【导语】“景仁宫的小番茄”通过精心收集,向本站投稿了9篇构筑物强震监测无线网络系统设计,下面是小编精心整理后的构筑物强震监测无线网络系统设计,希望能够帮助到大家。
- 目录
篇1:构筑物强震监测无线网络系统设计
构筑物强震监测无线网络系统设计
以MEMS构筑物强震监测仪器为节点,采用XMesh自组网路由协议,构造了构筑物的强震监测无线网络系统,实现了构筑物强震监测无线组网.设计了无线网络远程监控界面,实现了无线网络的远程实时监控.测试了点到点时无线网络性能,试验结果表明,在≤50 Hz采样率时能实现可靠的实时监测.
作 者:唐巍 滕云田 王喜珍 王晓美 胡星星 刘高川 Tang Wei Teng Yuntian Wang Xizhen Wang Xiaomei Hu Xingxing Liu Gaochuan 作者单位:中国北京,100081,中国地震局地球物理研究所 刊 名:地震地磁观测与研究 ISTIC英文刊名:SEISMOLOGICAL AND GEOMAGNETIC OBSERVATION AND RESEARCH 年,卷(期):2008 29(5) 分类号:P315.62 关键词:强震监测 无线网络 XMesh协议篇2:无线湿温度监测系统的设计
摘 要: 针对现实中更为便捷的监测湿温度的要求,下位机以无线收发模块nRF2401 为基础,配合51 单片机和湿温度传感器设计出了监测系统的硬件电路;上位机用VC6.0 开发,可以实现对监测结果的动态曲线显示,储存,打印。该设计可移植性好,在仓库系统、电力系统、档案资料库、烟草和食品加工行业具有广泛的应用前景。
关键词:无线通信;湿温度监测;单片机;串口通信;VC
1 引 言
随着经济发展,各行各业需要监测湿温度的场合越来越多。现有的湿温度监测系统多是采用有线传输,不仅要敷设大量的电缆,而且电源线,控制线,信号线混在一起,可能会出现相互之间的干扰。尤其是当监测点过多时,布线复杂,有线传输的问题会更严重。因此需要建立一套稳定可靠,管理科学,高效率的湿温度监测系统。本文介绍的无线湿温度监测系统,改进和克服了有线的上述缺点。改变温湿度测量点位置和增加或减少测量点数目都非常方便。
2 方案设计
2.1 系统框图
整个系统可由多个无线传感器节点和一个中心节点组成。其中,无线传感器节点分布在需要测量的现场,由湿度传感器和温度传感器完成对周围环境湿温度数据采集,送至单片机进行处理并在液晶模块显示,然后通过无线发射模块将数据发送出去。监测中心节点负责接收传感器节点的数据,由单片机处理后通过RS-232 串口传至PC 端,进行图像的绘制,数据的处理和储存。当湿温度超过预设阀值时,中心节点处蜂鸣器进行报警提示。
2.2 技术指标
温度测试范围:-55- +125 ℃ 测试精度:0.5 ℃湿度测试范围:10%-100%RH 测试精度:1%RH无线传输范围:开阔地80m 左右。
3 系统组成模块
3.1 无线发射接收模块
系统通过无线收发模块传输现场采集的数据,系统所处环境较恶劣,对数据传输的可靠性要求较高。综合考虑以上因素,采用以nRF2401AG 为核心芯片的无线数传模块。nRF2401AG 是单片无线收发一体的芯片。模块工作电压为2.7~3.6V,内置天线;采用全球开放2.4GHz ISM 频段,免许可证使用;采用高效GMSK 调制最高传输速率达到1Mbit/s,抗干扰能力强;有125 个频道,可满足多频及跳频需要;内置硬件CRC 检错,支持点对多点通信地址控制。
模块可以通过软件设置地址,只有收到本机地址时才会输出数据,可直接连接各种MCU,软件编程非常方便。nRF2401AG 可通过软件设置40 bit 的地址,适合点对多点的数据传输;CRC 纠检错硬件电路和协议,提高了系统的可靠性,且不再需要用软件对传输数据进行差错控制编码,简化了软件编程。PTR4000PA 是PTR4000 的功率加强型产品,传输距离更远(开阔地约300-400m,室内约 50-100m)。nRF2401AG 最突出的特点是具有一种ShockBurstTM Mode(突发模式)的通信模式。ShockBurst Mode 使用芯片内部的先入先出堆栈区,数据可以从低速微控制器送入,高速(1 Mb/s)发射出去,字头和校验码由硬件自动添加和去除。其优点是功耗低,抗干扰能力强。
3.2 温度测量模块
温度传感器采用采用 Dallas 公司的单总线数字温度传感器 DS18B20,芯片内部集成了温度传感器和模数转换器。其测温范围为-55-+125℃,测量的温度值可编程为9、10、11 和12 位数字表示,相应温度分辨力分别为0.5℃、0.25℃、0.125℃ 和 0.0625℃。用户可设定温度超标报警的上、下限值。
DS18B20 为一线通信接口,必须先完成ROM 设定,否则记忆和控制功能将无法使用。主要首先提供以下命令之一:1)读ROM,2)ROM 匹配,3)搜索ROM,4)跳过ROM,5)报警检查。这些指令操作作用在没有一个器件的64 位光刻ROM 序列号,可以在挂在一线上多个器件选定某一个器件,同时总线也可以知道总线上挂有多少,什么样的设备。
3.3 湿度测量模块
湿度传感器采用HS1101。HS1101 是HUMIREL 公司生产的变容式相对湿度传感器,采用独特的工艺设计。
HS1101 测量湿度采用将HS1101 置于555 振荡电路中,将电容值的变化砖换成电压频率信号,可以直接被微处理器采集。
555 芯片外接电阻R57,R58 与HS1101,构成对HS1101 的充电回路。7 端通过芯片内部的晶体管对地短路实现对HS1101 的放电回路,并将引脚2,6 端相连引入到片内比较器,构成一个多谐波振荡器,其中,R57 相对于R58 必须非常的小,但决不能低于一个最小值。R51 是防止短路的保护电阻。
HS1101 作为一个变化的电容器,连接2 和6 引脚。引脚作为R57 的短路引脚。HS1101 的等效电容通过R57 和R58 充电达到上限电压(近似于0.67 VCC,时间记为T1),这时555 的引脚3 由高电平变为低电平,然后通过R58 开始放电,由于R57 被7 引脚内部短路接地,所以只放电到触发界线(近似于0.33 VCC,时间记为T2),这时555 芯片的引脚3 变为高电平。通过不同的两个电阻R19, R20 进行传感器的不停充放电,产生方波输出。
由此可以看出,空气相对湿度与555 芯片输出频率存在一定线性关系。给出典型频率湿度关系(参考点:25℃,相对湿度:55%,输出频率:6.208k Hz)。可以通过微处理器采集555 芯片的频率,然后查表即可得出相对湿度值。为了更好提高测量精度,也可采用下位机负责采集频率,将频率值送入上位机进行分段处理的方法。
4 PC 机与数据处理
PC 机采用VC6.0 开发上位机软件。VC6.0 具有面向对象的设计方法、友好的用户界面、实时型强等优点,还具有强大数据处理和图形处理功能,因此非常适用于开发通信系统控制软件。在采用VC 开发过程中,为实现远程通信,设计中采用MSComm 控件。该控件屏蔽了通信过程中的底层操作,应用时只需要监控MSComm 控件的属性和事件,便可以通过RS-232 与单片机实现串行异步通信。
PC 机与单片机的通信协议设定波特率为9600,偶校验,8 个数据位,一个停止位。MSComm 控件通讯方式采用事件驱动方式。PC 机把单片机传送过来的温湿度测量值存放在内存中,并可以利用PC 机的时间功能,记录下测量数据的时间。VC 编写基于对话框的应用程序,可在显示屏幕上动态曲线的形式来显示湿温度的值,还可打印和存储大量的温湿度测量值,供以后参考和分析,也是对单片机性能不足的补充。
可利用 VC6.0 对测量的数据进行数字滤波,提高温湿度的测量精度。也可以用最小二乘法,对测量结果进行线性化处理,进一步提高测量的精度。
此外,在绘制动态曲线的过程,每一次从串口传来的数据都会引起窗口的重绘,如果采用直接在GDI 中绘图的方法会引起图像的闪烁现象。因此可以采用双缓存技术。双缓存技术就是把要显示的图形先在内存中绘制好,然后调用BitBlt 函数,把内存设备复制到显示设备上。由于这时非常规整的内存拷贝,这个过程会进行的非常快,这样就会消除重绘而引起的图像闪烁问题。
实现双缓存技术的过程如下:
1. 保证绘图过程中的所有CDC 及其继承类指向内存DC。这里可以利用内存设备环境变量CMemDC(一个开源的类)来代替设备环境变量。
2. 修改OnEraseBkgnd(CDC*) 事件将代码屏蔽,改为一句 return TRUE;
3. 将图像背景擦除的的过程放到内存缓冲区里面去做。部分关键代码如下:
void CGraphView::OnDraw(CDC* pDC)
{
CRect rectClient;
GetClientRect( &rectClient );
CMemDC memDC(pDC, rectClient);
EraseBkgnd(&memDC);
// OnEraseBkgnd 失效了,但是仍然需要在内存缓冲区中擦除背景
m_graph.Redraw( &memDC, rectClient );
}
4. 在内存中绘制图形,并把结果切换到显示DC。实践表明,双缓存技术在绘图中有稳定良好的效果。
5 系统软件设计
本系统用 C 语言编程,软件采用模块化结构程序设计方式。总体上包括主程序模块、参数设置模块、通信模块、显示模块以及报警子模块等。最后主程序和中断处理程序将各个模块连接起来。这样使程序利于修改和调试,也增强了程序的可移植性。下位机完成对周围湿温度数据的采集、处理、显示和发送。上位机基于VC 开发应用程序,来实现对下位机的控制,节点选择以及对接收到数据的动态显示、储存、分析和处理。
6 结束语
总体来说,系统设计新颖,简单实用。样机经过长时间的运行测试,可靠稳定,使用方便。特别是基于VC6.0开发的上位机界面使监测更加便捷,更具人性化特点。此外,本设计在系统分析和设计方法学上也有一定的学术参考价值。
篇3:铁水运输动态监测系统无线通讯网设计
铁水运输动态监测系统无线通讯网设计
摘要:根据铁水运输系统的特点,设计了扩频通信无线数据通信网,其实时传送车辆位置数据的能力大大优于窄带电台组成无线网和利用GSM公用电话网传送位置数据的GPS车辆监控系统,所设计的无线通信网能管理较多车辆,并具有进一步扩容的能力。关键词:铁水运输 扩频通信 CSMA DGPS
宝山钢铁集团公司是我国特大型钢铁企业,随着宝钢三期工程的建设实施,传统的铁水运输调度系统已不能适应生产规模扩大的需要。建立新的铁水运输动态监测系统,以提高生产调度的安全性、生产效率、自动化程度和经济效益具有十分重要的意义。
铁水运输动态监测系统采用了当今先进的DGPS定位技术、(本网网收集整理)组合定位技术、地图匹配技术、扩频通信技术、计算机及网络技术,以及地理信息系统技术、电子大屏技术等,解决了在钢铁厂内恶劣工业环境下,铁路线上铁水运输车辆的定位跟踪问题,使调度管理人员在中心站的电子大屏上能实时观测到铁水运输车辆动态位置和状态以及其他有关信息,便于及时、合理地进行生产运输调度。
作为铁水运输动态监测系统的重要组成部分――无线通信网,主要完成中心站与车辆之间的信息传输,其性能的好坏直接影响到整个系统的正常工作。本文介绍的无线通信网已在宝钢铁水运输动态监测系统中应用,通信系统工作正常,稳定可靠,效果良好。
1 无线通信网设计
1.1 系统要求
(1)在1.8km×2.3km的区域内,保证厂房内外的车辆与中心站之间实时通信;
(2)监测车辆85辆;
(3)每个车辆信息更新率最高可达到每秒更新一次;
(4)车辆设备采用蓄电池供电,为延长电池更换周期,需采用低功耗设备;
(5)具有良好的电磁兼容性,不能对现在正在使用的其他通信设备产生干扰;
(6)抗干扰能力强,能够保证在钢铁厂恶劣工业环境下的可靠通信,误码率小于10 -6。
(7)中心站与车辆之间为双向通信方式。
1.2 方案选择
在目前的GPS车辆定位跟踪系统中,无线数据的传输通常采用模拟电台加调制解调器自行组网或通过公用移动电话来完成数据交换。在模拟电台自行组网的数据传输系统中,由于模拟电台的收发切换时间长(约200ms)、数据传输率低(通常为1200bps)、单位时间内传输的车辆位置数据较少,因此,当车辆增多时,车辆位置更新的实时性将大大降低。采用GSM公共移动电话网传送数据,虽然系统容量可以扩大,数据传输率增快,但运行成本较高,而且受公共移动电话网工作状态影向较大,难以满足安全性、可靠性、连续性、经济性的要求。若采用GSM短消息的方式发送位置数据,其数据传送的实时性将无法保证。
根据现场实际情况和系统要求,扩频通信技术是一种理想的解决方案。扩频通信的主要特点有:(1)抗干扰性强,对单频及多频载波信号的干扰、其它伪随机调制信号的干扰及脉冲正弦信号的干扰等都有抑制作用,能提高输出信号的信噪比。(2)发射功率小,一般小于1W,设备功耗较低,因此不会对其他通信系统产生干扰。(3)可以实现码分多址,频带利用率很高。(4)抗多径干扰,可以克服钢铁厂环境下严重的多径干扰对无线数据通信可能造成的影响。(5)无线数据传输速率高,可高达19200bps以上,而误码率小于10 -6,具有信息传输快且可靠的优点。
1.3 无线通信网组成
铁水运输动态监测系统覆盖范围约1.8km×2.3km,区域内分布有高大钢铁建筑物,难以保证视距通信。车辆工作区域有相当一部分在厂房内,受通信屏蔽的影响较大,有些厂房内甚至无法直接与外界通信。另外,为了保证车载设备功耗较低,延长车载设备蓄电池供电时间,车载设备通信采用较小的发射功率。为了保证系统中心站与车辆间无线数据通信可靠,在工作区内设有5个中断站,负责车辆与中心站间的信息转发。在3个通信屏蔽的厂房内高有3个中转台,负责厂房内的车辆与中断站间的信息转发。
中心站位于生产管制中心,通信天线高度约45m,采用全向高增益天线。5个中断站与中心站间的通信采用高增益定向天线,其天线方向指向中心站。中继站与车辆间的通信采用高增益全向天线。车载设备和转台采用3dB全向天线。
系统无线通信网由中心站、中继站、中转台和车载设备构成,如图1所示。
2 设备选型和设计
2.1 扩频通信机选择
在铁水运输动态监测系统中根据使用方式的不同,使用了AirLink和WIT915两种型号的扩频通信机来组成无线通信网。AirLink通信机用于中心站与中继站通信,WIT915通信机用来完成中继站和移动车辆间的通信。
AIRLINK 19MP是美国CYLINK公司的L波段无线扩频MODEM数传通信机,可工作于点对点和点对多点工作方式,也可作为转发器或hub来应用。其主要技术指标如下:
(1)工作频段:902~928MHz,16个信道可选;
(2)采用直序扩展工作方式,PN序列长度32bit;
(3)调制方式为BPSK(Bi-Phase Shift Keying),数据速率可达38400bps,信道带宽为1.5MHz;
(4)系统增益(不包括天线增益)为130dB。其中,扩频增益为12dB;
(5)发射功率最大为800mW(29dBm),并且可通过拨码开关选择不同的发射功率;
(6)采用时分双工技术(TDD),可以实现全双工通信,视距传输可达50km。
WIT915是美国DIGTAL WIRELESS公司的扩频通信收发机。WIT915采用组合扩频技术,能够抗噪声和多径衰落,并且同时支持CSMA通信协议和点对点的通信。WIT915扩频通信机的低功耗和小体积很适用于车载台使用。其技术指标如下:
(1)工作频段:903~907MHz,21个信道,具有自动寻找干净信道的能力;
(2)4级可调发射功率,从1mW~1W,最大功率要求符合美国FCC标准,并且功率可自适应调整;
(3)全双工数据速率可达19200bps,半双工数据速率可达51200bps;
(4)射频带宽:700kHz,信道间隔1.2MHz;
(5)采用0dB天线,在视距情况下,传数距离可达1.8km;
(6)在半双工情况下,数据收发转换时间小于0.5ms。
2.2 通信控制器设计
在无线通信数传网设计中,通信控制器的设计十分重要。因为对扩频通信机的控制以及无线通信网通信协议的执行都要通过通信控制器来实现。在铁水运输动态监测系统中,采用PC/104作为通信控制器,相对于采用单片机作为内核的通信控制器来说,能够减少产品的开发费用,降低开发风险,缩短开发周期,提高产品的性能。PC/104具有超小尺寸(90mm×96mm),较低的功耗(典型为1~2W/模块),独有的栈接总线消除了底板与插座的成本和空间。PC/104的CPU系列产品为嵌入应用提供了高集成化的模块,并且与IBM PC/AT休系兼容,在PC上调试好的程序可以直接移植到PC/104使用。
选用的PC/104 CPU模块为CoreModule CM/486-2。CM/486模块提供了PC/AT母板的全部功能和一线附加卡的功能,该模块具有CP/AT和MS-DOS全兼容的标准硬件和软件资源。其主要指标如下:
(1)CPU为CX486SLC-2,50MHz内部时钟频率;
(2)在板内存可选为2M、4M或16M字节;
(3)7个DMA通道(相当于8237);
(4)15个中断通道(相当于8259);
(5)三个可编程计数/定时器;
(6)16位扩展总线;
(7)和PC完全兼容的两个串行口和一个并行口;
(8)带有可启动系统的固态盘;
(9)带有PC所不具有的看门狗定时器。
2.3 通信控制器和扩频通信机的连接关系
扩频通信机AirLink和WIT915的外部数据控制接口是与PC兼容的异步串行RS-232接口。因此,由PC/104构成的通信控制器与扩频通信机AirLink和WIT915的硬件连接非常简单和方便,只需将扩频通信机的外部数据控制接口直接连到PC/104的串行口即可,由在PC/104中运行的软件控制扩频通信机的数据收发即可。
图2、3所示为通信控制器和扩频通信机的.两种连接方式。其中图2为中继站的连接方式,图2为移动车辆的连接方式。
3 无线通信方式的设计与实现
3.1 中继站与中心站
中心站的AirLink扩频通信机与各个中继站的AirLink扩频通信机间构成一种星型网络通信模式。中心站的AirLink扩频通信机设置为主模式。中继站的AirLink扩频通信机设置为从模式,采用半双工的通信模式,由中心站的通信控制器采用轮询的方式控制AirLink扩频通信机和各个继站进行数据传输交换。中心站分别从各个中断站采集各中继站收到的车辆信息,然后按一定间隔向所有中继站广播车辆DGPS定位所需要的差分数据。各个中断站设置有不同代号。各中继站通信控制器收到中心站发出的信息后,首先判断是否是中心站取车辆信息。若是,再判断中心站所发出的站代号是否与事先设定的本站代号一致;若一致,则将中断站收到的车辆位置数据发送到中心站;若不一致则不进行处理。若中断站通信控制器判断中心站发出的是广播差分数据,则将此数据通过WIT915扩频通信机转发到车载设备。因为各中继站和中心站的AirLink扩频通信机接收电平已调到AirLink扩频通信机手册所需求的能够以10 -8误码率传输数据的电平,因此,中心站和中继站采用简单的ARQ方式和CRC校验就可保证数据的可靠传输和交换。
中心站通信控制器通过AirLink扩频通信机发到中继站的数据格式如下:
查询信息格式:
同步头起始标志站代号码结束标志CRC校验码广播DGPS差分信息格式:
同步头起始标志广播代码DGPS差分数据CRC校验码结束标志中继站应答信息格式:
同步头起始标志站代号码车辆信息CRC校验码结束标志中心站和中继站的数据传输率为19200bps。
3.2 中继站与移动车辆
中继站的通信控制器通过中继站的WIT915扩频通信机和车载设备WINT915扩频通信机进行数据交换。若中继站通信控制器和移动车载设备通信控制器之间采用查询的方式进行车辆位置数据的交换,由于铁水运输动态监测系统监控车辆较多(约85辆),查询一遍所有车辆位置数据耗时较长。其次,在铁水运输过程中,同一时刻移动的车辆较少,停止的车辆较多,而停止车辆的位置没有变化,控制中心只需保留上次传过来的车辆位置数据即可,无需进行车辆位置更新。为了在有限的信道内传送有效的位置数据,采用了根据车辆运行速度动态控制车辆信息报告时间间隔的通信方式,即根据车辆的动动状态来调整车辆信息的发送频度。当车辆在停止状态时,车辆的信息每隔一分钟发送一次,以保持和控制中心的数据联系。当车辆在移动状态时,车辆信息报告频度随着速度的增加而提高,及时向中继站发送最新的车辆信息。车辆信息的传送时刻完全由车载通信控制器根据车辆的运行情况来确定,省去了查询方式下的下行数据链路占用的传送时间,可以提高车辆有效信息的传送效率和信息的实时性。
为了保证在车辆信息自主发送时,不生数据传输的碰撞,利用WIT915扩频通信机在半双工模式下的CSMA通信协议来传送数据。CSMA通信协议是IEEE802.3协议中的一种数据传送方式,广泛应用于计算机局域网中,在数据传输中进行载波侦听和多重访问。当需要发送车辆的位置数据时,车载通信控制器首先读取WIT915扩频通信机送出的载波检测DCD电平指示。当载波检测DCD电平为高时,表示目前信道中有别的通信机正发送数据。此时车载通信控制器随机延时等待数毫秒,再次读取通信机的载波检测DCD电平。若此时载波检测DCD电平为低,表示此时信道中没有WIT915扩频通信机发送数据,信道空闲,可以发送数据,则车载通信控制器将WIT915扩频通信机的RTS电平抬高。此时,WIT915扩频通信机切换到发送状态,同时发出载波信息占据信道,车载通信控制器随后将数据通过WIT915扩频通信机发出。当车辆的位置数据发送完毕后,车载通信控制器将WIT915扩频通信机的RTS电平置低,使通信机停止发送载波和数据,让出信道,供其它WIT915扩频通信机发送数据。
采用CSMA通信协议发送车辆位置数据,可以使每一时刻只有一台WIT915扩频通信机处于发射状态,从而可以尽量避免碰撞干扰,使车辆的信息传送可靠。WIT915扩频通信机的收发切换时间很短,最大不超过400μs,且WIT915扩频通信机的数据传输率可高达38400bps,经过压缩后的车辆信息又很短(约40bit),因而每个车载通过控制器发送车辆位置数据时占用信道的时间很短,可以保证数据传输的实时性。当然,在极端情况下,有可能两台WIT915扩频通信机同时检测信道空、同时发送数据,发生碰撞。但因所发送的车辆信息量较小,数据传输率很高,发生碰撞的概率很低。即使发生碰撞,在扩频通信中,通信机仍有可能解调出正确的数据。若扩频通信机解调出错,通过CRC校验进行剔除,通过下一次车辆信息发送对车辆信息进行更新。
中继站转发的中心站DGPS差分数据,也由中继站的通信控制器通过中继站的WIT915扩频通信机以CSMA的通信方式向各个车载设备广播发送。CSMA通信协议中采用CRC校验,以保证数据的可靠性。
通信控制器以CSMA方式发送数据的程序框图如图4所示。
在有数据发送时,检测信道。若信道忙,则随机延时一段时间,并将计数器加1,再检测信道。如此循环,当计数器累加到M次后,则退出信道检测循环。此时,认为信道忙,并置信道忙标志,此次数据发送放弃。在信道忙标志置位后,将车辆在停止时发送数据的间隔由1分钟提高到10秒钟。这样做是为了保证在信道阻塞干扰消失后,使所有车辆位置的更新时间最长不超过10秒钟。
3.3 中转台数据传输
在铁水运输过程中,车辆有时会进入钢结构的厂房内。为了使车辆在进入厂房内也能够将车辆的信息发送到中继站,因此,在厂房内设置了中转台。通信转发如图5所示。
中转台设有两台WIT915扩频通信机,一台通信机置于厂房内,另一台通信机置于厂房外。转发通信控制器通过厂房内的WIT915扩频通信机,接收厂房内的车辆发送的信息,然后通过厂房外的WIT915扩频通信机以CSMA的方式转发出去。通信控制器在转发数据时,要使厂房内的WIT915扩频通信机处于禁止接收数据状态,以防止厂房外WIT915扩频通信机转发的数据被厂房内WIT915扩频通信机收到,形成循环转发状态。
4 性能分析
在铁水动输动态监测系统中,车辆的运行速度最高不超过每小时15公里,即最快每秒运动4.1米(可按5米来估算)。车辆的位置每变化5米,发送一次更新的位置数据,则车辆的位置更新速率最快为每秒一次。车辆位置数据连同同步码和校验码在内一共为10个字符(每字符为八位二进制数)。若车载通信控制器以19200bps速率异步方式(一个起始位,一个停止位,八位数据)向中继站发送数据,所需时间为100/19200=5.2ms;若采用CSMA通信协议在同一信道中通信,在理想情况(不考虑眨时等待和碰撞)下,在一秒钟内可传送不同位置数据的车辆数为1000/5.2=192辆。若考虑延时等各种不利怦,按耗时增加一倍考虑,则在一秒钟内可传送不同位置数据的车辆数为192/2=96辆。因为中继站和中心站的数据交换速率为异步19200bps,因此,可以保证所有车辆的位置数据能够在一秒钟内传送到中心站。所以,所设计的无线通信网具有每秒实时传送更新96辆车信息的能力,达到了铁水运输动态监测系统能够管理85辆车的要求。由于采用CRC校验,整个系统的误码率达到10 -6以下,满足了车辆信息传输所需的误码率要求。
在铁水运输动态监测系统实际运行中,所有车载WIT915扩频通信机和中继站的WIT915扩频通信机都工作在同一信道中,车辆的位置能够及时得到更新,没有出现信道拥堵、车辆位置无法实时传送的现象,达到了设计目的。若管理的车辆数目增加,只需按中继站的通信范围,将中继站的WIT915扩频通信机设置到不同的信道,车载通信控制器则根据车辆的位置在不运动区域自动将车载WIT915扩频通信机的信道切换到与此区域中继站一致的信道上,即可使所管理车辆的数目成倍增加。
篇4:铁水运输动态监测系统无线通讯网设计
铁水运输动态监测系统无线通讯网设计
摘要:根据铁水运输系统的特点,设计了扩频通信无线数据通信网,其实时传送车辆位置数据的能力大大优于窄带电台组成无线网和利用GSM公用电话网传送位置数据的GPS车辆监控系统,所设计的无线通信网能管理较多车辆,并具有进一步扩容的能力。关键词:铁水运输 扩频通信 CSMA DGPS
宝山钢铁集团公司是我国特大型钢铁企业,随着宝钢三期工程的建设实施,传统的铁水运输调度系统已不能适应生产规模扩大的需要。建立新的铁水运输动态监测系统,以提高生产调度的安全性、生产效率、自动化程度和经济效益具有十分重要的意义。
铁水运输动态监测系统采用了当今先进的DGPS定位技术、组合定位技术、地图匹配技术、扩频通信技术、计算机及网络技术,以及地理信息系统技术、电子大屏技术等,解决了在钢铁厂内恶劣工业环境下,铁路线上铁水运输车辆的定位跟踪问题,使调度管理人员在中心站的.电子大屏上能实时观测到铁水运输车辆动态位置和状态以及其他有关信息,便于及时、合理地进行生产运输调度。
作为铁水运输动态监测系统的重要组成部分――无线通信网,主要完成中心站与车辆之间的信息传输,其性能的好坏直接影响到整个系统的正常工作。本文介绍的无线通信网已在宝钢铁水运输动态监测系统中应用,通信系统工作正常,稳定可靠,效果良好。
1 无线通信网设计
1.1 系统要求
(1)在1.8km×2.3km的区域内,保证厂房内外的车辆与中心站之间实时通信;
(2)监测车辆85辆;
(3)每个车辆信息更新率最高可达到每秒更新一次;
(4)车辆设备采用蓄电池供电,为延长电池更换周期,需采用低功耗设备;
(5)具有良好的电磁兼容性,不能对现在正在使用的其他通信设备产生干扰;
(6)抗干扰能力强,能够保证在钢铁厂恶劣工业环境下的可靠通信,误码率小于10 -6。
(7)中心站与车辆之间为双向通信方式。
1.2 方案选择
[1] [2] [3] [4] [5] [6]
篇5:航模动力及飞行环境无线实时监测系统设计
航模动力及飞行环境无线实时监测系统设计
介绍一种航模动力及飞行环境无线实时监测系统以及该系统的组成、硬件设计、通信协议、软件设计及系统的应用.测试结果表明,该系统具有测试精度高,可靠性好、操作和维护方便等特点,可用于航模等小型飞行器的生产、科研、试飞及教学过程等.
作 者:施阁 卢江丽 孙延伟 李青 SHI Ge LU Jiang-li SUN Yan-wei LI Qing 作者单位:中国计量学院机电工程学院,浙江,杭州,310018 刊 名:中国计量学院学报 ISTIC英文刊名:JOURNAL OF CHINA JILIANG UNIVERSITY 年,卷(期):2009 20(1) 分类号:V216.8 关键词:航模动力 飞行环境 实时监测篇6:无线湿温度监测系统的设计开题报告
摘 要: 针对现实中更为便捷的监测湿温度的要求,下位机以无线收发模块nRF2401为基础,配合51 单片机和湿温度传感器设计出了监测系统的硬件电路;上位机用VC6.0 开发,可以实现对监测结果的动态曲线显示,储存,打印。该设计可移植性好,在仓库系统、电力系统、档案资料库、烟草和食品加工行业具有广泛的应用前景。
关键词:无线通信;湿温度监测;单片机;串口通信;VC
1 引 言
随着经济发展,各行各业需要监测湿温度的场合越来越多。现有的湿温度监测系统多是采用有线传输,不仅要敷设大量的电缆,而且电源线,控制线,信号线混在一起,可能会出现相互之间的干扰。尤其是当监测点过多时,布线复杂,有线传输的问题会更严重。因此需要建立一套稳定可靠,管理科学,高效率的湿温度监测系统。本文介绍的无线湿温度监测系统,改进和克服了有线的上述缺点。改变温湿度测量点位置和增加或减少测量点数目都非常方便。
2 方案设计
2.1 系统框图
整个系统可由多个无线传感器节点和一个中心节点组成。其中,无线传感器节点分布在需要测量的现场,由湿度传感器和温度传感器完成对周围环境湿温度数据采集,送至单片机进行处理并在液晶模块显示,然后通过无线发射模块将数据发送出去。监测中心节点负责接收传感器节点的数据,由单片机处理后通过RS-232 串口传至PC 端,进行图像的绘制,数据的处理和储存。当湿温度超过预设阀值时,中心节点处蜂鸣器进行报警提示。
2.2 技术指标
温度测试范围:-55- +125 ℃ 测试精度:0.5 ℃湿度测试范围:10%-100%RH 测试精度:1%RH无线传输范围:开阔地80m 左右。
3 系统组成模块
3.1 无线发射接收模块
系统通过无线收发模块传输现场采集的数据,系统所处环境较恶劣,对数据传输的可靠性要求较高。综合考虑以上因素,采用以nRF2401AG 为核心芯片的无线数传模块。nRF2401AG 是单片无线收发一体的芯片。模块工作电压为2.7~3.6V,内置天线;采用全球开放2.4GHz ISM 频段,免许可证使用;采用高效GMSK 调制最高传输速率达到1Mbit/s,抗干扰能力强;有125 个频道,可满足多频及跳频需要;内置硬件CRC 检错,支持点对多点通信地址控制。
模块可以通过软件设置地址,只有收到本机地址时才会输出数据,可直接连接各种MCU,软件编程非常方便。nRF2401AG 可通过软件设置40 bit 的地址,适合点对多点的数据传输;CRC 纠检错硬件电路和协议,提高了系统的可靠性,且不再需要用软件对传输数据进行差错控制编码,简化了软件编程。PTR4000PA 是PTR4000 的功率加强型产品,传输距离更远(开阔地约300-400m,室内约 50-100m)。nRF2401AG 最突出的特点是具有一种ShockBurstTM Mode(突发模式)的通信模式。ShockBurst Mode 使用芯片内部的先入先出堆栈区,数据可以从低速微控制器送入,高速(1 Mb/s)发射出去,字头和校验码由硬件自动添加和去除。其优点是功耗低,抗干扰能力强。
3.2 温度测量模块
温度传感器采用采用 Dallas 公司的单总线数字温度传感器 DS18B20,芯片内部集成了温度传感器和模数转换器。其测温范围为-55-+125℃,测量的温度值可编程为9、10、11 和12 位数字表示,相应温度分辨力分别为0.5℃、0.25℃、0.125℃ 和 0.0625℃。用户可设定温度超标报警的上、下限值。
DS18B20 为一线通信接口,必须先完成ROM 设定,否则记忆和控制功能将无法使用。主要首先提供以下命令之一:1)读ROM,2)ROM匹配,3)搜索ROM,4)跳过ROM,5)报警检查。这些指令操作作用在没有一个器件的64 位光刻ROM 序列号,可以在挂在一线上多个器件选定某一个器件,同时总线也可以知道总线上挂有多少,什么样的设备。
3.3 湿度测量模块
湿度传感器采用HS1101。HS1101 是HUMIREL 公司生产的变容式相对湿度传感器,采用独特的工艺设计。
HS1101 测量湿度采用将HS1101 置于555 振荡电路中,将电容值的变化砖换成电压频率信号,可以直接被微处理器采集。
555 芯片外接电阻R57,R58 与HS1101,构成对HS1101 的充电回路。7 端通过芯片内部的晶体管对地短路实现对HS1101 的放电回路,并将引脚2,6 端相连引入到片内比较器,构成一个多谐波振荡器,其中,R57 相对于R58 必须非常的小,但决不能低于一个最小值。R51 是防止短路的保护电阻。
HS1101 作为一个变化的电容器,连接2 和6 引脚。引脚作为R57 的短路引脚。HS1101 的等效电容通过R57 和R58 充电达到上限电压(近似于0.67 VCC,时间记为T1),这时555 的引脚3 由高电平变为低电平,然后通过R58 开始放电,由于R57 被7 引脚内部短路接地,所以只放电到触发界线(近似于0.33 VCC,时间记为T2),这时555 芯片的引脚3 变为高电平。通过不同的两个电阻R19, R20进行传感器的不停充放电,产生方波输出。
由此可以看出,空气相对湿度与555 芯片输出频率存在一定线性关系。给出典型频率湿度关系(参考点:25℃,相对湿度:55%,输出频率:6.208k Hz)。可以通过微处理器采集555 芯片的频率,然后查表即可得出相对湿度值。为了更好提高测量精度,也可采用下位机负责采集频率,将频率值送入上位机进行分段处理的方法。
4 PC 机与数据处理
PC 机采用VC6.0 开发上位机软件。VC6.0 具有面向对象的设计方法、友好的用户界面、实时型强等优点,还具有强大数据处理和图形处理功能,因此非常适用于开发通信系统控制软件。在采用VC 开发过程中,为实现远程通信,设计中采用MSComm 控件。
篇7:基于STM32人体脉搏无线监测系统的设计论文
基于STM32人体脉搏无线监测系统的设计论文
摘要:
随着生活水平的提高,人们尤其是老年人对自己的健康也越来越重视。脉搏的波形及频率能够反应人心血管的生理信息。所以本文是以ARM STM32为主控模块,设计一种便携式,操作方便的脉搏检测器。
本系统由脉搏采集、液晶显示、无线发送三个模块组成。脉搏采集是采集人的脉搏数,液晶用的是12232,显示一分钟被测脉搏数,无线发送就是利用GSM模块实现短信的发送,发送到监测人员起到远程监控的效果。
关键词:STM32 脉搏检测 液晶显示 GSM
一、系统的整理框架。
以ARM STM32芯片为处理器,主要的模块主要包括脉搏采集模块,LCD显示模块,GSM数据传输模块。脉搏采集模块采集到脉搏信号经信号放大及模数转换后传输到处理器中,经过定时器一分钟的计时,在液晶屏上显示一分钟的脉搏数,STM32 控制脉搏数据经由SIM300A GSM 模块以GPRS 形式发送给监测人员。通过脉搏数的显示,医生可以获知用户的身体状况,节约了大量的时间。
二、系统硬件以及电路构成。
1、脉搏监测电路。
传感器由光敏二级管发射红外和光敏三极管接受红外组成的分别是电路中的D6和Q3。采用发光二极管作为光源时,可基本抑制由呼吸运动造成的脉搏波曲线的'漂移。红外接收三极管在红外光的照射下能产生电能,它的特性是将光信号转换为电信号。脉搏也即跟心跳同步,每心跳一次血液浓度变化一次,所以通过对手指的血液浓度的变化检测脉搏信号。脉搏是微弱信号,信号需要放大,并且先通过低频滤波器进行滤波,在进行放大,最后在经过比较器得到脉冲波,输入到STM32里。
2、STM32处理器及主要接口电路。
STM32F103微控制器是使用Cortem-M3内核,工作频率为72MHz,内置高速存储器,具有一个USB和一个CAN,7 个定时器、2 个ADC、9 个通信接口,其工作电压常见为3.3v。ARM STM32F103 控制模块主要完成对脉搏波波形数据的采集,脉搏信号模数转换以及数据的分析和数据的无线收发,与LCD的显示。 ARM 的Cortex-M3是采用哈佛结构的32位处理器内核,拥有独立的指令总线和数据总线,两者共享同一个4GB存储器空间。它的内部还包含一个系统滴答定时器SysTick。SysTick的核心是1个24位递减计数器,使用时根据需要设置初值,启动后在系统时钟的作用下递减,减到0时置计数标志位并重装初值。系统可以查询计数标志位,也可以在中断允许时产生SysTick中断。其丰富的优点决定了它适合应用于诸多方面,例如医疗和手持设备。
3、GSM/GPRS 模块。
随着无线通信技术的飞速发展,中国移动GPRS技术不断完善,为数据的无线传输提供了理想的解决方案。本系统采用GSM/GP,模块为SIMCom 公司的SIM300A 模块,它的体积小巧携带方便,功耗比较低,内嵌TCP /IP 协议。STM32F103 通过串口发指令控制SIM300A的拨号上网,再通过PPP 协议建立与中国移动内部服务器的点对点连接,然后由中国移动GPRS 服务节点( GSN) 通过TCP /IP 协议与医疗监护中心的目标服务器建立Socks 连接,实现数据的无线传输。本系统的软件设计主要包括: ARM STM32 程序设计、GSM/GPRS 模块程序设计。ARM程序设计的的开发和调试采用keil编写,可以直接调用库函数对数据进行处理使用起来方便。 相关初始化操作:
第一,时钟初始化-72Mhz。
第二,时基函数初始化-1ms。
第三,串口1初始化-波特率115200,数据位8,停止位1,无校验位(用于调试口)。
第四,串口2初始化-波特率9600,数据位8,停止位1,无奇偶校验。(用于GPRS接口)。
第五,LED指示灯初始化-低电平点亮。
第六,按键初始化-低电平触发中断;第七,TIM3初始化-1/10K s(0.1ms) 。
第八,液晶LCD初始化-12232。
第九,GSM模块初始化-使用AT指令进行初始化配置,配置短消息中心号码。
三、结语。
本次设计以STM32为核心,采用GSM做为发射模块,对脉搏数据进行无线传输,此测量仪系统实现简单、功能稳定、使用方便,应用广泛,便于被测人携带,突破了测量空间的限制, 摆脱传统有线监测仪的束缚,能够实时监测心血管患者病况,防止病情的突发,具有实际意义。随着我国正逐步进入“老年型”社会,人口老龄化进程的加快促使心血管疾病的发生率及死亡率日趋增加。此设计对于家庭的医疗监护有着一定的市场前景。
参考文献:
[1]Weeg, Stephen. Home health and home monitoring in rural and frontier counties human factors in implementation, EMBC, 2004:3264-3265.
[2]康华光.电子技术基础(数字部分)[M].北京:高等教育出版社,2006.
[3]刘迎春,叶湘滨.传感器原理设计与应用[M].长沙:国防科技大学出版社,2004.
篇8:无线式播种机监测软件系统的设计论文
无线式播种机监测软件系统的设计论文
1系统硬件设计
1.1下位机系统的设计
1.1.1温湿度测试系统
采用温湿度传感器SHT10测量播种的温湿度情况,采用CMOSenstechnology微过程技术,可靠性较强且能保持较高稳定性。由能隙式测温元件和电容式聚合体测湿元件组成,并与A/D转换器以及数字接口2-wire单芯片结合。
1.1.2种子粒数的测量原理
选用光电开关测量播种粒数。利用被检测物体对红外束的遮光或反射,由同步回路选通而检测物体的有无,其检测特体不限于金属,对非金属所有物体均可检测。产品具有体积小、精度高、检测距离远、防水、防腐蚀、抗光和电磁干扰等特点。其外围接线图如图3所示。
1.1.3播种深度的测量
选择超声波测距模块HC-SRO4测量播种深度,其可提供2~400cm的非接触式距离感测,测量精度可达3mm。模块包括超声波发射器、接收器与控制电。
1.1.4拖拉机和播种机转速的测量
拖拉机和播种机转速由霍尔元件测量。霍尔传路。感器是对磁敏感的传感元件,从外形看为3端器件,具有与三极管相似的外形。工作时只需接电源和地,采用OC门输出,具有较宽的工作电压,使用非常方便。
1.2上位机系统设计
1.2.1无线模块的选择
传感器节点采用Zigbee射频收发芯片CC2530,它是一款单芯片,也就是把负责解调无线通讯信号与51单片机内核集成在一起的芯片。CC2530是个真正的用于IEEE802.15.4,ZigBee和RF4CE应用的片上系统(SoC)解决方案,集成了RF收发器、8051MCU、系统可编程Flash存储器、8-KBRAM和许多其它强大功能,能够以非常低的总材料成本建立强大的网络节点。
1.2.2单片机选型与电路
本系统选择PIC16F877A单片机作为数据处理器件,它是美国Microchip公司生产的8位单片机产品。在上位机中,单片机与CC2530无线模块进行数据通信,并对播种的温湿度状况、播种深度、播种粒数、拖拉机和播种机的转速等数据进行处理,由液晶模块进行适时显示。其主电路接线图如图7所示。无线模块接收下位机中的'播种机相关参数信息,输入单片机进行处理后,由液晶显示模块适时显示。
1.3液晶显示模块及其接线图
本文选择CH240128B液晶显示模块,其系列点阵绘图型液晶显示模块(LCM)采用240×128点阵液晶显示屏(LCD)与低功耗LED背光组成。
2系统软件设计
软件设计要完成的内容包括:检测记录播种管通过的种子粒数;检测播种机的播种深度;记录播种时间,并计算播种速度;控制程序运行;显示检测的数据;计算播种机转速和滑移率,建立通信网络。
2.1无线数据传输流程图
系统上电以后,由协调器设备建立网络,播种参数传感器设备加入网络后,周期性地向协调设备发送传感器测得数据,网络启动后,CC2530模块需要在网络允许加入后才可接收数据。
2.2传感器节点流程图
在扫描过程中发现协调器以后,允许其加入网络,进行绑定,读取由温湿度传感器、光电开关、超声波传感器及霍尔元件测得的数据,并且进行上位机与下位机C2530模块的通信;然后数据进入单片机PIC16F877A进行处理,由CH240128进行适时显示。
3结论
1)采用PIC16F877A单片机和无线模块CC2530为核心控制单元,设计了播种质量检测系统的无线数据传输系统,可适时采集播种数据并能够进行传输与显示。
2)硬件包括单片机控制单元、电源、传感器和显示器等。其中,温湿度传感器监测播种大气环境,红外光电传感器检测种子下落情况,霍尔检测播种机前进速度,超声波测距模块检测播种深度。系统可以检测整个播种机的实际播种状况,并进行无线通讯。
3)软件方面,采用结构化程序设计方法,运用C语言进行编程。主程序通过调用子函数完成各种功能,从而实现网络的建立、数据的发送、接收和显示。
篇9:省级污水处理厂GPRS无线数据传输监测系统设计与实施
省级污水处理厂GPRS无线数据传输监测系统设计与实施
以辽宁省环境信息中心为例,介绍了利用GPRS(通用分组无线业务)无线传输技术监测全省污水处理厂污水排放、污水处理情况的“省级污水处理GPRS无线数据传输监测系统”.该系统将对污水处理厂各监测仪器进行实时监控,并把监测仪器送到PLC采集器中的.数据通过无线传榆上传到省污水处理监控中心,在监控中心可以对数据实时监测,对监测仪器设备实时监控,并对数据进行处理,使污染排放监管部门能更及时、准确、具体、全面地掌握全省环境质量、环境监控和重点污染源的数据和信息,以提高执法的快速反应能力、全面的监管能力和科学决策的支持能力.
作 者:王威 作者单位:辽宁省环境信息中心,辽宁,沈阳,110033 刊 名:环境保护与循环经济 英文刊名:LIAONING URBAN AND RURAL ENVIRONMENTAL SCIENCE & TECHNOLOGY 年,卷(期):2009 29(3) 分类号:X84 关键词:污水处理 GPRS 无线传输 PLC 实时监控★ 无线网络安全
★ 无线覆盖方案
★ 无线网络安全技巧
★ 无线网络覆盖方案
★ 食品安全风险监测
★ 药品监测个人简历
构筑物强震监测无线网络系统设计(共9篇)




