初中数学规律题方法

时间:2023-05-10 03:36:36 作者:南巷孤猫 综合材料 收藏本文 下载本文

【导语】“南巷孤猫”通过精心收集,向本站投稿了9篇初中数学规律题方法,下面是小编给大家带来关于初中数学规律题方法,一起来看看吧,希望对您有所帮助。

篇1:初中数学规律题方法

数学一定会有解题方法,我们来看看规律题的解题方法吧!

一、基本方法——看增幅

(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2

(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;

2、求出第1位到第第n位的总增幅;

3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:

[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1

所以,第n位数是:2+ n2-1= n2+1

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.

(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧

(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是 。

解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:

给出的数:0,3,8,15,24,……。

序列号: 1,2,3, 4, 5,……。

容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n2-1,第100项是1002-1。

(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。

例如:1,9,25,49,,(),的第n为(2n-1)2

(三)看例题:

A: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且............即:n3+1

B:2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:2n

四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。

例:2、5、10、17、26……,同时减去2后得到新数列:

0、3、8、15、24……,

序列号:1、2、3、4、5

分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1

(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。

例 : 4,16,36,64,?,144,196,… ?(第一百个数)

同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方。

(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。

(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。

三、基本步骤

1、先看增幅是否相等,如相等,用基本方法(一)解题。

2、如不相等,综合运用技巧(一)、(二)、(三)找规律

3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律

4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题

四、练习题

例1:一道初中数学找规律题

0,3,8,15,24,······

2,5,10,17,26,·····

0,6,16,30,48······

(1)第一组有什么规律?

(2)第二、三组分别跟第一组有什么关系?

(3)取每组的第7个数,求这三个数的和?

2、观察下面两行数

2,4,8,16,32,64, ...(1)

5,7,11,19,35,67...(2)

根据你发现的规律,取每行第十个数,求得他们的和。(要求写出最后的计算结果和详细解题过程。)

3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002个中有几个是黑的?

4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……

用含有N的代数式表示规律

写出两个连续技术的平方差为888的等式

五、对于数表

1、先看行的规律,然后,以列为单位用数列找规律方法找规律

2、看看有没有一个数是上面两数或下面两数的和或差

篇2:数学规律题解题技巧

数学规律题解题技巧

初中数学规律题解题技巧,各位初中的同学知道怎么做规律题吗?其实是有技巧的哦,看看下面吧!

一、基本方法——看增幅

(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2

(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;

2、求出第1位到第第n位的总增幅;

3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:

[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1

所以,第n位数是:2+ n2-1= n2+1

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.

(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧

(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例如,观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是 。

解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。

我们把有关的量放在一起加以比较:

给出的数:0,3,8,15,24,……。

序列号: 1,2,3, 4, 5,……。

容易发现,已知数的每一项,都等于它的序列号的平方减1。

因此,第n项是n2-1,第100项是1002-1。

篇3:691318数学规律题

如果不认识数学的话,我们就通过下面的规律题来帮我们认识数学原来是有规律的!

1.将正偶数按下表排成四列:

第一列 第二列 第三列 第四列
第一行 2 4 6 8
第二行 16 14 12 10
第三行 18 20 22 24
第四行 28 26
第五行
第六行

根据上面排列规律,求2000所在的行与列数。

答案:因为是全部偶数按二三四五五四三二顺序排列,八个为一组,2000是第

1000个数(因为奇数都去掉了)1000/8=125,余数为0,所以是八个为一组一组数的第八个,在第二列,因为商是125,八个数占两行,故在250行.

答案:250行第二列.

2.用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第3个图形中有黑色瓷砖 块,第n个图形中需要黑色瓷砖 块(用含n的代数式表示).

答案:在这三个图形中,前边4块黑瓷砖不变,变化的是后面的黑瓷砖。它们的数量分别是,第一个图形中多出0×3块黑瓷砖,第二个图形中多出1×3块黑瓷砖,第三个图形中多出2×3块黑瓷砖,依次类推,第n个图形中多出(n-1)×3块黑瓷砖。所以,第n个图形中一共有4+(n-1)×3块黑瓷砖。

3.观察图(l)至(4)中小圆圈的摆放规律,并按这样的规律继续摆放,记第n个图中小圆圈的个数为m,则,m= (用含n的代数式表示)

4.日照市中等学校招生考试数学试题“已知下列等式:

① 13=12;

② 13+23=32;

③ 13+23+33=62;

④ 13+23+33+43=102 ;

…… ……

由此规律知,第⑤个等式是 .”

答案:152

5.玉林市20中考数学试题:“观察下列球的排列规律(其中●是实心球,○是空心球):

●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……

从第1个球起到第2004个球止,共有实心球 个。”

答案:602

篇4:初中数学规律练习题

初中数学规律练习题

1. 射线条数与角个数的关系

过同一顶点2条射线,可以组成一个角,3条射线可以组成两个角,4条射线组6个角,那么N条射线可以组成多少个角?

方法:N 条线时,共有角个数=Cn2 =n (n-1) / 2

例如:5条线可以给成4*5/2 =10 个角,计数也是10个角。

2. 一列数,分别为:1,4,7,10,13 ,问第N个数是多少/

方法:分析这列数的规律,后项-前项=3 ,可以认为是一个等差数列。这列数的规律为:

Y= a +b *n , a =首数(第一个数)=1 ,b=差=3 ,则Y=1+3N,把N-1 代入这个式子,得到Y =1+3=4 ,为第二项,则调整为Y=1+3 (n-1)=1+3n-3=3n-2. ,分别把N-=1,2,3 代入,验算正确即可。

注意:计算Y=1+3 (n-1)时,退括号要都*3 ,不要只给N*3 ,最后得到:Y=1+3N-1。这样就不正确了。最后把N=1,2 ,3,多代入验算,可以调节正确。

3. 求一列数的和

S=1 + 21+22+23 +24 +….+2n

方法;这类习题,不可能直接求解的,一般都是间接求解。

看这列数的特点,后项/前项=2 ,是一个等比数列,现在没有学等比数列的'求和公式,可以间接计算,方式如下:

2S=+21 +22 +23 +24 +….+2n + 2n+1

S与2S 与好多个项是一样的,如果这两个相减,就可以抵消掉一大部分数,这样就可优化计算。

2S-S=22 +23 +24 +….+2n + 2n+1-(1 + 22 +23 +24 +….+2n)

-则S=2n+1-1

这样通过间接方式,求出数列的和。

大家可以看出,我们给这列数同*2 ,为了使2S与S 有好多相同的项,所以要同*他们的公比才行。

篇5:六年级数学探索规律题

六年级数学探索规律题

1.小正方形的边长是1厘米,依次排出下面这些图形.

作 者:华锡东  作者单位:江苏无锡市新区实验小学 刊 名:小学教学 英文刊名:XIAOXUE JIAOXUE 年,卷(期):2009 “”(4) 分类号: 关键词: 

篇6:数学找规律的方法

代数中的规律“有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。 找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。例1 观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是___。”分析:解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。 我们把有关的量放在一起加以比较: 给出的数:0,3,8,15,24,……。 序列号: 1,2,3, 4, 5,……。

平面图形中的规律:图形变化也是经常出现的。作这种数学规律的题目,都会涉及到一个或者几个变化的量。所谓找规律,多数情况下,是指变量的变化规律。所以,抓住了变量,就等于抓住了解决问题的关键。

篇7:数学找规律的方法

初中数学的学习、学好要在理解的基础上进行学习,这是我们在学习中应该遵循的第一原则,也是其他科目普遍的共性及今后的学习考试趋势。首先对于概念、公式、定义、定理、公理要有准确的认识,到位的理解,除此之外,学生在这些知识点的学习中也是有一些规律可循的,反复认识理解就是一个好办法,比如数学概念的命名,都是有一定意义的,比如有理数(有道理的,有规律的,说得清的数――有限小数及无限循环小数);同位角、内错角、同旁内角的含义,内心、外心、非负数的含义等,都可以先作一个简单的认识,之后离真正的深刻的理解就不远了,而真正理解的东西想忘都忘不了。

数学是一门要求特别严谨的学科,逻辑性极强,极注重推理。数学课是注重说理的学科,在数学题面前不能试图蒙混过关,不允许出现一丁点儿的推理错误,这与某些学科的学习是有很大的区别的,比如语文,一个错别字不至于严重影响一篇文章的精彩程度,但数学的一个小数点,确足以葬送一个大题的命运。在数学学习中不会有同情分,因此学习中必须时时、处处注意推理出的每一步是否正确,能否还原?否则就会像多米诺骨牌一样发生连锁反应,一错全错,需要推倒重来,如由de=ae推导出d=a就是错误的。在教学中教师要提醒学生数学的严谨性,我们自身务必做到语言严谨、推理准确、论证、画图等都要做学生的表率,做到无懈可击,用自身的行为去引导学生;对于学生的提问及作业,要从语言的表述,题目的书写格式,证明、推理、计算的每一步骤,必要字句的书写等方面,都要从严要求,相信通过严格持续的学习训练,对于学生的数学及其他学科的学习,甚至今后的生活工作都会产生积极的影响。

篇8:初一数学找规律方法

一、基本方法——看增幅

(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.

例:4、10、16、22、28……,求第n位数.

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2

(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.

基本思路是:1、求出数列的第n-1位到第n位的增幅;

2、求出第1位到第第n位的总增幅;

3、数列的第1位数加上总增幅即是第n位数.

举例说明:2、5、10、17……,求第n位数.

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:

[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1

所以,第n位数是:2+ n2-1= n2+1

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.

(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.

(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.

二、基本技巧

(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.

例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是 .

解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:

给出的数:0,3,8,15,24,…….

序列号: 1,2,3, 4, 5,…….

容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.

(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.

例如:1,9,25,49,,(),的第n为(2n-1)2 (三)看例题:

A: 2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1

B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关 即:2n

(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.

例:2、5、10、17、26……,同时减去2后得到新数列:

0、3、8、15、24……,

序列号:1、2、3、4、5

分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1

(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.

例 : 4,16,36,64,?,144,196,… ?(第一百个数)

同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.

(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.

(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.

三、基本步骤

1、先看增幅是否相等,如相等,用基本方法(一)解题.

2、如不相等,综合运用技巧(一)、(二)、(三)找规律

3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律

4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题

四、练习题

篇9:初一数学找规律方法

0,3,8,15,24,······

2,5,10,17,26,·····

0,6,16,30,48······

(1)第一组有什么规律?

(2)第二、三组分别跟第一组有什么关系?

(3)取每组的第7个数,求这三个数的和?

2、观察下面两行数 2,4,8,16,32,64,...(1)

5,7,11,19,35,67...(2)

根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)

3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律 写出两个连续技术的平方差为888的等式

五、对于数表

1、先看行的规律,然后,以列为单位用数列找规律方法找规律

2、看看有没有一个数是上面两数或下面两数的和或差

有关找规律的初中数学题

1) 4,16,36,64,,144,196,… (第一百个数)

2) 2,6,18,,162,486,

3) 白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002个中有几个是黑的?

4) 3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……

用含有N的代数式表示规律

写出两个连续技术的平方差为888的等式

解答:

1)2的平方,4的平方,6的平方,8的平方,(10的平方),12的平方,.(第一百个)(2*100)的平方=40000

2)2,2*3=6,2*3*3=18,(2*3*3*3=54),2*3*3*3*3=162,486,1458

3)1889

4)(N+2)^2-N^2=4N+4=888,再算出N

223的平方-221的平方=888

最全初中数学公式和规律

最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点.

特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x轴上y为0,x为0在y轴.

象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.

平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧.

对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号.

自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.

函数图象的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.

一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.

二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.

反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.

巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的.

一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切.”正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.

三角函数的增减性:正增余减

特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.

平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.

梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.

添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.

圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.

圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.

正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.

函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键.

怎么学初中数学有哪些方法

高考数学冲刺:总结各种题型做题规律和方法

高考数学压轴题技巧方法

高考数学压轴题的答题方法

提高初中数学成绩的方法

学前班数学找规律教案合集

室内甲醛释放规律及控制方法探讨

数学答题方法

初中作文方法

初中英语听力方法

初中数学规律题方法(精选9篇)

欢迎下载DOC格式的初中数学规律题方法,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档