有一下特点:

1、在问题的解决过程中,注重图、算式、文字的有效结合。

本节课的设计意在充分发挥集合图的作用,但同时加强学生对文字信息的理解。通过让学生贴一贴,说一说,想一想等方式让学生在头脑中建立韦恩图的表象,从而真正达到图、文,算式的有效结合,教学反思《任妮《重叠问题》教学反思》。,既沟通了学生已有的知识经验间的联系,又让学生体会到、算式之间的联系,为建立数学模型搭建了很好的平台。

2、在了解、尊重学生已有的知识经验的基础上来确定合理的教学目标。

本节课我把让学生经历“韦恩图”产生的过程,调整为:唤醒学生已有的生活经验,沟通已有知识经验间联系,来让学生感知“韦恩图”价值、作用以及运用“韦恩图”来解决实际问题能力,这是基于该教师深入理解教材、了解学生基础上的。首先,学生在一到三年级都没有接触过让学生经历用画图的方法来解决问题的教学内容。如线段图、表格等,学生较多接触的都是一些实物图片,在学习新知时自然也不会想到用两个抽象的集合圈来表示两个数据之间的关系的,而更多的是用文字或创造一些文字加图的形式来表示,其次,学生在一二年级积累的经验往往都是计算和数数,更何况问题情景中是让学生“算”人数的',学生自然要用到以前的计算方法了,同时学生在这之前也初步接触过一些统计表,而统计表所用到的数据也都是各自独立的互不包含的,直接用加减法就能解决的。而今天要用加减法解决两个量中出现互相包含关系的题时,自然有一定的难度了。

总之,我溯本求源,找准了学生的认知起点和困惑点,寻找出符合学生学习的有效的教学途径。在导入环节寻找出新知生长的结点,既唤醒学生已有的知识经验,又让学生感知新知的生长点就在此而生。在探究环节,让已有的知识经验成为学习新知的助力器。课前需要知学、然后再知教。怎样去知学?又怎样去知教?是需要课前花足时间去思考的事情。知道了要学什么,怎样去学,方知该怎样去教!

篇11:《重叠问题》的教学反思

《数学广角--重叠问题》教材上安排首先通过统计表的方式列出参加语文小组和数学小组的学生名单,通过统计表可以看出:参加语文小组的有8人,参加数学小组的有9人。但实际上参加这两个课外小组的总人数却不是17人,引起学生的认知冲突。然后教材利用直观图把这两个课外小组的'关系直观地表示出来。从图上可以很清楚地看出,有3名学生同时属于这两个小组,所以计算总人数时只能计算一次。第二环节探讨计算方法,根据参加语文、数学活动小组的人数,及两个活动小组都参加的人数这三个数据计算总人数。

在设计教案前,我一直在想一个问题:如何使让学生水到渠成地去解决重叠问题,使学生不是在模式上会做,而是在理解上会做。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。

课堂初出示了“喜欢玩碰碰车”和“喜欢玩旋转木马”两组同学的信息,要求学生说说喜欢玩碰碰车的和喜欢玩旋转木马的一共有多少人呢,学生发现有几个名字是重复的。于是,我设计了一个“贴一贴”的游戏,通过帮同学找找位置,引起思维冲突“两种都喜欢的小朋友应该放在哪里呢?”,再通过让学生用喜欢的方法画一画(可以用符号,数字,文字)小朋友喜欢的游戏情况,让学生经历集合图的产生过程并充分感知体验集合图的作用,把具体问题上升到抽象问题,再解决问题,整个过程就环环紧扣,教学效果也扎实有效地达到。

在第二个环节探讨计算方法时,学生在算法时更多的是三部分相加求出总人数,而不是两部分相加再减去重叠部分。再反思地去研读教材,发现对于教材的理解还是不够到位的,抛弃了题目中的数学信息,更多地强调集合圈的作用和理解,才引起了这个问题。在今后把握教材时,应该理解好主次的关系,更准确、到位地把握。

任何一堂课在反思的时候,都有成功点也有不足和遗憾。不足和遗憾并不可怕,更多地反思如何更好地运用教学策略完成教学目标才是我们需要去做的。

篇12:《数学广角――重叠问题》教学反思

《数学广角――重叠问题》教学反思

核心提示:陶行知先生说:“在‘做’上教,乃是真教;在‘做’上学,方是真学。”“教的法子要根据学的法子,学的法子要根据做的法子”。本节课我关注学生的思维方式,关注学生的情感体验,关注学生的探究过程,力争让学生成为...

陶行知先生说:“在‘做’上教,乃是真教;在‘做’上学,方是真学。”“教的法子要根据学的法子,学的法子要根据做的法子”。本节课我关注学生的思维方式,关注学生的情感体验,关注学生的探究过程,力争让学生成为学习的主人。

一、创设问题情境,设置认知冲突。

“知之者不如好知者,好知者不如乐知者”,从某种意义上来讲,教师教学中成败的关键很大程度上取决于能否激发学生对数学学习产生的浓厚兴趣。当学生解决喜欢这两个项目一共有多少人时,由于直观思维,跳入了教师有意设置的“陷阱”,都回答出有 人,而教师适时指出不是 人,答案有了争议,学生的认知出现了冲突,学生都想正确的答案是多少,从而使学生的思维得到了发展。提倡学生思维的开放性和创造性,鼓励学生根据自己的已有知识经验和独特体验,用自己的方法来发现创造。学生在一次次的肯定中,学习动机得到激励,进而产生更强的学习动机。

二、让学生体验知识的产生过程

学习任何知识的最佳途径是由自己去发现。因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。每个学生都有自己的生活经验和知识基础,而对同一个问题每个学生有各自不同的思维方式,他们的自主建构是任何人都无法替代。在设计教案前,我一直在想一个问题:如何使让学生水到渠成地去解决重叠问题,使学生不是在模式上会做,而是在理解上会做。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。让学生经历集合图的产生过程并充分感知体验集合图的作用,使学生借助直观图利用集合的.思想方法解决简单的实际问题。通过让学生在情境体验中“学”、在解决问题中“悟”。调动了学生学习的主动性,激发了学生的竞争意识和表现意识,使学生发现问题、探索问题、解决问题的能力得到提高,思维也更加活跃。

三、把评价和优化的权利还给了学生。

多次试讲我总是迫不及待地作出很主观的并且带有某种权威口吻的断定,这是很不科学而且也很不民主的,评价应该更多地让学生自主进行,如果过多或过早地进行评价会影响学生学习的主动性,阻碍学生思维的发展。本节教学,我注意让学生根据自己的任知结构、已有经验和自己的个性喜好来自评、互评,教师只做适时的引导、点拨。他们在一次次的自我认识、自我评价和自我控制的过程中,逐渐提高认知的能力。

篇13:《数学广角—重叠问题》教学反思

核心提示:陶行知先生说:“在‘做’上教,乃是真教;在‘做’上学,方是真学。”“教的法子要根据学的法子,学的法子要根据做的法子”。本节课我关注学生的思维方式,关注学生的情感体验,关注学生的探究过程,力争让学生成为...

陶行知先生说:“在‘做’上教,乃是真教;在‘做’上学,方是真学。”“教的法子要根据学的法子,学的法子要根据做的法子”。本节课我关注学生的思维方式,关注学生的情感体验,关注学生的探究过程,力争让学生成为学习的主人。

一、创设问题情境,设置认知冲突。

“知之者不如好知者,好知者不如乐知者”,从某种意义上来讲,教师教学中成败的关键很大程度上取决于能否激发学生对数学学习产生的浓厚兴趣。当学生解决喜欢这两个项目一共有多少人时,由于直观思维,跳入了教师有意设置的“陷阱”,都回答出有 人,而教师适时指出不是 人,答案有了争议,学生的认知出现了冲突,学生都想正确的答案是多少,从而使学生的思维得到了发展。提倡学生思维的开放性和创造性,鼓励学生根据自己的已有知识经验和独特体验,用自己的方法来发现创造。学生在一次次的肯定中,学习动机得到激励,进而产生更强的学习动机。

二、让学生体验知识的产生过程

学习任何知识的最佳途径是由自己去发现。因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。每个学生都有自己的生活经验和知识基础,而对同一个问题每个学生有各自不同的思维方式,他们的自主建构是任何人都无法替代。在设计教案前,我一直在想一个问题:如何使让学生水到渠成地去解决重叠问题,使学生不是在模式上会做,而是在理解上会做。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。让学生经历集合图的产生过程并充分感知体验集合图的作用,使学生借助直观图利用集合的思想方法解决简单的实际问题。通过让学生在情境体验中“学”、在解决问题中“悟”。调动了学生学习的主动性,激发了学生的竞争意识和表现意识,使学生发现问题、探索问题、解决问题的能力得到提高,思维也更加活跃。

三、把评价和优化的权利还给了学生。

多次试讲我总是迫不及待地作出很主观的并且带有某种权威口吻的断定,这是很不科学而且也很不民主的,评价应该更多地让学生自主进行,如果过多或过早地进行评价会影响学生学习的主动性,阻碍学生思维的发展。本节教学,我注意让学生根据自己的任知结构、已有经验和自己的个性喜好来自评、互评,教师只做适时的引导、点拨。他们在一次次的自我认识、自我评价和自我控制的过程中,逐渐提高认知的能力。

篇14:《数学广角-重叠问题》数学教学反思

《数学广角-重叠问题》数学教学反思

《数学广角--重叠问题》是人教版三年级新教材数学广角新增加的内容。教材的编排顺序是,首先通过统计表的方式列出参加语文小组和数学小组的学生名单,通过统计表可以看出:参加语文小组的有8人,参加数学小组的有9人。但实际上参加这两个课外小组的总人数却不是17人,引起学生的认知冲突。然后教材利用直观图把这两个课外小组的关系直观地表示出来。从图上可以很清楚地看出,有3名学生同时属于这两个小组,所以计算总人数时只能计算一次。第二环节探讨计算方法,根据参加语文、数学活动小组的人数,及两个活动小组都参加的人数这三个数据计算总人数。

“重叠问题”以前是属于数学兴趣课的内容,所以学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,而现在是放在数学教材里,那么如何准确地把握教材,更好地完全教学要求,对我们来说是个挑战。

在设计教案前,我一直在想一个问题:如何使让学生水到渠成地去解决重叠问题,使学生不是在模式上会做,而是在理解上会做。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。

小学生思维发展的特点是:从具体形象思维为主要形式向抽象逻辑思维为主要形式过渡,小学低年级学生的`思维虽然有了抽象的成分,但仍然是以具体形象思维为主。于是,“借助直观图”成了我这堂课突出重点和突破难点的重要策略。那么如何“借助直观图”呢?课堂初出示了“喜欢玩碰碰车”和“喜欢玩旋转木马”两组同学的信息,要求学生说说喜欢玩碰碰车的和喜欢玩旋转木马的一共有多少人呢,学生发现有几个名字是重复的。于是,我设计了一个“贴一贴”的游戏,通过帮同学找找位置,引起思维冲突“两种都喜欢的小朋友应该放在哪里呢?”,再通过让学生用喜欢的方法画一画(可以用符号,数字,文字)小朋友喜欢的游戏情况,让学生经历集合图的产生过程并充分感知体验集合图的作用,把具体问题上升到抽象问题,再解决问题,整个过程就环环紧扣,教学效果也扎实有效地达到。

在第二个环节探讨计算方法时,学生在算法时更多的是三部分相加求出总人数,而不是两部分相加再减去重叠部分。再反思地去研读教材,发现对于教材的理解还是不够到位的,抛弃了题目中的数学信息,更多地强调集合圈的作用和理解,才引起了这个问题。在今后把握教材时,应该理解好主次的关系,更准确、到位地把握。

任何一堂课在反思的时候,都有成功点也有不足和遗憾。不足和遗憾并不可怕,更多地反思如何更好地运用教学策略完成教学目标才是我们需要去做的。

篇15:重叠问题教学设计

重叠问题教学设计

一、教学目标:

1.使学生感知集合图的产生,初步体会集合的思想方法,

2.能利用集合的思想方法来解决简单的实际问题,并能用数学语言进行描述。

3.让学生在探究、应用知识中体验数学的价值,感受解决问题策略的多样性,培养学生善于观察、勤于思考的学习习惯。

二、教学重点:

对集合图的理解,并学会用集合的思想方法来解决实际问题。

三、教学难点:

对集合图各部分的理解。

四、教学过程:

(一)、课前谈话:

师:我们三(2)班的同学特别聪明,老师想给大家来脑筋急转弯,你们敢不敢挑战?

有2个爸爸,2个儿子一起去看电影,却只买了3张票就行了,这是怎么回事?师:恭喜你答对了,你是怎么想到的?这里谁的身份很特殊?

(二)、设疑,探索新知

1、设疑:

三(1)班同学参加课外兴趣小组,参加语文组的有8人,参加数学组的有9人,三(1)班参加语文组和数学组的学生一共有多少人?(17人,并板书算式)

2、新授例1:

真的是这样吗?老师课前对三(1)班学生参加语文、数学课外兴趣小组情况进行调查,请看统计表。

出示例1、三(1)班参加语文、数学课外兴趣小组学生名单

语文杨明李芳刘红陈 东华王爱张伟丁旭赵军数学杨明李芳刘红王志明于 丽周晓陶伟卢强朱小东

(1)看清楚了吗?哪三(1)班参加语文、数学课外兴趣小组的学生到底有几人?(14人)刚才不是17人,现在只有14人了?这是为什么?(因为统计图看出有三个人是重复的,要减去)

哪3个人是重复的,点成红色。你说的重复就是两样都参加,也就是有3个人既参加语文,又参加数学。谁再来说一说

根据这张统计表来求参加兴趣小组的总人数,上面的信息还不够完整,你能把它补充完整吗?

(2)同学们,三(1)班参加语文、数学课外兴趣小组的情况用统计表来表示不是很明显,用图表示就更清楚了。

教师边说大圈图边说意义,我们可以用红圈表示参加语文小组的学生,蓝圈表示参加数学兴趣小组的学生。把3位重复的学生点成红色,再抛出问题,那杨明李芳刘红既参加语文小组又参加数学小组我们该怎么表示呢?(重叠起来)

(3)弄清图中各部分表示什么?

现在你能说说这幅图中每部分表示什么吗?学生边说教师边指,并区分清参加语文小组学生和只参加语文小组学生,和把参加语文小组分成两部分。谁再来说一说图中表示的意思。同桌也指着练习纸上的图来说一说。

大家都能说了吧,指名说一说边说边写出相应的数量。

(4)你们能列式来算一算三(1)班参加语文课外小组数学课外小组的一共有多少人?8+9-3 5+3+6 9-3+8 6+8 5+9 8-3+9

学生把算式列在练习纸,然后指名说算式,教师板书,其中第一个-3直接写成红色。

再指名说说各算式表示的意思。其中第一个算式请2~3位学生说一说,并说说下面两组算式共同点是参加一个小组的人数+只参加另一个小组的人数。

(5)同学们,这节课学的内容就是数学中的重叠问题。(指板书)这些人既参加语文小组又参加数学小组,就是重叠问题的重叠部分。

用这样的图来表示重叠问题,最早是由一位英国的.逻辑学家韦恩想出来的,后人就把这样的图称为韦恩图。

日常生活中有很多像今天一样的问题,我们可以通过画图来理解。

(三)、练习

1、其实像这样的重叠问题在生活中还有很多,请看:

你从题中得到那些信息?你能解决这个问题吗?反馈不同的解决方法。

说说你是怎么想的?表扬圈出来的学生,这样先把重叠部分圈出来,看起来更加明显,算式也不会列错了。

其实这样的题用韦恩图来表示会更清楚。(课件演示)

2、日常生活中有很多像今天一样的问题,我们可以也通过画图来理解。(练习纸)

(1)我校文艺队的同学要乘车去礼堂参加演出,跳舞的同学有12人,合唱的同学有23人,两项表演都参加的有5人,老师应该为同学们准备几张车票?

(2)有两块一样长的木板,各长30厘米,中间钉在一起后成了一块长木板,中间钉在一起的重叠部分是12厘米,现在这块长木板的长度是多少?

(3)三(5)班同学每人至少会下象棋和围棋中的一种棋,会下象棋的有27名,会下围棋的有21名,两种棋都会下的有10名。三(5)班一共有多少名同学?

反馈后师问:这几道题的解决方法有什么相同的地方?

引导学生发现:总数=两部分之和-重叠部分

(四)课堂总结。

通过这节课学习,你有什么收获?如果想说学生较多,就同桌说一说。

(五)拓展题:

同学们表现那么出色,我们再来挑战一题怎么样?

出示课件,说说有哪些信息?同桌讨论讨论,拿出自己的文具摆一摆。

请学生说说自己的猜测,并课件演示。

如果刚才的例题为:

三(2)班同学参加课外兴趣小组,参加语文组的有8人,参加数学组的有9人,三(2)班参加语文组和数学组的学生一共可能有多少人?你会解决吗?

篇16:小学三年级下册《重叠问题》教学反思

小学三年级下册《重叠问题》教学反思

《重叠问题》是小学三年级下册数学广角第一课时的内容,这个内容是日常生活中应用比较广泛的数学知识,本节课涉及到一种最基本的数学思想方法:集合思想。集合是比较系统、抽象的数学思想方法,是数学中最基本的思想。从学生一开始学习数学,其实就已经在运用集合思想方法了,所以对集合有一定的生活经验和知识基础。本节课教材例1借助学生熟悉的题材,渗透了集合的有关思想,使学生理解用直观图(集合圈)表示“重叠现象”的方法,了解到直观图各部分的意义,特别是重叠部分(交集)的意义,从而掌握利用集合的思想方法来解决简单的实际问题的方法。课程实施后我有如下几点体会:

一、创设问题情境,设置认知冲突。

“知之者不如好知者,好知者不如乐知者”,从某种意义上来讲,教师教学中成败的关键很大程度上取决于能否激发学生对数学学习产生的浓厚兴趣。当学生解决参加两个课外小组一共有多少人时,由于直观思维,跳入了教师有意设置的“陷阱”,都回答出有17人 /adm,而教师适时指出不是17人,答案有了争议,学生的认知出现了冲突,学生都想正确的答案是多少。而老师此时创设了另一个问题情境,通过报名表让学生发现冲突的矛盾点,再让学生设计图案解决这个问题。从而使学生的`思维得到了发展,提倡学生思维的开放性和创造性,鼓励学生根据自己的已有知识经验和独特体验,用自己的方法来发现创造。学生在一次次的肯定中,学习动机得到激励,进而产生更强的学习动机。

二、注重知识的形成过程,让知识的理解水到渠成。

本节课上,我尝试让学生从生活实际中亲身感知集合的思想,并使他们亲身体验集合图的产生过程,(从收集学生的名单——反馈整理好的名单——圈一圈, 站一站——圈语文和数学兴趣组的名单——课件一步步演示集合的形成),让学生在过程中体验集合的思想,在过程中感悟重叠,让学生经历问题解决的数学化过程,从而获得数学学习经验。接着,创设了让学生自己设计图。学生设计的图各式各样。可见,创造源于实践,提供实践操作平台,激发学生学习数学的兴趣和热情的同时也培养学生的创新思维。当学生汇报自己独特的表示方法时,进而引导学生借助一种图(集合图)来理解解决这一问题,让学生经历集合图的产生过程并充分感知体验集合图的作用。通过让学生在情境体验中“学”、在解决问题中“悟”。调动了学生学习的主动性,激发了学生的竞争意识和表现意识,使学生发现问题、探索问题、解决问题的能力得到提高,思维也更加活跃。

三 、在教学过程中注重学生思维的严密性

特别是在解读集合图时,让学生充分理解 “参加……的,只参加……的,既参加……又参加……的”的含义。反思今天的教学过程,我觉得我还是比较注重培养学生思维的严谨严密性,本节课上有2次重点解读了韦恩图,第一次是韦恩图的形成初期,第二次是形成了规范的韦恩图后。在解读韦恩图的过程中,我很注重学生表述各个部分的意思。红色圈是表示“参加语文兴趣小组”和蓝色圈使表示“参加数学兴趣小组”,而去掉了都参加的部分后是“只参加语文兴趣小组的人数”,“只参加数学兴趣养和提高。

学生在一种民主、和谐、轻松的学习氛围中通过合作交流以及独立思考后,发现集合里面的重复问题,再在现实生活中解决集合的重复问题。通过解决问题,让学生体会到了“集合”这一基础数学思想在生活中实现运用,以及这一知识对解决我们生活的实际问题的重要性。让学生在不知不觉中把数学知识“带”进生活实际,体验到在生活中处处有“数学”,学生的思想也获得了新的发展。

篇17:《重叠问题》说课稿

一、教材分析:

《重叠问题》是青岛版小学数学一年级上册74――75页智慧广场的内容。本节课是学生在已经认识了10以内的数、掌握了数的顺序、能正确读写、会比较大小,并且熟练掌握10以内加减法的基础上进行教学的。

本节课的设计目的是从一年级开始向学生渗透画直观图的方法,引导学生从低年级开始初步养成解决问题的策略,为后续学习打下基础,促进学生养成善于思考的好习惯,提高数学素养,激发学生对数学学习的欲望和兴趣,体现数学的价值。

二、教学目标:

结合教材特点和学生已有的认知结构、心理特征,制定如下教学目标:

1、结合具体情境,学习借助直观图解决简单的重叠问题。

2、经历独立思考、合作探究的过程,提高思维能力,促进思维发展,形成运用几何直观的方法解决问题的策略,增长学生的聪明才智,发展学生的智力。

3、通过活动激发学生学习数学的兴趣和欲望,体验成功的乐趣,产生学好数学的自信心。

三、教学重难点

本节课的教学重点是:理解简单的重叠问题的意义及解决问题的计算方。

教学难点是:理解前面的数量+中间部分+后面数量=总数。

数了两次的部分是重复的部分,要从总数中去掉。

四、教学模式

本节课采用合作探究教学模式。主要有:创设教学情境、找出有价值的数学信息、提出有效的数学问题并解决、巩固练习、总结反思四大环节。其中提出问题和解决问题是核心环节,主要是通过学生自主、合作、探索,建立数学模型。这样的教学模式,强调学生的自主探究与合作的意识,在参与数学活动的过程中去感知和体验,体现“以人为本”的教学理念。

五、说教学设计:

我以激发学生的学习兴趣为目的,让孩子在快乐中学习,在学习中感受数学的乐趣,确定本节课的教学设计如下:

一)、创设情境,导入新知

多媒体出示信息图,让学生说一说观察到了哪些数学信息?

根据信息,引导学生提出数学问题:

从前面数花雁排第6,从后面数排第3,一共有多少只大雁呢?

【设计意图】通过创设生动的情景,让学生更容易理解和接受直观、具体的感性材料,调动起学生自主探索解决问题的热情,为学生理解问题奠定基础。

二)、小组合作,探究新知

这一行大雁一共有多少只?

1、猜想:请你猜一猜,这行大雁一共有多少只?

让学生说说自己的想法,可能会出现8只或9只这两种不同的答案。

到底一共有8只大雁还是9只呢?

2、验证:

我们用什么方法验证呢?

引导学生说出摆一摆、画一画、数一数、算一算等验证方法。

下面我们一起先用摆一摆的方法来验证一下到底是几只。

摆一摆:

让学生自己动手摆一摆学具:

(1)引导学生用圆片代替大雁,用三角形代替花雁,边读题,边摆一摆,同桌可以相互讨论交流,教师巡视指导该怎样操作。

(2)找两名同学到展台上摆一摆,并说一说为什么这样摆?

(3)课件演示摆一摆。

“从前面数,它排在第6”,花雁前面摆几只?我们一起来数一数。

“从后面数,它排在第3”,花雁后面摆几只?

数一数,这行大雁有几只?

(4)请同学们再动手摆一摆。

画一画:

除了摆一摆,我们还可以画一画进行验证:

下面用圆片代替大雁,三角代替花雁画一画,看看这一行大雁是多少只?小组内可以讨论交流,教师巡视指导画法。

学生汇报的同时教师板书下来。

回想一下我们是怎样画的?课件演示画一画的方法。

【设计意图】这一验证过程充分体现了新课标要求第一学段的小学生“经历从实际物体中抽象出简单几何体和平面图形,了解一些简单几何体和常见的平面图形的要求”同时在摆一摆画一画的过程中可以使小学生在头脑中产生重叠的概念。算一算:

引导学生根据画出的直观图列出算式解决问题。

穿花衣服的大雁,从前面数排在第6,从后面数排在第3。数了两次,所以可以这样计算:6+3―1=8(只)

从图上看穿花衣服的大雁前面有5只,后面有2只,所以可以这样计算:5+1+2=8(只)

最后让学生说一说这两种方法,你喜欢哪一种?

强化学生对算法的理解。

【设计意图】通过学生的猜一猜,摆一摆,画一画,数一数,算一算等活动,使学生亲身经历了猜想―――――自主探究――合作交流――验证的过程,让学生在活动中找到了解决问题的方法。

三)、自主练习,巩固新知

练习设计分为三个层次:

第一层次:基础题

第二层次:综合题

第三层次:拓展题

基础题的设计面向全体学生,使每个学生都能巩固基本的方法和技能。综合题关注差异,使不同程度的学生有不同的发展。

拓展题关注发展,使不同层次的学生得到不同程度的发展。

四)、总结反思,深化认知

我们这节课解决的问题叫做“重叠问题”。(板书课题)

1、让学生读一读课题,说一说对“重叠”的理解。

2、我们用什么方法来解决的“重叠问题”呢?

画图是帮助我们解决问题的一种很好的方法。

以后在生活中遇到这样的问题,就可以用这个方法来解决。

【设计意图】概念的形成不是一次完成的,要经过多次的比较、分析与综合。通过各种手段,引导学生总结概念,培养学生归纳总结的能力,加深学生对于概念的理解。

六、板书设计

这是我的板书设计,将本节课的主要内容清楚明了的表现出来,重点突出,能帮助学生对所学知识进一步理解和掌握。

我的说课到此结束,谢谢大家!

《数学广角――重叠问题》教学反思

植树问题教学反思

平均数问题的教学反思

四年级植树问题教学反思

鸽巢问题教学反思

六年级工程问题应用题教学反思

数学广角搭配问题教学反思

从问题到方程教学反思

四年级数学植树问题教学反思

问题的反思

《重叠问题》的教学反思(推荐17篇)

欢迎下载DOC格式的《重叠问题》的教学反思,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档