读小学数学与数学思想方法心得

时间:2023-02-08 04:09:39 作者:猪排博士 其他心得 收藏本文 下载本文

【导语】“猪排博士”通过精心收集,向本站投稿了7篇读小学数学与数学思想方法心得,今天小编在这给大家整理后的读小学数学与数学思想方法心得,我们一起来看看吧!

篇1:读小学数学与数学思想方法心得

读小学数学与数学思想方法心得

读完《小学数学与数学思想方法》这本书,对数学思想方法有了更系统和更全面的认识。知道了什么是数学思想,什么是数学方法,知道了数学思想与数学方法的内在联系与区别。知道数学思想是数学方法进一步提炼和概括,数学思想的抽象概括程度要高一些,而数学方法的操作性更强一些。人们实现数学思想往往要靠一定的数学方法,而人们选择的数学方法,又要以一定的数学思想为依据。由此可见,数学思想方法是数学的灵魂,那么,要想学好数学,用好数学,就要深入到数学的“灵魂深处”。

数学思想方法如此重要,从这本书中还知道了教师如何进行数学思想方法的教学:

1、重视思想方法目标的落实。

教师在备课撰写教学设计时,把数学思想方法作为与知识技能同等地位的目标呈现出来。而不是可有可无或者总是进行渗透,并利用动词进行描述和评价,使数学思想方法的教学目标落到实处。

2、在知识形成过程中体现数学思想方法。

现在的数学课堂教学中,很多教师精讲多练,急于把概念、公式、法则等知识传授给学生,然后按照考试的要求进行训练,轻视了知识的形成过程。这样,既浪费了时间,又没有真正培养学生的思维能力、思想方法和学习兴趣,导致很多学生害怕数学。我曾经在讲《除法的初步认识—平均分》时,通过让学生动手操作引导他们经历知识的形成过程。读过这本书才知道自己忽略了数学思想方法的渗透,在这个教学过程中,教师可以引导学生感受从直观操作的具体情境中抽象出除法概念的抽象思想,认识用除法符号表达的具有简洁性的符号化思想,体会用实物、图形帮助理解除法的具有直观性的数形结合思想,知道除法是一种重要的模型思想,体会在除法中商随着被除数、除数的变化而变化的`函数思想。当学生认识了除法,在以后的学习中再通过学习有余数的除法、笔算除法等知识逐步加深对除法的理解,会更有利于分数、比、百分数等知识的学习,体会数学本质的变中有不变的思想。

同样,在计算教学中,如果我们教师只是简单地告诉学生计算法则,让学生停留在对知识的记忆、模仿的水平上,没有真正理解其中的数学方法,即算理,就无法再计算下去了。更谈不上思想方法的提升了。这样的教与学势必将走入一条“死胡同”。培养出来的学生只能是“知识型”、记忆型“的人才,同时,也束缚了”创造型、开拓型“人才的成长。

所以,在知识形成过程中体现数学思想方法的教学,才算是有效教学。

3、在知识的应用过程中体现数学思想方法。

以植树问题为例,可以封闭圆圈植树问题为核心模型,再演变出其他模型。封闭圆圈植树中的点与间隔一一对应,长度÷间隔=棵数。再根据实际情况演变出其他模型:一端栽一端不栽(长度÷间隔=棵数)、两端都栽(长度÷间隔+1=棵数)、两端都不栽(长度÷间隔-1=棵数)。充分发挥模型思想解决问题时的作用。

4、应在整理和复习、总复习中体现数学思想方法。

每个单元后的整理和复习、全册书后的总复习,不是简单的复习知识、巩固技能,更是思想方法的总结和提升。当小学生进入六年级,尤其是最后的复习阶段,更应该对小学数学的知识进行系统的、结构化的梳理,在思想方法上进行提升。

5、知道应潜移默化、明确呈现、长期坚持。

数学教学,重要的是提高学生的思维品质。数学思想的渗透,应该是长期的,应从小学一年级开始,正如”随风潜入夜,润物细无声“。数学思想方法的教学也应该想春雨一样,不断地滋润学生的心田。

读完这本书收获很多,对数学思想方法有了系统、全面的认识,在以后的数学思想方法教学中有了可以随时查询的资料,对于数学教学给予了更清晰、明了的指导。

篇2:读《小学数学与数学思想方法》有感

之前一提到数学思想方法,总是感觉似乎知道一些,想过应用它来指导自己的教学,但是自身对数学思想方法的理解不深透,另外又觉得数学思想方法的渗透教学在课堂教学中短时期难以见成效。所以,本人的教学现状中对数学思想渗透的深度远远不够。

而读了《小学数学与数学思想方法》这本书,王永春老师对数学各类思想方法的梳理和对新教材思想方法的解读,让我对新课标的新理念有了更深一层的理解,对小学数学思想方法的内涵有了较为深刻的认识,明确了教材使用和课堂环节中的渗透策略。

《小学数学与数学思想方法》首先对数学数学思想方法的概念、对小学数学教学的意义、对小学数学进行教学的可行性与方法做了简介。其次,梳理了与抽象有关的数学思想:包括抽象思想、符号化思想、分类思想、集合思想、变中有不变思想、有限与无限思想;与推理有关的数学思想:包括归纳思想、类比思想、演绎思想、转化思想、数形结合思想、几何变换思想、极限思想、代换思想;与模型有关的数学思想包括:模型思想、方程思想、函数思想、优化思想、统计思想、随机思想;其他数学思想方法包括:数学美思想、分析法和综合法、反证法、假设法、穷举法、数学思想方法的综合应用。最后,对小学数学1-6年级共十二册教材中数学思想方法案例进行了解读。

经过研读我发现,数学教材的教学内容始终反映着数学知识和数学思想方法这两方面,数学教材的每一章、每一节乃至每一道题,都体现着这两者的有机结合,数学思想方法有助于数学知识的理解和掌握。如本人执教的三年级下册第八单元搭配,就突出体现了分类思想、符号化思想。第一课时,我让学生体会解决排列组合问题时,就用到了分类讨论的方法有序全面的解决问题。如在用数字0、1、3、5组成没有重复数字的两位数时,多数学生没有分类有序思考,而是比较杂乱地写了组成的两位数,只有少数学生有序地书写。当我让几个学生把他们的方法展示在黑板上,引导学生交流比较后,发现,有学生漏写,有孩子写重复,其中一个孩子书写时分成三类:十位上是1的是10、13、15,十位上是3的有30、31、35,十位上是5的有50、51、53,保证有序全面地排列出来,肯定了有序思考的重要性。再次放手让学生进行组数是,半数以上的学生能又对又快地进行分类有序排列了。第二课时搭配衣服,两件不同的上衣搭配三条不同的裤子,一次各选一件,有多少种搭法,学生已经有了分类的意识,如何才能高效地解决问题呢?这时我们需要将形象的东西进行符号化,可以将衣服用几何图表示,可以用字母表示,也可以绘图表示。也有孩子用数字来表示,然后进行连线搭配,这样保证快速有效地解决问题。

由此看来,数学思想方法的渗透与运用对于数学问题的解决有十分重要的意义。在教学中不能只注重数学知识的教学,忽视数学思想方法的教学。两条线应在课堂教学中并进,无形的数学思想将有形的数学知识贯穿始终,使教学达到事半功倍。

但是任何一种数学思想方法的学习和掌握,绝非一朝一夕的事,它需要有目的、有意识地培养,需要经历渗透、反复、不断深化的过程。只要我们在教学中对常用数学方法和重要的数学思想引起重视,大胆实践,持之以恒,有意识地运用一些数学思想方法去解决问题,学生对数学思想方法的认识才会日趋成熟,学生的数学学习才会提高到一个新的层次。

篇3:读《小学数学与数学思想方法》有感

读王永春所著的《小学数学与思想方法》一书后,让我对数学学科中蕴含的数学思想有了一个系统的认识,书中对数学思想的归类总结,让我明白了数学思想的基本划分。书中列举的课本中的实例,更是我在教学中如何把握教学思想的一个重要参考。23年的教学经历,也让我对数学思想的重要性有了亲身的体会。

全书分为上篇和下篇两部分,上篇主要讲述与小学数学有关的数学思想方法,下篇是讲述义务教育人教版小学数学中的数学思想方法案例解读。全书的阅览,我更加觉得培养思维能力才是数学教学的核心目标。只有数学思想方法的教学才可以很好的培养学生的思维能力,并提高学生的解决问题的能力。

书中对有关极限的一些概念、教学要求和解题方法进行了详细的讲解。极限思想是用无限逼近的方式来研究数量的变化趋势的'思想,这里抓住了两个关键语句:一个是变化的量是无穷多个,另一个是无限变化的量趋向于一个确定的常数,二者缺一不可。如自然数列是无限的,但是它趋向于无穷大,不趋向于一个确定的常数,因而自然数列没有极限。在教学中一方面要让学生体会无限,更重要的是通过具体案例让学生体会无限变化的量趋向于一个确定的常数。极限以及在此基础上定义的导数、定积分是解决用函数表达的现实问题的有力工具。有限与无限是辨证思维的一种体现,要辨证地看待二者的关系,不要用初等数学的“有限的”眼光看“无限的”问题,要用极限思想看无限,极限方法是一种处理无限变化的量的变化趋势的有力工具。换句话说,当我们面对无限的问题时,就不要再用有限的观点来思考,要进入无限的状态,数学上极限就是这么一个规则和逻辑,我们按照这个规则和逻辑去做就可以了。另外,对循环小数和无限不循环小数的理解和表示也体现了有限与无限的辩证关系。我们知道,在中学数学里一般用整数和分数来定义有理数,用无限不循环小数来定义无理数,有理数和无理数统称为实数。有理数包括整数、有限小数和循环小数。整数和有限小数化成分数是学生非常熟悉的,那么,循环小数怎样化成分数呢?我们以前曾经介绍过用方程的方法可以解决这一问题。下面我们再用极限的方法来解决。案例:把循环小数0.999…化成分数。分析:0.999…是一个循环小数,也就是说,它的小数部分的位数有限多个。对于小学生来说,能够接受的方法就是数形结合思想和极限思想的共同应用和渗透,通过构造一个直观地几何图形来描述极限思想。先看下面的数列0.9,0.09,0.009,…用数形结合的思想,把这个数列用线段构造如下:把一条长度是1的线段,先平均分成10份,取其中的9份;然后把剩下的1份再平均分成10份,取其中的9份……所有取走的线段的长度是0.9+0.09+0.009+…=0.999…如此无限的取下去,剩下的线段长度趋向于0,取走的长度趋向于1,根据极限思想,可得0.999…=1。对于教师而言,光有极限思想的渗透是不够的,还需要进一步理解如何用极限方法来解决。这是一个无穷比递缩数列的求和问题,根据公式可得0.9+0.09+0.009+…=0.9÷(1-0.1)=1所以0.999…=1。

总之,在自己教学实践的过程中联系学过的理论知识,用这些理论知识指导我们的教学。

篇4:读《小学数学与数学思想方法》有感

今年寒假,本想在家好好地读一读书,丰富一下自己专业知识,特别是理论知识,但是受疫情的影响,心一直静不下来,专业性太强的书籍太让人烧脑了,但是一翻到王永春老师的《小学数学与数学思想方法》一书时,特别引人入胜。

全书分为上篇和下篇两部分,上篇阐述了与小学数学有关的数学思想方法,并结合案例谈思想方法的教学。下篇介绍人教版各册教材中体现的数学思想方法。在上篇中,通过王老师提供的一些案例,更加有利于读者(老师)了解和掌握思想方法;在下篇中的教材案例解读分册编写更有利于教师使用。

通过阅读我了解到我们平时所说的“数学思想”“数学方法”“数学思想方法”不是等同的概念。数学思想是对数学知识的本质认识、理性认识。数学方法一般是指用数学解决问题时的方式和手段。而数学思想方法是对数学知识的进一步提炼概括。

数学思想较高层次的基本思想有三个:抽象思想、推理思想和模型思想。与抽象有关的数学思想主要有:抽象思想、符号化思想、分类思想、集合思想、变中有不变思想、有限与无限思想;与推理有关的数学思想有:归纳推理、类比推理、演绎推理、转化思想、数形结合思想、几何变换思想、极限思想、代换思想;与模型有关的数学思想有:模型思想、方程、函数思想、优化思想、统计思想、随机思想;另外还介绍了其他数学思想方法有:数学美思想、分析法和综合法、反证法、假设法、穷举法、数学思想方法的综合应用等。

数学思想是数学方法的进一步提炼和概括,它的抽象概括程度要高一些,而数学方法的操作性更强一些。人们实现数学思想要靠一定的数学方法;而人们选择数学方法又要以一定的数学思想为依据。可以说虽然它们有区别但是又有密切联系。

以下以《三角形内角和》为案例,谈谈我读完这本书的收获:推理是由一个或几个已知判断推出新判断的理性思维形式。推理是数学的基本思维模式,一般包括合情推理与演绎推理。合情推理是一种创造性思维过程,是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断结果,其实质是“发现-猜想”。而演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算,演绎推理是从一般到特殊的推理,其本质是证明和计算。如:多边形内角和就是通过“先归纳后演绎“的推理过程。教学中先使用不完全归纳法推导出多边形内角和的计算方法,这是合情推理,接着通过将多边形分割成三角形的过程进行演绎推理,并进一步要求学生推算十边形的内角和,以及内角和是1080度的图形是几边形,引导学生将计算多边形内角和的一般方法运用到特殊情境。所以在小学生学习新知时,大多先借助合情推理在不完全归纳中理解一般原理,然后在练习和实践中演绎。在教学中要针对例题的特点引导学生经历“先归纳后演绎”的过程,从而培养推理能力。在探究规律的过程中,合情推理与演绎推理相辅相成,缺一不可。

总之在以后教学中既要教数学思想,又要设法去提高学生的思维能力和解决问题的能力,是我努力的方向。而本书是一个很好的参考书。它为我们做的分类,总结,以及列举的应用实例是一个全面而又具体的指导。仔细研读,慢慢尝试,一定有意想不到的收获。

篇5:读《小学数学与数学思想方法》有感

每次看书我都会发现自身的问题,这次也不例外。我会对比着去发现自己哪些地方还没有做到,然后再去发现我需要学习什么。

一.不足

1.尽管课堂上我会认真帮助同学们分析每一道题,一些时候会将习题变式,但只是就题做题。可是我却忽略了向同学们传授思想方法。也就是学生只“知其然不知其所以然”。从教两年多来也算得上是一大败笔。

2.大多数授课都是将概念直接传授给学生,很少让学生去主动探索,就像书上说的一样“只注重现成结论的传授,不讲究生动过程的展示,终究会走进死胡同”。现在细想会感觉到,让学生花费一节课去探索甚至比自己讲两节课效果都要好。

3.复习时,我还按着老式传统方法,出题做题讲题......反复循环。根本就没做到在思想方法上的总结提升。

二.改进之处

1.关于符号。在低年级的时候强调同学们的直观感受,高年级时涉及到的知识就不能单纯的通过特殊例子归纳总结让他们识记了。应该通过习题让他们自己发现问题、提出问题、归纳问题、总结问题。

2.通常在做卷子或者报纸时,最后都有一道能力提升题。其中有很多习题要求归纳总结、填空或者计算,而我们通常的做法是拿住题就讲,却恰恰忘了问题的源头就是某些法则、公式或者定律。倘若我们能教给学生逆推出这样的的习题是用什么样的法则、公式或者定律而来的,那结果肯定事半功倍。

三.总结

看完前两章确实很惭愧,因为就自身而言都不能很好的将各种类型的思想方法掌握,更甭说将思想方法传授给学生了。既然发现了问题那么接下来的时间我一定好好改正,将还没有理解透彻的精髓反复研读,争取在掌握数学的思想方法这方面能够有所提升。

篇6:小学数学思想方法

一、集合的思想方法

把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。

如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。

二、对应的思想方法

对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。

如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。

三、数形结合的思想方法

数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。

例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。

四、函数的思想方法

恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。

函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。

五、极限的思想方法

极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。

现行小学教材中有许多处注意了极限思想的渗透。在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1÷3=0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。

六、化归的思想方法

化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不

断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。

如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。

七、归纳的思想方法

在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。

如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。

八、符号化的思想方法

数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。

人教版教材从一年级就开始用“□”或“”代替变量x,让学生在其中填数。例如:1+2=□,6+()=8,7=□+□+□+□+□+□+□;再如:学校有7个球,又买来4个。现在有多少个?要学生填出□○□=□(个)。

符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此,教师在教学中要注意学生的可接受性。

九、统计的思想方法

在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法

篇7:《小学数学与数学思想方法》读后感

为什么我看这个数学思维方法几页就觉得很受益,有触动。因为以前自己数学能学好感觉只是天然的选择,下意识的动作,在这里能找到原理,让你的行为有理论依据,更加明晰思维方法的重要性。自己就是受益于这些思维方法,但却没意识到,看了书才恍然大悟。很多习以为常,想当然的事情明白了这样设计的道理了。比如为啥设计小学五年级六年级。为什么三四年级、初中一年级会是槛。区别主要是抽象能力的发展不同。思维在低年级作用不是特别大。差距显现不出来。从作者的言外之意也可以看到数学思维方法是最重要的东西,但却不是课堂教学的常态目标,只是教学的附属品,渗透出来的,有人悟性高,捕获的多,发展的好。有人不敏感,攫取的少。差距就出来了。

但不管从数学教育从业者还是我们个人的经历来说,数学思维方法都是最基本的。属于对数学本质的认识,理性的认识。

奥数就是为了训练数学思维方法啊。但是真假奥数不一样,假奥数就是教给你套路,记住就好。

我自己数学学习也是原发性的。没人指导,没人培训。不过有人指点肯定会更轻松,或者能更进一步。

我们常说语文学习,词汇是理解力的基础。在数学中,概念是数学学习的基础,是抽象思维的基础和基本形式。概念大概等同于中文阅读里的抽象词汇,不过概念是有相关系统的东西。说这个是为了说明我们平时说的打好基础再拓展。到底什么是基础。基础就是概念与概念之间的关系构成的知识结构。

所以也自然明白日常我们说的“拓展”是什么。拓展就是在理解概念之间关系的知识结构基础上,利用思想方法、模型思想、推理思想等学习数学,解决问题。

小学数学教学渗透数学思想方法论文

小学数学听课心得

小学数学教学心得

小学数学研修心得

二次根式中蕴涵的数学思想方法

浅谈小学数学教学经验心得

小学数学教学心得感悟

数学听课心得

数学岗位培训心得

数学教学心得精选

读小学数学与数学思想方法心得(共7篇)

欢迎下载DOC格式的读小学数学与数学思想方法心得,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档