“式波明日香”通过精心收集,向本站投稿了9篇初中数学九大经典解题方法,学会了分数就是你的!,以下是小编为大家整理后的初中数学九大经典解题方法,学会了分数就是你的!,希望对您有所帮助。
- 目录
篇1:初中数学九大经典解题方法,学会了分数就是你的!
初中数学九大经典解题方法,学会了分数就是你的!
很多学生对于数学似乎都有很大的恐惧,认为数学非常的难,自己没有空间想象,也很难理解一些抽象的学识,但其实初中生的数学也不外乎一些固定化的公式和解题方法。只要记住公式和一些解题方法,其实很多难题都可以迎刃而解。下面就给大家分享初中数学的九大经典解题方法,学会了这九个解题方法,分数就是你的!
1、配法
配法就是通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它也是数学中一种重要的恒等变形的方法,应用也十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解法,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中非常重要并且应用十分广泛的一个解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用到判别式法和韦达定理。
5、待定系数法
在解数学的问题时,如果先判断所求的结果具有某种确定的`形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们经常会采用构造法这个方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易能考虑到。
8、几何变换法
在数学问题的研究中,我们常常会运用变换法,把复杂性的问题转化为简单性的问题而得到解决。所谓变换是指一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到初中数学的教学当中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
9、反证法
反证法是一种间接的证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
篇2:六年级数学分数应用题解题方法
分数应用题很多时候容易产生“歧义”,所以家长要特别提醒孩子在审题时抓住关键句,找准比较的对象。
分数应用题中都有说明两个量之间关系的句子,这些句子是应用题的题眼、解题的突破点。比如:
汽车在公路上行驶,先把速度提高20%,再把速度降低20%,现在的速度是原来的百分之几?
分析:设定原来的速度为100%,提高20%后为120%,当再次降低时,是在120%的基础上降低,此时的20%是120%×0.2=24%。所以降低后是120%-24%=96%。
篇3:六年级数学分数应用题解题方法
有些分数应用题数量变化多,分析难度大,不易列式计算。但是,仔细分析就会发现,变来变去,总有一个量是不变的,这就是我们所说的不变量。
对于这类分数应用题,家长辅导孩子解答时,要专注“不变量”,以静制动,使问题迎刃而解。比如:
有两桶水,第一桶水的重量是第二桶水的6倍,从第一桶取出12千克水加入第二桶,这时第一桶水的重量是第二桶的4倍,问第一桶原来有水多少千克?
分析:两桶水的总重量总是不变的,但又未知,我们把它看作单位“1”的量。则“取前”第一桶占两桶水总重量的1/1+6=1/7,“取后”第一桶占两桶水总重量的1/1+4=1/5。
第一桶取前取后差12千克占两桶总重量的1/5-1/7=2/35,故两桶水总重量为12÷2/35=210(千克),由此可求出原来第一桶水的重量为:210÷1/7=30(千克)
篇4:六年级数学分数应用题解题方法
不管是简单分数应用题还是复杂的分数应用题,题中都有关键句,关键句中都有单位“1”的量,准确找出单位“1”的量是解答分数应用题的前提条件。
一般来讲,单位“1”的确定有以下两点方法和规律:
1、关键句中分数前面有个“的”,“的”字前面的量就是单位“1”的量。
如“甲的2/3是乙”,那么单位“1”的量就是2/3前面的“甲”;“乙是甲的4/7”,那么单位“1”的量就是“甲”;“乙的7/8相当于甲”,那么单位“1”的量就是“乙”。
2、关键句中“比”字后面的量是单位“1”的量。
如“篮球比足球多1/3”,那么单位“1”的量就是比字后面的量足球;“足球比篮球少1/4”,那么单位“1”的量是篮球。
小学六年级数学分数应用题解题方法之运用逆推找出解题方法
有些分数应用题,如果按照从始至终的先后顺序去分析,很难达到解决问题的目的,甚至陷入绝境。家长可以引导孩子不妨“反过来想一想”进行逆推,便容易打开思路,顺利解题。比如:
倒一个油桶里的油,第一次倒出1/3后加入20千克,第二次倒出这时油的1/6多5千克,这时桶里剩下油95千克。问原来桶里有油多少千克?
分析:从最后条件出发思考:95+5=100(千克),即为现存油的5/6,故现在桶里有油100除以5/6=120(千克)。
再从第一个条件思考,120-20=100(千克),即为原存油的2/3,因此,原来桶里有油100÷ 2/3=150(千克)。
综合算式:
﹝(95+5)÷(1-1/6)-20﹞÷(1-1/3)=150(千克)
小学六年级数学分数应用题解题方法之利用假设推算找出解题方法
有些分数应用题,如果按题中所给条件直接去思考,就难以找到解题方法,如果在解题时先假设一个主观上所需要的条件,然后按照题目里数量关系推算,所得的结果发生与题目条件不同的矛盾,再进行适当的调整,即可找到正确的答案。如:
李家村修一条路,第一周修了全长的2/5多10米,第二周修了全长的1/4少5米,还剩下282米没有修,这条路长多少米?
分析:假设第一周修的恰好是全长的2/5,这样第一、二周修后剩下的282米中就要增加10米。
假设第二周修的恰好是全长的1/4,这样第一、二周修后剩下的282米中就要减少5米,于是条件变为“”第一周修了全长的2/5,第二周修了全长的1/4,还剩(282+10-5)米没有修。
把这条路全长看作单位“1”,那么(282+10-5)的对应分率就是(1-2/5-1/4)。
于是列式为:(282+10-5)÷(1-2/5-1/4)=8201(米)
小学六年级数学分数应用题解题方法之通过变换条件找出解题方法
有些分数应用题,可以通过改变看问题的角度将题中某些已知数量转换成与之有关联的另一个量,使其成为一个较为熟悉的简单的问题,从而找到解题的方法。如:
有两个钱罐,如果从第一个钱罐里取出15元放入第二个钱罐,这时钱罐里的钱正好是第一个钱罐里钱的5/7,已知第二个钱罐里原有钱35元,问第一个钱罐里原有多少钱?
分析:这道题可以转化为熟悉的“归一”问题。题中的5/7根据分数的意义,表示把这时第一个钱罐里的钱平均分成7份,这时第二个钱罐里的钱占其中的5份,这5份共35+15=50(元),则每份是50÷5=10(元)。
因此,这时第一个钱罐有钱10×7=70(元),那么第一个钱罐里原有钱70+15=85(元)。综合算式:(35+15)÷5/7+15=85(元)
篇5:初中数学题型经典解题方法
初中数学题型经典解题方法汇总
一、选择题的解法
1、直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;
在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法
1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”
8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”
9、演绎法:由一般到特殊的推理方法。
10、归纳法:由一般到特殊的推理方法。
11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间;根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。
类比法既可能是特殊到特殊,也可能一般到一般的推理。
三、函数、方程、不等式
解函数、方程、不等式相关问题的常用数学思想方法有:
⑴数形结合的思想方法。
⑵待定系数法。
⑶配方法。
⑷联系与转化的思想。
⑸图像的平移变换。
四、证明角的相等
1、对顶角相等。
2、角(或同角)的补角相等或余角相等。
3、两直线平行,同位角相等、内错角相等。
4、凡直角都相等。
5、角平分线分得的两个角相等。
6、同一个三角形中,等边对等角。
7、等腰三角形中,底边上的高(或中线)平分顶角。
8、平行四边形的对角相等。
9、菱形的每一条对角线平分一组对角。
10、等腰梯形同一底上的两个角相等。
11、关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所对的圆心角相等。
12、圆内接四边形的任何一个外角都等于它的内对角。
13、同弧或等弧所对的圆周角相等。
14、弦切角等于它所夹的弧对的圆周角。
15、同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
16、全等三角形的对应角相等。
17、相似三角形的对应角相等。
18、利用等量代换。
19、利用代数或三角计算出角的度数相等
20、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。
五、证明直线的平行或垂直
1、证明两条直线平行的主要依据和方法:
⑵ 定义、在同一平面内不相交的两条直线平行。
⑵平行定理:两条直线都和第三条直线平行,这两条直线也互相平行。
⑶平行线的判定:同位角相等(内错角或同旁内角),两直线平行。
⑷平行四边形的对边平行。
⑸梯形的两底平行。
⑹三角形(或梯形)的中位线平行与第三边(或两底)
⑺一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。
2、证明两条直线垂直的主要依据和方法:
⑴两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。
⑵直角三角形的两直角边互相垂直。
⑶三角形的两个锐角互余,则第三个内角为直角。
⑷三角形一边的中线等于这边的一半,则这个三角形为直角三角形。
⑸三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。
⑹三角形(或多边形)一边上的高垂直于这边。
⑺等腰三角形的顶角平分线(或底边上的中线)垂直于底边。
⑻矩形的两临边互相垂直。
⑼菱形的对角线互相垂直。
⑽平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。
⑾半圆或直径所对的圆周角是直角。
⑿圆的切线垂直于过切点的半径。
⒀相交两圆的连心线垂直于两圆的公共弦。
六、证明线段的比例式或等积式的主要依据和方法:
1、比例线段的定义。
2、平行线分线段成比例定理及推论。
3、平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
4、过分点作平行线;
5、相似三角形的对应高成比例,对应中线的比和对应角平分线的比都等于相似比。
6、相似三角形的周长的比等于相似比。
7、相似三角形的面积的比等于相似比的平方。
8、相似三角形的对应边成比例。
9、通过比例的性质推导。
10、用代数、三角方法进行计算。
11、借助等比或等线段代换。
七、几何作图
1、掌握最基本的五种尺规作图
⑴作一条线段等于已知线段。
⑵作一个角等于已知角。
⑶平分已知角。
⑷经过一点作已知直线的垂线。
⑸作线段的垂直平分线。
2、掌握课本中各章要求的作图题
⑴根据条件作任意的三角形、等要素那角性、直角三角形。
⑵根据给出条件作一般四边形、平行四边形、矩形、菱形、正方形、梯形等。
⑶作已知图形关于一点、一条直线对称的图形。
⑷会作三角形的外接圆、内切圆。
⑸平分已知弧。
⑹作两条线段的比例中项。
⑺作正三角形、正四边形、正六边形等。
八、几何计算
(一)角度与弧度的计算
1、三角形和四边形的角的计算主要依据
⑴三角形的内角和定理及推论。
⑵四边形的内角和定理及推论。
⑶ 圆内接四边形性质定理。
2、弧和相关的角的计算主要依据
⑴圆心角的度数等于它所对的弧的度数。
⑵圆周角的度数等于它所对的弧的度数的一半。
⑶弦切角的度数等于所夹弧度数的一半。
3、多边形的角的计算主要依据
⑴n边形的内角和=(n-2)180°
⑵正n边形的每一内角=(n-2)180°÷n
⑷ 正n边形的任一外角等于各边所对的中心角且都等于
(二)长度的计算
1、三角形、平行四边形和梯形的计算
用到的定理主要有三角形全等定理,中位线定理,等腰三角形、直角三角形、正三角形及各种平行四边形的性质等定理。关于梯形中线段计算主要依据梯形中位线定理及等腰梯形、直角梯形的性质定理等。
2、有关圆的线段计算的主要依据
⑴切线长定理
⑵圆切线的性质定理。
⑶垂径定理。
⑸ 圆外切四边形两组对边的和相等。
⑹ 两圆外切时圆心距等于两圆半径之和,两圆内切时圆心距等于两半径之差。
3、直角三角形边的计算
直角三角形边长的计算应用最广,其理论依据主要是勾股定理和特殊角三角形的性质及锐角三角函数等。
4、成比例线段长度的求法
⑴平行线分线段成比例定理;
⑵相似形对应线段的比等于相似比;
⑶射影定理;
⑷相交弦定理及推论,切割线定理及推论;
⑸正多边形的边和其他线段计算转化为特殊三角形。
(三)图形面积的计算
1、四边形的面积公式
⑴S□ABCD = a·h
⑵S菱形 = 1/2a·b (a、b为对角线)
⑶S梯形 = 1/2(a + b)·h = m·h (m为中位线)
2、三角形的面积公式
⑴S△ = 1/2· a·h
⑵S△ = 1/2· P·r(P为三角形周长,r为三角形内切圆的半径)
3、S圆 =πR2
4、S扇形 = nπ= 1/2LR
5、S弓形 = S扇 -S△
九、证明两线段相等的方法:
1、利用全等三角形对应线段相等;
2、利用等腰三角形性质;
3、利用同一个三角形中等角对等边;
4、利用线段垂直平分线;
5、角平分线的性质;
6、利用轴对称的性质;
7、平行线等分线段定理;
8、平行四边形性质;
9、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。推论1:平分一条弦所对的弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
10、圆心角、弧、弦、弦心距的关系定理及推论;
11、切线长定理。
十、证明弧相等的方法:
1、定义;同圆或等圆中,能够完全重合的两段弧。
2、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直弦,并且平分弦所对的两条弧。
②垂直平分一条弦的直线,经过圆心,并且平分弦所对的两条弧。
③平分一条弦所对的弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:两条平行弦所夹的弧相等
3、圆心角、弧、圆周角之间度数关系;(圆心角 = 弧 = 2圆周角)
4、圆周角定理的推论1;(同弧或等弧所对的圆周角相等,同圆或等圆中相等的圆周角所对的弧相等)
十一、切线小结
1、证明切线的三种方法:
⑴定义——一个交点;
⑵d=r(若一条直线到圆心的距离等于半径,则这条直线是圆的切线);
⑶切线的判定定理;(经过半径外端,并且垂直这条半径的直线是圆的切线)
2、切线的八个性质:
⑴定义:唯一交点;
⑵切线和圆心的距离等于半径(d=r);
⑶切线的性质定理:圆的切线垂直于过切点的半径;
⑷推论1:过圆心(且垂直于切线的直线)必过切点;
⑸推论2:过切点(且垂直于切线的直线)必过圆心;
⑹切线长相等;过圆外一点作圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两切线的夹角。
⑺ 连接两平行切线切点间的线段为直径
⑻ 经过直径两端点的切线互相平行。
3、证明切线的两种类型:
⑴已知直线和圆相交于一点
证明方法:连交点,证垂直
⑵未知直线和圆是否相交于哪点或没告诉交点
证明方法:做垂直,证半径
十二、辅助线的作用与添加方法:
辅助线是沟通已知与未知的桥梁.现已学过的添加辅助线方法有:
1、梯形的七类辅助线:
⑴作梯形的高;
⑵延长两腰;
⑶平移一腰;
⑷平移对角线;
⑸利用中点;
⑹连结两腰中点;
2、一般的辅助线
⑴过两定点作直线;
⑵作三角形的高、中线、角平分线;
⑶延长某一线段;
⑷作一点关于已知直线的对称点;
⑸构造直角三角形;
⑹作平行线;
⑺作半径;
⑻弦心距;
⑼构造直径上的圆周角;
⑽两圆相交时常连公共弦;
⑾构造相交弦;
⑿见中点连中点构造中位线;
⒀两圆外切时作内公切线;
⒁两圆内切时作外公切线;
⒂作辅助图形(如勾股定理逆定理的证明中作辅助三角形);
篇6:初中数学解题方法总结
1. 观察与实验
( 1 )观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。
( 2 )实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。
2. 比较与分类
( 1 )比较法
是确定事物共同点和不同点的思维方法。在数学上两类数学对象必须有一定的关系才好比较。我们常比较两类数学对象的相同点、相异点或者是同异综合比较。
( 2 )分类的方法
分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。如上图中一次函数的 k 在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。
3 .特殊与一般
( 1 )特殊化的方法
特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。
( 2 )一般化的方法
4. 联想与猜想
( 1 )类比联想
类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。
通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:
( 2 )归纳猜想
牛顿说过:没有大胆的猜想就没有伟大的发明。猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。
归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。归纳有完全归纳和不完全归纳。完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。关键是猜之有理、猜之有据。
5. 换元与配方
( 1 )换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。 你可以先观察算式,你可以发现这种要换元法的算式中总是有相同的式子,然后把他们用一个字母代替,算出答案,然后答案中如果有这个字母,就把式子带进去,计算就出来啦。
( 2 )配方法
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解。配方法使用的最基本的配方依据是二项完全平方公式 (a + b) 2 = a 2 + 2ab + b 2 ,将这个公式灵活运用,可得到各种基本配方形式
6. 构造法与待定系数法
( 1 )构造法所谓构造性的方法就是数学中的概念和方法按固定的方式经有限个步骤能够定义的概念和能够实现的方法。常见的有构造函数,构造图形,构造恒等式。平面几何里面的添辅助线法就是常见的构造法。构造法解题有:直接构造、变更条件构造和变更结论构造等途径。
( 2 )待定系数法:将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
7. 公式法与反证法
( 1 )公式法
利用公式解决问题的方法。初中最常用的有一元二次方程求根时使用求根公式的方法;完全平方公式的方法等。如下面一组题就是完全平方公式的应用:
( 2 )反证法是“间接证明法”一类,即:肯定题设而否定结论,从而得出矛盾,就可以肯定命题的结论的正确性,从而使命题获得了证明。
篇7:初中数学解题方法总结
1. 数学探索题
所谓探索题就是从问题给定的题设条件中探究其相应的结论并加以证明,或从给定的题目要求中探究相应的必需具备的条件、解决问题的途径。
条件探索题:解答策略之一是将题设和结论视为已知,同时推理,在演绎的过程中寻找出相应所需的条件。
结论探索题:通常指结论不确定不唯一,或结论需通过类比、引申、推广,或给出特例需通过归纳得出一般结论。可以先猜测再去证明;也可以寻求具体情况下的结论再证明;或直接演绎推证。
规律探索题:实际就是探索多种解决问题的途径,制定多种解题的策略。
活动型探索题:让学生参与一定的社会实践,在课内和课外的活动中,通过探究完成问题解决。
推广型探索题:将一个简单的问题,加以推广,可产生新的结论,在初中教学中常见。如平行四边形的判定,就可以产生许多新的推广,一方面是自身的推广,一方面可以延伸到菱形和正方形中。
探索是数学的生命线,解探索题是一种富有创造性的思维活动,一种数学形式的探索绝不是单一的思维方式的结果,而是多种思维方式的联系和渗透,这样可使学生在学习数学的过程中敢于质疑、提问、反思、推广。通过探索去经历数学发现、数学探究、数学创造的过程,体会创造带来的快乐。
2. 数学情境题
情境题是以一段生活实际、故事、历史、游戏与数学问题、数学思想和方法于情境中。这类问题往往生动有趣,激发学生强烈的研究动机,但同时数学情景题又有信息量大,开放性强的特点,因此需要学生能从场景中提炼出数学问题,同时经历了借助数学知识研究实际问题的数学化过程。
如老师在讲有理数的混合运算时,
3. 数学开放题
数学开放题是相对于传统的封闭题而言的一种新题型,其特征是题目的条件不充分,或没有确定的结论,也正因为这样,所以开放题的解题策略往往也是多种多样的。
( 1 )数学开放题一般具有下列特征
①不确定性:所提的问题常常是不确定的和一般性的,其背景情况也是用一般词语来描述的,因此需收集其他必要的信息,才能着手解的题目。
②探究性:没有现成的解题模式,有些答案可能易于直觉地被发现,但是求解过程中往往需要从多个角度进行思考和探索。
③非完备性:有些问题的答案是不确定的,存在着多样的解答,但重要的还不是答案本身的多样性,而在于寻求解答的过程中学生的认知结构的重建。
④发散性:在求解过程中往往可以引出新的问题,或将问题加以推广,找出更一般、更概括性的结论。常常通过实际问题提出,学生必须用数学语言将其数学化,也就是建立数学模型。
⑤发展性:能激起多数学生的好奇性,全体学生都可以参与解答过程。
⑥创新性:教师难以用注入式进行教学,学生能自然地主动参与,教师在解题过程中的地位是示范者、启发者、鼓励者、合作者。
( 2 )对数学开放题的分类
从构成数学题系统的四要素(条件、依据、方法、结论)出发,定性地可分成四类;如果寻求的答案是数学题的条件,则称为条件开放题;如果寻求的答案是依据或方法,则称为策略开放题;如果寻求的答案是结论,则称为结论开放题;如果数学题的条件、解题策略或结论都要求解题者在给定的情境中自行设定与寻找,则称为综合开放题。
从学生的学习生活和熟悉的事物中收集材料,设计成各种形式的数学开放性问题,意在开放学生的思路,开放学生潜在的学习能力,开放性数学问题给不同层次的学生学好数学创设了机会,多种解题策略的应用,有力地发展了学生的创新思维,培养了学生的创新技能,提高了学生的创新能力。
( 3 )以数学开放题为载体的教学特征
①师生关系开放:教师与学生成为问题解决的共同合作者和研究者
②教学内容开放:开放题往往条件不完全、或结论不完全,需要收集信息加以分析和研究,给数学留下了创新的空间。
③教学过程的开放性:由于研究的内容的开放性可以激起学生的好奇心、同时由于问题的开放性,就没有现成的解题模式,因此就会留下想象的空间,使所有的学生都可参与想象和解答。
( 4 )开放题的教育价值
有利于培养学生良好的思维品质;
有助于学生主体意识的形成;
有利于全体学生的参与,实现教学的民主性和合作性;
有利于学生体验成功、树立信心,增强学习的兴趣;
有助于提高学生解决问题的能力。
4. 数学建模题(初中数学建模题也可以看作是数学应用题)
数学新课程标准指出 : 要学生会应用所学知识解决实际问题 , 能适应社会日常生活和生产劳动的基本需要。初中数学的学习目的之一 , 就是培养学生解决实际问题的能力 , 要求学生会分析和解决生产、生活中的数学问题 , 形成善于应用数学的意识和能力。从各省市的中考数学命题来看 , 也更关注学生灵活运用数学知识解决实际问题能力的考查 , 可以说培养学生解答应用题的能力是使学生能够运用所学数学知识解决实际问题的基本途径之一
初中数学应用问题类型
( 1 )探求结论型数学应用问题
根据命题中所给出的条件,要求找出一个或一个以上的正确结论
( 2 )跨学科的数学应用问题
①数学与物理
②数学与生化
以上两题是与生物和化学有关的问题,体现了数学在生化学科的应用。
总之,数学应用问题较好地考察了学生阅读理解能力与日常生活体验,同时又考察了学生获取信息后的抽象概括与建模能力,判断决策能力。中考数学应用问题热点题型主要包括生活、统计、测量、设计、决策、销售、开放探索、跨学科等等,中考在强化学生应用意识和应用能力方面发挥及其良好的导向功能。这就要求我们在平时教学中善于挖掘课本例题、习题的潜在的应用功能。巧妙地将课本中具有典型意义的数学问题回归生活、生产的原型,创设一个实际背景,改造成有深刻数学内涵的实际问题,以增强应用意识,发展数学建模能力。
四、掌握初中数学解题策略提来提高数学学习效率
(1)认真分析问题,找解题准切入点
由于数学问题纷繁复杂,学生容易受定势思维的影响,这样就会响解题思路造成很大的影响。为此,这时教师要给予学生正确指导,帮助学生进行思路的调整,对题目进行重新认真的分析,将切入点找准后,问题就能游刃而解了。例如:已知:AB=DC,AC=DB。求证:∠A=∠D。
此题是一道比较经典的证明全等的题型,主要是对学生对已知条件整合能力和观察识图能力的锻炼。然而,从图形的直观角度来证明∠AOC=∠DOB,这样的思路只会落入题目所设下的陷阱。为此,在对此题的审题时,教师要引导学生注意将题目已知的两个条件充分结合起来考虑,提醒学生可以适当添加一定的辅助线。
(2)发挥想象力,借助面积出奇制胜
面积问题是数学中常出现的问题,在面积定义及相关规律中,蕴含着深刻的数学思想,如果学生能充分了解其中的韵味,能够熟练的掌握其中的数学论证思维,就有可能在其他数学问题中借助面积,出奇制胜顺利实现解题。由于几何图形的面积与线段、角、弧等有密切的联系,所以用面积法不但可证各种几何图形面积的等量关系,还可证某些线段相等、线段不等、角的相等以及比例式等多种类型的几何题。例1、若E、F分别是矩形ABCD边AB、CD的中点,且矩形EFDA与矩形ABCD相似,则矩形ABCD的宽与长之比为( ) (A) 1∶2(B) 2∶1(C) 1∶2(D) 2∶1
由上题已知信息可知,矩形ABCD的宽AD与AB的比,就是矩形EFDA与矩形ABCD的相似比。解:设矩形EFDA与矩形ABCD的相似比为k。因为E、F分别是矩形ABCD的中点,所以S矩形ABCD=2S矩形EFDA。所以S矩形EFDA∶S矩形ABCD=k2。所以k=1∶2。即矩形ABCD的宽与长之比为1∶2;故选(C)。
此题利用了“相似多边形面积的比等于相似比平方”这一性质,巧妙解决相似矩形中的长与宽比的问题。事实上,借助面积,形成解题思路的过程,就是学生思维转换的过程。
(3)巧取特殊值,以简代繁
初中数学虽然是基础数学,但是这并不意味着就没有难度,特别是在素质教育下,从培养学生综合素质能力的角度出发,初中数学越来越重视数学思维的培养,因此在很多数学问题的设置上,都进行了相当难度的调整,使得数学问题显得较为繁杂,单一的思维或者解题方式,在有些题目面前会显得较为艰难。如有些数学问题是在一定的范围内研究它的性质,如果从所有的值去逐一考虑,那么问题将不胜其繁甚至陷入困境。在这种情况下,避开常规解法,跳出既定数学思维,就成了解题的关键。
例2、分解因式:x2+2xy-8y2+2x+14y-3。
思路分析:本题是二元多项式,从常规思路进行解题也未尝不可,但是从锻炼学生思维能力的角度出发,教师可以在立足常规解法的基础上,引导学生进行其他方面解题思路的探索。如从巧取特值的角度出发,把其中的一个未知数设为0,则可以暂时隐去这个未知数,而就另一个未知数的式子来分解因式,达到化二元为一元的目的。
解:令y=0,得x2+2x-3=(x+3)(x-1);令x=0,得:-8y2+14y-3=(-2y+3)(4y-1)。当把两次分解的一次项的系数1、1;-2、4。可知,1×4+(-2)×1正好等于原式中xy项的系数。因此,综合起来有:x2+2xy-8y2+2x+14y-3=(x-2y+3)(x+4y-1)。
其实,用特殊值法,也叫取零法。这种方法在因式分解中可以发挥很大的作用,帮助学生找到其他的解题思路。一般来说其步骤是:A、把多项式中的一个字母设为0所得的结果分解因式,B、把多项中的另一个字母设为0所得的结果分解因式,C、把上两步分解的结果综合起来,得出原多项式的分解结果。但要注意:两次分解的一次因式的常数项必须相等,如本题中,x+3的3和-2y+3的3相等,x-1的-1和4y-1的-1相等。否则,在综合这两步的结果时就无所适从了。
(4)巧妙转换,过渡求解法
在解数学题时,即要对已知的条件进行全面分析,还要善于将题目中的隐性条件挖掘出来,将数学中各知识之间的联系巧妙的运用起来,用全面、全新的视角来解决问题。
例如:已知:AB为半圆的直径,其长度为30 cm,点C、D是该半圆的三等分点,求弦AC、AD与弧CD所围成的图形的面积。
本题需要解出的是一个不规则图形的面积,可能大多数同学的思维就是将CD连结起来,将其转变为一个角形和弓形,两者面积之和就为该题需要解决的问题。这时,教师就要引导学生学会对半径这一已知条件加以利用,帮助其将另外两条OC、OD辅助线连结起来,将题目要求解的不规则图形的面积,转化成求扇形OCD的面积,这样该题的解题思维就能一目了然了。
综上所述,初中数学解题存在很强的灵活性。有的数学题不只一种解法,而有多种解法,有的数学题用常规方法解决不了,要用特殊方法。因此,解数学题要注意它的灵活性和技巧性。解题技巧在升学考试中至关重要,不能忽视。初中数学教师要注意对解题技巧的钻研,并鼓励学生发散思维,寻找解题技巧,提高解题效率,增强学习数学的能力。
篇8:初中数学解题方法有哪些
如何提高解题的正确率
很多同学考试发下卷子后,总是难免要一声叹息或者几声叹息。“这个问题我怎么没想到?!”,“这么简单的计算我怎么居然算错了?!”,“我怎么草稿纸上算对了,卷子上却写错了?!”……
很多同学都把正确率的欠缺归结为考试时自己的不小心、粗心,并且还在心里有意无意地把因为这种原因被扣掉的分加上去,心里想着我的水平应该是多少多少分。如果你常常这样做,那就大错特错了。因为,你会发现,等到下次考试,你努力地想要细心仔细地做每一道题时,发下卷子,还是会出现本该会做的题做错了的情况。如果是这样,那就表示,你还存在一个学习上的缺点或弱点:正确率没有保证!这不是仅仅靠考试时的极力小心所能解决的。
下面我们就对解题错误率高的几种情况进行分析。
现象一:一听就会,一做就错,总是在看到答案后恍然大悟。
很多学生在看到题目时觉得面熟,能肯定自己以前做过原题或类似的题目,但就是想不起来该怎么做,越是回忆以前做过的类似题目越是没有思路,等看到答案才大喊一声,哇,原来是这样的啊。于是再做,发现还是不能独立的把题目完整的做出来,于是再看答案,再做。。。。。。
原因:原来在做题目时没有真正理解题目的解法,只能跟着老师的思路把题目抄下来,没有自己动手整理,导致自己觉得会做了,其实只是在当时把题目背过了,一段时间以后就只记得题目不记得解法了。所以,“背题”是万万要不得的,考试的题目千千万,背的过来么?
解决方法:在做完一道题目后,两个同学结成小组,互相讲解给对方听,让同学帮你检查你对这个题目的理解还有什么欠缺,发现问题立即问老师,力争当堂把题目理解透彻。家长可以在一两周之后把这道题目的数据换一下,再让孩子做一遍,这样就能做到让孩子彻底的掌握这种类型题目的解法,还能达到举一反三的效果。
现象二:会做,但总是粗心,不是抄错题就是算错数
很多家长都反应说自己的孩子很粗心,经常把会做的题目算错,甚至有家长说孩子期末考试考了96分,丢掉的那四分全是粗心算错的,并对这个成绩很满意,还有很多学生也说,这道题目我会做就可以了,这次算错了没关系,到考试时能算对就可以了。其实,作为有多年教学经验的老师,我们告诉各位家长,会做做不对才是最可怕的。
原因:粗心的原因有两个,一是心态问题,这个问题后面会详细的说。第二个原因就是对知识掌握的不牢固,模棱两可,错误总是在你掌握不牢固的地方出现,那些看似是粗心犯的错,其实都是因为在应用知识的时候不熟练,导致出错。
解决方法:有选择的多做题目,在数学学习中,我们反对搞题海战术,但是要想学好数学,不做题目不进行针对性训练是无法把学到的知识掌握牢固的。但是也不能盲目的去做题,有数量不等于有质量,会做的题目就是做上一千道也没有进步。老师和家长要引导孩子挑战自己不会的题目,只有不断地去挑战才能不断的进步。
现象三:心态不端正,觉得做不对无所谓,会做就行了
很多学生都觉得只要会做就行了,平时算不对,到考试时注意力会高度集中,就能算对了。其实这种看法是不对的,
原因:学生学习的目的除了要掌握知识,掌握解决问题的方法,还要在学习的过程中养成良好的学习习惯,良好的学习习惯是成功的一大法宝。而在学习中心态不端正,长此以往,会形成浮躁的性格,这是学习的大忌。
解决方法:端正态度,养成良好的学习习惯。准备一个错题本,把每天自己做错的题目记下来,要将因为不会而做错和因为粗心做错的题目分开记,每周都将错题本上的该周做错的题目再做一遍,就会对自己犯过的错误印象深刻,就能避免再犯同样的错误。
总之,要想提高解题的准确率,就要本着端正的学习态度,去做一定量的有针对性的题目,在做题时认真思考,要全神贯注,心无旁骛。真正的去理解解题方法,做完一道题目之后当堂回顾,把解题思路复述出来,并将做错的题抄在错题本上,经过一段时间的努力,一定能将解题的错误率降低,并养成良好的学习习惯。所以,我们经常说,学数学很容易,秘诀就是:会做的做对,错过的不要再错!
篇9:初中数学解题方法有哪些
学好初中数学要注意的三个方面
1、全面复习,把书读薄
全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到。这就是全面复习的含义。
2、突出重点,精益求精
在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点。在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多。“猜题”的人,往往要在这方面下功夫。一般说来,也确能猜出几分来。但遇到综合题,这些题在主要内容中含有次要内容。这时,“猜题”便行不通了。我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容担挈整个内容。主要内容理解透了,其它的内容和方法迎刃而解。即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容。
3、基本训练反复进行
学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张“题海”战术,而是提倡精练,即反复做一些典型的题,做到一题多解,一题多变。要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下“盲棋”一样,只需用脑子默想,即能得到正确答案。这就是我们在常言中提到的,在20分钟内完成10道客观题。其中有些是不用动笔,一眼就能作出答案的题,这样才叫训练有素,“熟能生巧”,基本功扎实的人,遇到难题办法也多,不易被难倒。相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会“粗心”地出错。
三、有疑必问“事半功倍”
学会学习,掌握学习规律和学习方法,以培养索取知识的能力,乃是当今青少年学习中十分重要的任务,只有凭借着良好的学习方法,才能达到“事半功倍”的学习效果。
针对数学学习,有以下几点建议,供大家参考。
一、阅读理解目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。
二、提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。
三、有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次。从而提高学习效率。
初中数学九大经典解题方法,学会了分数就是你的!(精选9篇)




