三角形中线的性质

时间:2023-01-12 04:10:36 作者:joson 综合材料 收藏本文 下载本文

【导语】“joson”通过精心收集,向本站投稿了5篇三角形中线的性质,以下是小编精心整理后的三角形中线的性质,希望对大家有所帮助。

篇1:三角形中线定理和性质

性质:

设⊿ABC的角A、B、C的对边分别为a、b、c。

1、三角形的三条中线都在三角形内。

2、三角形的三条中线长:ma=(1/2)√2b+2c-a。

mb=(1/2)√2c+2a-b;mc=(1/2)√2a+2b-c。

(ma,mb,mc分别为角A,B,C所对的中线长)

3、三角形的三条中线交于一点,该点叫做三角形的重心。

4、直角三角形斜边上的'中线等于斜边的一半。

5.三角形中线组成的三角形面积等于这个三角形面积的3/4。

篇2:三角形中线的性质

△中线性质

设△ABC的角A、角B、角C的对边分别为a,b,c。

1、三角形的三条中线都在三角形内。

2、三角形的三条中线长:

ma=(1/2)√(2b2+2c2-a2)

mb=(1/2)√(2a2+2c2-b2)

mc=(1/2)√(2a2+2b2-c2)

(ma、mb、mc分别为角A,B,C所对边的中线长)

3、三角形的三条中线交于一点,该点叫做三角形的重心。

4、直角三角形斜边上的中线等于斜边的1/2。

5、角形中线组成的`三角形面积等于这个三角形面积的3/4。

6、三角形重心将中线分为长度比为1:2的两条线段。

三角形都有什么线

三角形有四线,分别为中线,高,角平分线,中位线。

1、中线定义:三角形的中线是连接三角形的一个顶点及其对边中点的线段,一个三角形有3条中线。

2、高定义:从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段。

3、角平分线定义:三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段。

4、中位线定义:三角形的三边中任意两边中点的连线。

篇3:三角形角平分线和中线的性质与区别

角平分线的性质

1.角平分线可以得到两个相等的角。

2.角平分线上的点到角两边的距离相等。

3.三角形的`三条角平分线交于一点,称作三角形内心。三角形的内心到三角形三边的距离相等。

4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。

三角形的中线和角平分线的区别

1、三角形的中线是从顶角连接下面边的中点,角平分线是把顶角分成同等大小的两个角,不一定连接下面边的中点。

2、对于等腰三角形来说,中线和角平分线是重合的;对于非等腰三角形,两条线则不重合。

中线定义:中线是三角形中从某边的中点连向对角的顶点的线段。

三角形的角平分线定义:三角形其中一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

篇4:三角形内切圆的性质

性质

三边与圆相切

圆心与三顶点连线分辨平分三角

半径x三边和/2=三角形面积

三角形内切圆概念

三角形一定有内切圆,其他的图形不一定有内切圆(一般情况下,n边形无内切圆,但也有例外,如对边之和相等的四边形有内切圆。),且内切圆圆心定在三角形内部。

在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。

内切圆的半径为r=2S/C,当中S表示三角形的'面积,C表示三角形的周长。

三角形内切圆半径公式

1、三角形内切圆半径:r=2S/(a+b+c);

2、三角形外接圆的半径:R=abc/4S。

其中,S为三角形的面积,a,b,c分别为三角形的三边。

篇5:内接三角形性质

定理:

三角形的外接圆有关定理:三角形各边垂直平分线的交点,是外心。外心到三角形各顶点的距离相等。外心到三角形各边的`垂线平分各边。

三角形的内切圆有关定理:三角形各内角平分线的交点,是内心。内心到三角形各边的距离相等。三角形任一顶点到内切圆的两切线长相等。三角形顶点到内切圆的切线长,是这点到圆心的距离与它圆外部分的比例中项。

三角形中线定理

三角形的性质教案

怎样证明三角形对称的性质

三角形内角

三角形教案

三角形分类

重心三角形

三角形重心

三角形魔方

三角形图形

三角形中线的性质(共5篇)

欢迎下载DOC格式的三角形中线的性质,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档