【导语】“Lee”通过精心收集,向本站投稿了5篇2.3 函数的单调性(第二课时),以下是小编为大家准备的2.3 函数的单调性(第二课时),仅供参考,欢迎大家阅读。
篇1:2.3 函数的单调性(第二课时)
教学目的:1.. 巩固函数单调性的概念;熟练掌握证明函数单调性的方法和步骤;初步了解复合函数单调性的判断方法.2.会求复合函数的单调区间. 明确复合函数单调区间是定义域的子集.教学重点:熟练证明函数单调性的方法和步骤.教学难点:单调性的综合运用一、复习引入:1.有关概念:增函数,减函数,函数的单调性,单调区间.2.判断证明函数单调性的一般步骤:(区间内)设量,作差(或比),变形,比较,判断.二、讲解新课:1.函数单调性的判断与证明例1.求函数 的单调区间.2.复合函数单调性的判断对于函数 和 ,如果 在区间 上是具有单调性,当 时, ,且 在区间 上也具有单调性,则复合函数 在区间 具有单调性的规律见下表:增 ↗减 ↘增 ↗减 ↘增 ↗减 ↘增 ↗减 ↘减 ↘增 ↗以上规律还可总结为:“同向得增,异向得减”或“同增异减”.证明:①设 ,且 ∵ 在 上是增函数,∴ ,且 ∵ 在 上是增函数,∴ .所以复合函数 在区间 上是增函数。②设 ,且 ,∵ 在 上是增函数,∴ ,且 ∵ 在 上是减函数,∴ .所以复合函数 在区间 上是减函数。③设 ,且 ,∵ 在 上是减函数,∴ ,且 ∵ 在 上是增函数,∴ .所以复合函数 在区间 上是减函数。④设 ,且 ,∵ 在 上是减函数,∴ ,且 ∵ 在 上是减函数,∴ .所以复合函数 在区间 上是增函数。例2.求函数 的值域,并写出其单调区间。解:题设函数由 和 复合而成的复合函数,函数 的值域是 , 在 上的值域是 .故函数 的值域是 .对于函数的单调性,不难知二次函数 在区间 上是减函数,在区间 上是增函数;二次函数 区间 上是减函数,在区间 上是增函数。当 时, ,即 , 或 .当 时, ,即 , .
x
[-1,0]
(0,1)
u=g(x)
增
增
减
减y=f(u)
增
减
减
增y=f(g(x))
增
减
增
减综上所述,函数 在区间 、上是增函数;在区间 、上是减函数。三、课堂练习:课本p60练习:3,4四、作业: 课本p60习题2.3 6(2),7 补充,已知:f (x)是定义在[-1,1]上的增函数,且f(x-1) 2.3 函数的单调性(3课时)教学目的:理解函数单调性的概念,并能判断一些简单函数的单调性;能利用函数的单调性及对称性作一些函数的图象.教学重点:函数单调性的概念. 教学难点:函数单调性的证明 教学过程: 第一课时教学目的:(1)了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思。(2)理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间。(3)掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性。教学重点:函数的单调性的概念;教学难点:利用函数单调的定义证明具体函数的单调性。一、复习引入:观察 二次函数y=x2 ,函数y=x3的图象,由形(自左到右)到数(在某一区间内,当自变量增大时,函数值的变化情况)(见课件第一页图1,2)二、讲授新课⒈ 增函数与减函数定义:对于函数f(x)的定义域i内某个区间上的任意两个自变量的值 ⑴若当 < 时,都有f( ) 教学目的:函数单调性的应用 重点难点:含参问题的讨论,抽象函数问题. 教学过程 一、 复习引入 函数单调性的概念,复合函数的单调性. 二、 例题. 例1. 如果二次函数 在区间 内是增函数,求f(2)的取值范围. 分析:由于f(2)=22-(a-1) ×2+5=-2a+11,f(2)的取值范围即一次函数y= - 2a+11的值域,固应先求其定义域. 例2. 设y=f(x)在r上是单调函数,试证方程f(x)=0在r上至多有一个实数根. 分析:根据函数的单调性,用反证法证明. 例3. 设f(x)的定义域为 ,且在 上的增函数, (1) 求证f(1)=0;f(xy)=f(x)+f(y); (2) 若f(2)=1,解不等式 分析:利用f(x)的性质,脱去函数的符号,将问题化为解一般的不等式;注意,2=1+1=f(2)+f(2)=f(4). 例4. 已知函数 . (1) 当 时,求函数f(x)的最小值; (2) 若对任意 恒成立,试求实数a的取值范围. 分析:(1)利用f(x)的单调性即可求最小值; (2)利用函数的性质分类讨论解之. 例5.求函数 的单调区间. 分析:利用复合函数的单调性解题. 令 即函数的定义域为[-3,1]; 再根据复合函数的单调性求出其单调区间. 三、作业:《精析精练》p73智能达标训练. 课题:§1.3.1函数的单调性教学目的:(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断数在某区间上的的单调性.教学重点:函数的单调性及其几何意义.教学难点 :利用函数的单调性定义判断、证明函数的单调性. 教学过程 :一、引入课题1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: yx1-11-1yx1-11-1yx1-11-1 yx1-11-13 函数图象是否具有某种对称性? yx1-11-1 yx1-11-13.f(x) =x2篇2:2.3 函数的单调性(3课时)
篇3:2.3函数的单调性(第三课时)
篇4:函数单调性
篇5:上学期 2.3 函数单调性与奇偶性
上学期 2.3 函数单调性与奇偶性
教学目标
1.使学生了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性.
2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法.
3.在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.
教学重点,难点
重点是奇偶性概念的形成与函数奇偶性的判断
难点是对概念的认识
教学用具
投影仪,计算机
教学方法
引导发现法
教学过程
一. 引入新课
前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质.从什么角度呢?将从对称的角度来研究函数的性质.
对称我们大家都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,大家回忆一下在我们所学的内容中,特别是函数中有没有对称问题呢?
(学生可能会举出一些数值上的对称问题, 等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如 和 等.)
结合图象提出这些对称是我们在初中研究的关于 轴对称和关于原点对称问题,而我们还曾研究过关于 轴对称的问题,你们举的例子中还没有这样的,能举出一个函数图象关于 轴对称的吗?
学生经过思考,能找出原因,由于函数是映射,一个 只能对一个 ,而不能有两个不同的,故函数的图象不可能关于 轴对称.最终提出我们今天将重点研究图象关于 轴对称和关于原点对称的'问题,从形的特征中找出它们在数值上的规律.
二. 讲解新课
2.函数的奇偶性(板书)
教师从刚才的图象中选出 ,用计算机打出,指出这是关于 轴对称的图象,然后问学生初中是怎样判断图象关于 轴对称呢?(由学生回答,是利用图象的翻折后重合来判定)此时教师明确提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律?
学生开始可能只会用语言去描述:自变量互为相反数,函数值相等.教师可引导学生先把它们具体化,再用数学符号表示.(借助课件演示令 比较 得出等式 ,再令 ,得到 ,详见课件的使用)进而再提出会不会在定义域内存在 ,使 与 不等呢?(可用课件帮助演示让 动起来观察,发现结论,这样的 是不存在的)
从这个结论中就可以发现对定义域内任意一个 ,都有 成立.最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整.
(1) 偶函数的定义:如果对于函数 的定义域内任意一个 ,都有 ,那么 就叫做偶函数.(板书)
(给出定义后可让学生举几个例子,如 等以检验一下对概念的初步认识)
提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出 或 的图象让学生观察研究)
学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义.
(2) 奇函数的定义: 如果对于函数 的定义域内任意一个 ,都有 ,那么 就叫做奇函数.(板书)
(由于在定义形成时已经有了一定的认识,故可以先作判断,在判断中再加深认识)
例1. 判断下列函数的奇偶性(板书)
(1) ; (2) ;
(3) ; ;
(5) ; (6) .
(要求学生口答,选出1-2个题说过程)
解: (1) 是奇函数.(2) 是偶函数.
(3) , 是偶函数.
前三个题做完,教师做一次小结,判断奇偶性,只需验证 与 之间的关系,但对你们的回答我不满意,因为题目要求是判断奇偶性而你们只回答了一半,另一半没有作答,以第(1)为例,说明怎样解决它不是偶函数的问题呢?
学生经过思考可以解决问题,指出只要举出一个反例说明 与 不等.如 即可说明它不是偶函数.(从这个问题的解决中让学生再次认识到定义中任意性的重要)
从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述.即第(4)题中表面成立的 = 不能经受任意性的考验,当 时,由于 ,故 不存在,更谈不上与 相等了,由于任意性被破坏,所以它不能是奇偶性.
教师由此引导学生,通过刚才这个题目,你发现在判断中需要注意些什么?(若学生发现不了定义域的特征,教师可再从定义启发,在定义域中有1,就必有-1,有-2,就必有2,有 ,就必有 ,有 就必有 ,从而发现定义域应关于原点对称,再提出定义域关于原点对称是函数具有奇偶性的什么条件?
可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论.
(3) 定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书)
由学生小结判断奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.
经学生思考,可找到函数 .然后继续提问:是不是具备这样性质的函数的解析式都只能写成这样呢?能证明吗?
例2. 已知函数 既是奇函数也是偶函数,求证: .(板书) (试由学生来完成)
证明: 既是奇函数也是偶函数,
= ,且 ,
= .
,即 .
证后,教师请学生记住结论的同时,追问这样的函数应有多少个呢?学生开始可能认为只有一个,经教师提示可发现, 只是解析式的特征,若改变函数的定义域,如 , , , ,它们显然是不同的函数,但它们都是既是奇函数也是偶函数.由上可知函数按其是否具有奇偶性可分为四类
(4) 函数按其是否具有奇偶性可分为四类: (板书)
例3. 判断下列函数的奇偶性(板书)
(1) ; (2) ; (3) .
由学生回答,不完整之处教师补充.
解: (1)当 时, 为奇函数,当 时, 既不是奇函数也不是偶函数.
(2)当 时, 既是奇函数也是偶函数,当 时, 是偶函数.
(3) 当 时, 于是 ,
当 时, ,于是 = ,
综上 是奇函数.
教师小结 (1)(2)注意分类讨论的使用,(3)是分段函数,当 检验 ,并不能说明 具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须 均有 成立,二者缺一不可.
三. 小结
1. 奇偶性的概念
2. 判断中注意的问题
四. 作业 略
五. 板书设计
2.函数的奇偶性 例1. 例3.
(1) 偶函数定义
(2) 奇函数定义
(3) 定义域关于原点对称是函数 例2. 小结
具备奇偶性的必要条件
(4)函数按奇偶性分类分四类
★ 函数的单调性教案
★ 《船长》第二课时
★ 咬文嚼字第二课时
★ 社戏 第二课时
2.3 函数的单调性(第二课时)(通用5篇)




