“好好睡觉宝”通过精心收集,向本站投稿了15篇初中数学《一元二次方程的概念》说课稿,下面就是小编给大家带来的初中数学《一元二次方程的概念》说课稿,希望大家喜欢,可以帮助到有需要的朋友!
- 目录
篇1:初中数学一元二次方程复习题
一元二次方程学案
一、选择题
1. 下列方程中是一元二次方程的是( ).
A.xy+2=1 B. C. x2=0 D.
2. 白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( )
A.4个 B.5个 C.6个 D.7个
3、关于x的一元二次方程kx2+3x-1=0有实数根,则k的取值范围是( )
A、k≤ B、k≥ 且k≠0 C、k≥ D、k>且k≠0
4.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为 ( )
A.x(x+1)=1035 B.x(x-1)=1035×2 C.x(x-1)=1035 D.2x(x+1)=1035
5、若 是一元二次方程 的两个根,则 的值是( )
A、B、C、D、7
6、工厂技术革新,计划两年内使成本下降51%,则平均每年下降百分率为( )
A.30% B.26.5% C.24.5% D.32%
7、如图,菱形ABCD的边长是5,两条对角线交于O点,且AO、BO的长分别是关于 的方程 的根,则 的值为 ( )
A. -3 B. 5 C. 5 或-3 D. -5或3
8.(山西省太原市)用配方法解方程 时,原方程应变形为( )
A. B.
C. D.
二、填空题
9、(山西省)请你写出一个有一根为1的一元二次方程: .
10、一元二次方程3x2-23=-10x的二次项系数为: ,一次项系数为: ____ ,常数项为: ___
11、(20本溪)11.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为 ,则根据题意可列方程为 .
12、已知方程 的两根平方和是5,则 =
13、已知x2+3x+5的值为11,则代数式3x2+9x+12的值为 .
14、已知m是方程 的一个根,则代数式 的值等于 .
15、设 是一个直角三角形两条直角边的长,且 ,则这个直角三角形的斜边长为
16、若方程x2+px+q=0的两个根是-2和3,则p= q=
17、在实数范围内定义一种运算“﹡”,其规则为a﹡b=a2-b2,根据这个规则,
方程(x+2) ﹡5=0的解为
18、等腰三角形的底和腰是方程x2-6x+8=0的两根,则这个三角形的周长是
三、解下列方程
19、x2-2x-99=0 21、(配方法)
20、
四、解答题
22、已知关于x的一元二次方程 的一个根为0,求k的值和方程的另外一个根。
23、在某次数字变换游戏中,我们把整数0,1,2,…,200称为“旧数”,游戏的变换规则是:将旧数先平方,再除以100,所得到的数称为“新数”。
(1)请把旧数60按照上述规则变成新数;
(2)是否存在这样的旧数,经过上述规则变换后,新数比旧数大75,如果存在,请求出这个旧数;如果不存在,请说明理由。
24、(2009年鄂州)关于x的方程 有两个不相等的实数根.
(1)求k的取值范围。
(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由
25、已知a、b、c为三角形三边长,且方程b (x2-1)-2ax+c (x2+1)=0有两个相等的实数根. 试判断此三角形形状,说明理由.
26、一个两位数,十位上的数字比个位上的数字的平方小9,如果把个位数字与十位数字对调,得到的两位数比原来的两位数小27,求原来的这个两位数
27、某商店将进货为8元的商品按每件10元售出,每天可销售200件,现在采用提高商品售价减少销售量的办法增加利润,如果这种商品按每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?
28、有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的长为35 m,求鸡场的长与宽各为多少?
29、(2009年宁波市)2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比20提高30%,投入“供方”的资金将比年提高20%.
(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?
(2)该市政府2009年投入“需方”和“供方”的资金各多少万元?
(3)该市政府预计20将有7260万元投入改善医疗卫生服务,若从2009~年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.
篇2:初中数学一元二次方程教案
初中数学一元二次方程教案设计
学情分析:
学生在七年级和八年级已经学习了整式、分式、二次根式、一元一次方程、二元一次方程、分式方程,在此基础上本节课将从实际问题入手,抽象出一元二次方程的概念及一元二次方程的一般形式.
教学目标
知识技能:
1、理解一元二次方程的概念.
2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.
数学思考:
1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.
2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力.
解决问题:
在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.
情感态度:
1、培养学生自主自主学习、探究知识和合作交流的意识.
2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.
教学重点:
一元二次方程的概念及一般形式.
教学难点:
1、由实际问题向数学问题的转化过程.
2、正确识别一元二次方程一般形式中的“项”及“系数”.
教学互动设计:
一、自主学习感受新知
【问题1】有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?
【分析】设长方形绿地的宽为x米,依题意列方程为:x(x+10)=900;
整理得: x2+10x-900=0 ①
【问题2】学校图书馆去年年底有图书5万册,预计至明年年底增加到7.2万册,求这两年的年平均增长率。
【分析】设这两年的年平均增长率为x,依题列方程为:5(1+x)2=7.2;
整理得: 5 x2+10x-2.2=0 ②
【问题2】学校要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?
【分析】全部比赛共4×7=28场,设应邀请x个队参赛,则每个队要与其它 (x-1)队各赛1场,全场比赛共场,依题意列方程得:;
整理得: x2-x-56=0 ③
(设计意图:在现实生活中发现并提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性。 同时通过解决实际问题引入一元二次方程的概念,同时可提高学生利用方程思想解决实际问题的能力。)
二、自主交流 探究新知
【探究】(1)上面三个方程左右两边是含未知数的 整式 (填 “整式”“分式”等);
(2)方程整理后含有 一 个未知数;
(3)按照整式中的多项式的规定,它们最高次数是 二 次。
【归纳】
1、一元二次方程的定义
等号两边都是 整式 ,只含有 一 个求知数(一元),并且求知数的最高次数是 2 (二次)的方程,叫做一元二次方程。
2、一元二次方程的一般形式
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:
ax2+bx+c=0(a≠0)
这种形式叫做一元二次方程的一般形式。其中ax2是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项。
【强调】方程ax2+bx+c=0只有当a≠0时才叫一元二次方程,如果a=0,b≠0时就是一元一次方程了。所以在一般形式中,必须包含a≠0这个条件。
(设计意图:由于学生已熟练掌握了整式、分式、一元一次方程等概念,所以从未知数的个数及最高次数提问,引导学生归纳共同点是符合学生的认知基础的。学生的自主观察、比较、归纳是活动有效的保证,教学中应当让学生充分的探究和交流。同时,在概念教学中类比是帮助学生正确理解概念的有效方法。)
【对应练习】判断下列方程,哪些是一元二次方程?哪些不是?为什么?
(1)x3-2x2+5=0; (2)x2=1;
(3)5x2-2x-=x2-2x+; (4)2(x+1)2=3(x+1);
(5)x2-2x=x2+1; (6)ax2+bx+c=0
(设计意图:此问题采取抢答的形式,提高学生学习数学的兴趣和积极性。其目的是为了及时巩固一元二次方程的概念,同时让学生知道判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断。)
三、自主应用 巩固新知
【例1】 已知方程(a-3)x|a-1|-2x+5=0,当 a=-1 时,此方程是一元二次方程,当a=0,2或3 时,此方程是一元一次方程。
(设计意图:通过例1的学习,一是使学生进一步巩固一元二次方程的概念,并注意其最基本的条件:未知数的最高次数为2,二次项系数不为0;二是使学生了解一元二次方程与一元一次方程的联系与区别。在填第一个空时要让学生注意a值的取舍,填第二个空时要注意引导学生进行分类讨论。)
【例2】将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
【分析】一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.
解:去括号,得:
3x2-3x=5x+10
移项合并同类项,得:
3x2-8x-10=0
其中二次项系数是3,一次项系数是-8,常数项是-10。
(设计意图:通过例2的学习,一是使学生进一步掌握一元二次方程的一般形式,并注意强调二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号;二是使学生进一步了解方程的变形过程。)
四、自主总结 拓展新知
本节课你学了什么知识?从中得到了什么启示?
1、a≠0是ax2+bx+c=0成为一元二次方程的必要条件,否则,方程ax2+bx+c=0变为bx+c=0,就不是一元二次方程。
2、找一元二次方程中的二次项系数、一次项系数、常数项,应先将方程化为一般形式。
(设计意图:引导学生回顾本节课的学习内容,加强知识的形成。)
五、自主检测 反馈新知
1、下列方程,是一元二次方程的是 ①④⑤ 。
①3x2+x=20, ②2x2-3xy+4=0, ③, ④ x2=0, ⑤
2、某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x米,则可列方程为x(x+10)=200,化为一般形式为x2+10x-200=0。
3、方程(m-2)x|m|+3mx+1=0是关于x的一元二次方程,则 m= -2 。
4、将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式为 2x2+2x-4=0 ,其中二次项是 2x2 ,二次项系数是 2 ,一次项是 2x ,一次项系数是 2 ,常数项是 -4 。
(设计意图:随堂检测学生对新知识的掌握情况,及时了解反馈和调整后续教学内容与教法。)
六、课后作业
教科书第28页 1 2 5 6 7
初中一元二次方程教学理念与反思
本节内容是九年级数学第二章的第一课时,通过对本节课的学习,学生将掌握一元二次方程的概念及一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数、一次项、一次项系数和常数项,是典型的概念教学课。
概念教学总是遵循这样的规律:引入概念、形成概念、巩固概念、运用概念和深化概念,在设计教学中也是遵循这一规律,通过学习、交流、应用、总结、检测这五个环节来完成教学任务。首先通过三个问题让学生建立一元二次方程顺利引入到新课;然后通过交流探究归纳出一元二次方程的概念,使学生体会到学习一元二次方程的必要性,探讨一元二次方程的一般形式及相关概念,并学会利用方程解决实际问题,从而获得本课的新知识;再次是通过两个例题达到巩固、运用概念的作用;最后通过总结与检测来深化学生所学知识,并运用到实际问题中去,使学生熟练掌握所学知识。
教学过程中,强调自主学习,注重合作交流,让学生与学生的交流合作在探究过程中进行,使他们在自主探究的过程中理解和掌握一元二次方程的概念及一般形式,并获得数学活动的经验,提高探究、发现和创新能力。
篇3:数学《一元二次方程》教案设计
教学目标
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:
重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:
1.教材分析:
1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析
理解一元二次方程的定义:
是一元二次方程的重要组成部分。方程,只有当时,才叫做一元二次方程。如果且,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:
(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
篇4:数学《一元二次方程》教案设计
教材分析
1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。
2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。
学情分析
1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。
2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。
3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。
教学目标
1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。
2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。
教学重点和难点
1、重点:概念的形成及一般形式。
2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。
篇5:数学《一元二次方程》教案设计
一、出示学习目标:
1.继续感受用一元二次方程解决实际问题的过程;
2.通过自学探究掌握裁边分割问题。
二、自学指导:(阅读课本P47页,思考下列问题)
1.阅读探究3并进行填空;
2.完成P48的思考并掌握裁边分割问题的特点;
3.在理解的基础上完成P48-49第8、9题(不精确,只留根号即可)。
探究3:要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。9﹕7
设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则:
由中下层学生口答书中填空,老师再给予补充。
思考:如果换一种设法,是否可以更简单?
设正中央的长方形长为9acm,宽为7acm,依题意得
9a·7a=(可让上层学生在自学时,先上来板演)
2.P48-49第8、9题中下层学生在自学完之后先板演
效果检测时,由同座的同学给予点评与纠正
9.如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)
注意点:要善于利用图形的平移把问题简单化!
三、当堂训练:
1.如图,在一幅长90cm,宽40cm的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画.如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?
(只要求设元、列方程)
2.要设计一个等腰梯形的花坛,上底长100m,下底长180m。上下底相距80m,在两腰中点连线出有一横向甬道,上下两底之见有两条纵向的甬道,各甬道宽度相等,甬道的面积是梯形面积的六分之一,甬道的宽应是多少?
篇6:数学《一元二次方程》教案设计
教学目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:
重点:
1.一元二次方程的有关概念
2.会把一元二次方程化成一般形式
难点:一元二次方程的含义.
教学过程设计
一、引入新课
引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?
分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程( x(x十5)=150 )
深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?
二、新课
1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)
2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的次数是几。如果方程未知数的次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)
3.强化一元二次方程的概念
下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:(2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的.次数是否是2。
4.一元二次方程概念的延伸
提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?
引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.
3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
强化概念(课本P6)
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
课堂小节
(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的次数为2,这样的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;
(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.
篇7:数学《一元二次方程》教案设计
教材分析
一元二次方程是一种数学建模的方法,它有着广泛的实际背景,可以作为许多实际问题的数学模型。它体现了数学的转化思想,学好一元二次方程是学好二次函数不可或缺的,一元二次方程是高中数学的奠基工程。是本书的重点内容,为后续学习打下良好的基础。
学情分析
1、经过两年的合作,我们班的学生已比较配合我上课,同时初三学生观察、类比、概括、归纳能力也都比较强,不过对应用题的分析他们还是觉得很头疼,在今后应用题的教学中需进一步加强。
2、一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,一元二次方程是一次方程向二次方程的转化,是低次方程转向高次方程求解方法的阶梯。一元二次方程又是二次函数的特例。
教学目标
一、知识目标
1、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,,增加对一元二次方程的感性认识.
2、理解一元二次方程的概念.
3、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.
二、能力目标
1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.
2、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,进一步提高学生分析问题、解决问题的能力.
四、情感目标
1、培养学生主动探究知识、自主学习和合作交流的意识.
2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识
教学重点和难点
教学重点: 一元二次方程的概念和它的一般形式
难点:1、从实际问题中抽象出一元二次方程。2、正确识别一般式中的“项”及“系数”
篇8:数学《一元二次方程》教案设计
教学目标
1. 了解整式方程和一元二次方程的概念;
2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:
重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:
1. 教材分析:
1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析
理解一元二次方程的定义:
是一元二次方程 的重要组成部分。方程 ,只有当 时,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:
(1)一元二次方程的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合一元二次方程的定义。
(2)条件是用“关于 的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的一元二次方程 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是一元二次方程,解题时就会有不同的结果。
教学目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:
重点:
1.一元二次方程的有关概念
2.会把一元二次方程化成一般形式
难点: 一元二次方程的含义.
教学过程设计
一、引入新课
引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?
分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程 ( x(x十5)=150 )
深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?
二、新课
1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)
2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的次数是几。如果方程未知数的次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)
3.强化一元二次方程的概念
下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3: (2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的次数是否是2。
4. 一元二次方程概念的延伸
提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?
引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.
3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
强化概念(课本P6)
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
课堂小节
(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的次数为2,这样的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;
(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.
篇9:数学《一元二次方程》教案设计
一、教学目标
1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。
2、过程与方法:学生通过观察与模仿, 建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。
3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。
二、教学重难点
重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。
难点:找对题目中的数量关系从而列出一元二次方程。
三、教学过程
(一)导入新课
师:同学们我们就要开始学习一元二次方程了,在开始讲新课之前,我们首先来看一看第二十二章的这张图片,图片上有一个铜雕塑,有哪位同学能告诉我这是谁吗?
生:老师,这是雷锋叔叔。
师:对,这是辽宁省抚顺市雷锋纪念馆前的雷锋雕像,雷锋叔叔一生乐于助人,奉献了自己方便了他人,所以即使他去世了,也活在人们心中,所以人们才给他做一个雕塑纪念他,同学们是不是也要向雷锋叔叔学习啊?
生:是的老师。
师:可是原来纪念馆的工作人员在建造这座雕像的时候曾经遇到了一个问题,也就是图片下面的这个问题,同学们想不想为他们解决这个问题呢?
生:想。
师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习一元二次方程。
(二)新课教学
师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用AC来表示上部,BC来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。
(下去巡视)
(三)小结作业
师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。
四、板书设计
五、教学反思
篇10:初中数学一元二次方程复习教案
初中数学一元二次方程复习教案一
一、等式的概念和性质
1.等式的概念,用等号“=”来表示相等关系的式子,叫做等式. 在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则.
2.等式的类型楷体五号
(1)恒等式:无论用什么数值代替等式中的字母,等式总能成立.如:数字算式 .
(2)条件等式:只能用某些数值代替等式中的字母,等式才能成立.方程 需要 才成立.
(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立.如 , .
注意:等式由代数式构成,但不是代数式.代数式没有等号.体五号
3.等式的性质五号
等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若 ,则 ;
等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若 ,则 , .
注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边.
(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.
(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果 ,那么 .②等式具有传递性,即:如果 , ,那么 .黑体小四
二、方程的相关概念黑体小四
1.方程,含有未知数的等式叫作方程. 注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母.二者缺一不可.楷体五号
2.方程的次和元 方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元.楷体五号
3.方程的已知数和未知数楷体五号
已知数:一般是具体的数值,如 中( 的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有 、、、、等表示.
未知数:是指要求的数,未知数通常用 、、等字母表示.如:关于 、的方程 中, 、、是已知数, 、是未知数.楷体五号
4.方程的解 使方程左、右两边相等的未知数的值,叫做方程的解.楷体五号
5.解方程 求得方程的解的过程.
注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.
6.方程解的检验楷体要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是.黑体小四
三、一元一次方程的定义体小四
1.一元一次方程的概念 只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.楷体五号
2.一元一次方程的形式楷体五号
标准形式: (其中 , , 是已知数)的形式叫一元一次方程的标准形式.
最简形式:方程 ( , , 为已知数)叫一元一次方程的最简形式.
注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程 是一元一次方程.如果不变形,直接判断就出会现错误.
(2)方程 与方程 是不同的,方程 的解需要分类讨论完成.黑体小四
四、一元一次方程的解法
1.解一元一次方程的一般步骤五号
(1)去分母:在方程的两边都乘以各分母的最小公倍数. 注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号.
(2)去括号:一般地,先去小括号,再去中括号,最后去大括号. 注意:不要漏乘括号里的项,不要弄错符号.
(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边. 注意:①移项要变号;②不要丢项.
(4)合并同类项:把方程化成 的形式. 注意:字母和其指数不变.
(5)系数化为1:在方程的两边都除以未知数的系数 ( ),得到方程的解 . 注意:不要把分子、分母搞颠倒.体五号
2.解一元一次方程常用的方法技巧 解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等.
3.关于x的方程 ax b 解的情况 ⑴当a 0时,x ⑵当a ,b 0时,方程有无数多个解 ⑶当a 0,b 0时,方程无解
练习1、等式的概念和性质
1.下列说法不正确的是( )
A.等式两边都加上一个数或一个等式,所得结果仍是等式.
B.等式两边都乘以一个数,所得结果仍是等式. C.等式两边都除以一个数,所得结果仍是等式.
D.一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式.
2.根据等式的性质填空.
(1) ,则 ; (2) ,则 ;
(3) ,则 ; (4) ,则 .
练习2、方程的相关概念
1.列各式中,哪些是等式?哪些是代数式,哪些是方程?
① ;② ;③ ;④ ;⑤ ;⑥ ;
⑦ ;⑧ ;⑨ .
2.判断题.
(1)所有的方程一定是等式. ( )
(2)所有的等式一定是方程. ( )
(3) 是方程. ( )
(4) 不是方程. ( )
(5) 不是等式,因为 与 不是相等关系. ( )
(6) 是等式,也是方程. ( )
(7)“某数的3倍与6的差”的含义是 ,它是一个代数式,而不是方程. ( )
练习3、一元一次方程的定义
1.在下列方程中哪些是一元一次方程?哪些不是?说明理由:
(1)3x+5=12; (2) + =5; (3)2x+y=3; (4)y2+5y-6=0; (5) =2.
2.已知 是关于 的一元一次方程,求 的值.
3.已知方程 是关于x的一元一次方程,则m=_________
4.已知方程 是一元一次方程,则 ; .
练习4、一元一次方程的解与解法
1)一元一次方程的解 一)、根据方程解的具体数值来确定
1.若关于x的方程 的解是 ,则代数式 的值是_________。
2.若 是方程 的一个解,则 .
3.某同学在解方程 ,把 处的数字看错了,解得 ,该同学把 看成了 .
二)、根据方程解的个数情况来确定楷体五号
1.关于 的方程 ,分别求 , 为何值时,原方程:
(1)有唯一解;(2)有无数多解;(3)无解.
2.已知关于 的方程 有无数多个解,那么 , .
3.已知方程 有两个不同的解,试求 的值.
三)、根据方程定解的情况来确定楷体五号
1.若 , 为定值,关于 的一元一次方程 ,无论 为何值时,它的解总是 ,求 和 的值.
2.当 取符合 的任意数时,式子 的值都是一个定值,其中 ,求 , 的值.
五号
四)、根据方程整数解的情况来确定楷体五号
1.已知 为整数,关于 的方程 的解为正整数,求 的值.
2.已知关于 的方程 有整数解,那么满足条件的所有整数 =
3.若方程 有一个正整数解,则 取的最小正数是多少?并求出相应方程的解.
号
五)、根据方程公共解的情况来确定
1.若 和 是关于 的同解方程,则 的值是 .
2.已知关于 的方程 ,和方程 有相同的解,求这个相同的解.
3.已知关于 的方程 仅有正整数解,并且和关于 的方程 是同解方程.若 , ,求出这个方程可能的解.
2)一元一次方程的解法 一)、基本类型的一元一次方程的解法
1.解方程:(1) (2) - =1- (3)
二)、分式中含有小数的一元一次方程的解法楷体五号
1.解方程:(1) (2)
(3) (4)
三)、含有多层括号的一元一次方程的解法体五号
1.解方程:(1) (2) (3)
四)、一元一次方程的技巧解法
1.解方程:(1) (2)
(3) (4)
一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 的值互为相反数.
4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).
A.0 B.1 C.-2 D.-
10.方程│3x│=18的解的情况是( ).
A.有一个解是6 B.有两个解,是±6
C.无解 D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足( ).
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
12.解方程 时,把分母化为整数,得( )。
A、B、C、D、
13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).
A.10分 B.15分 C.20分 D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).
A.增加10% B.减少10% C.不增也不减 D.减少1%
15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.
A.1 B.5 C.3 D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).
A.从甲组调12人去乙组 B.从乙组调4人去甲组
C.从乙组调12人去甲组 D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.
A.3 B.4 C.5 D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )
A.3个 B.4个 C.5个 D.6个
三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程:2(x-3)+3(2x-1)=5(x+3)
20.解方程:
21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.
22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).
24.某公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上
票 价 5元 4.5元 4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)
初中数学解一元二次方程知识点
解法一:因式分解法
第一步:将已知方程化为一般形式,使方程右端为 0;
第二步:将左端的二次三项式分解为两个一次因式的积;
第三步:方程左边两个因式分别为 0,得到两个一次方程,它们的解就是原方程的解.
解法二:配方法
x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0
即(x-2)^2=1
于是x=3或x=1
一般来说,一元二次方程往往可以用这样2种方法解答,特别是对配方来说,它可能更实用,普遍。
比如x^2+x-1=0
我们可能分解不出它的因式来,不过我们可以采用配方法
x^2+x-1=(x+1/2)^2-5/4=0
于是得到x=(根号5-1)/2或x=(-根号5-1)/2
小练习
1.分解因式:
(1)x2-4x=_________; (2)x-2-x(x-2)=________ (3)m2-9=________;
(4)(x+1)2-16=________
2.方程(2x+1)(x-5)=0的解是_________
3.方程2x(x-2)=3(x-2)的解是___________
4.方程(x-1)(x-2)=0的两根为x1·x2,且x1>x2,则x1-2x2的值等于_______
5.已知y=x2+x-6,当x=________时,y的值为0;当x=________时,y的值等于24. 6.方程x2+2ax-b2+a2=0的解为__________.
篇11:一元二次方程的概念教学反思
每一个数学概念都不是孤立存在的,都存在于一个相应的系统中。把某一概念置于它所存在的相应系统中进行比较,引出新概念,不但能达到对概念的深刻理解,还能深化和发展概念。本课教学时,我将一元二次方程与一元一次方程进行类比,引出一元二次方程的概念。在类比的过程中既加深了对一元二次方程概念的理解又分析了这两种方程的联系和区别。
在概念的理解上,教学时我从学生实际出发,选择一些简单的巩固练习来辨认、识别,帮助学生掌握概念的外延和内涵;通过变式深化对概念的理解;通过新旧概念的对比,分析概念的矛盾运动。。
总之,概念课的引入是概念课教学的前提,概念的理解是概念课教学的核心。重视概念教学,运用多种方式、方法调动学生感官、思维的积极性,学好用好概念是学好一切知识的基础和关键。
篇12:一元二次方程的概念教学反思
一、引导学生观察、类比、联想已学的一元一次方程、二元一次方程,归纳、总结出一元二次方程,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态之中,使新概念的得出觉得意外,让学生跳一跳就可以摘到桃子。
二、合理选材,优化教学,在教学中,忠实于教材,要研究的基础上使用教材。教学方法合理化,不拘于形式,通过一系列的活动来展开教学,发展了学生的思维能力,增强了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。
三、整节课的设计以落实双基为起点,培养学生独立思考的能力,重视知识和产生过程,关注人的发展。无论是教学环节设计,还是作业的布置上,我注意分层次教学,让每一个学生都得到不同的发展
四、为了真正做到有效的合作学习,我在活动中大胆地让学生自主完成。先让学生把问题提出来,然后让学生带着问题去讨论,这样学生在讨论时就有目的,就会事半功倍。也让不同层次的学生得到不同的发展。也符合新课程的教学理念。
不足之处:引入方面有待加强,不够激发学生的学习兴趣;板书还有待加强,应给学生做出示范;给学生思考的时间还不够。
[一元二次方程的概念教学反思]
篇13:《实际问题与一元二次方程》说课稿
今天我说课的内容是人教版初中数学九年级上册第二十二章、第22.3节《实际问题与一元二次方程》的第四课时实验与探究。它是继传播问题、百分率问题、长宽比例问题这几个基本问题的学习后的探索活动课,对于本节课我将从教材分析与学生现实分析、教学目标分析,教法的确定与学法指导,教学过程这四个方面加以阐述。
(一)教材分析与学生现实分析
一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的基础,它是研究现实世界数量关系和变化规律的重要模型。本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究体现数学建模的过程帮助学生增强应用认识。
一元二次方程解实际问题的应用相当广泛,在几何、物理及其它学科中都有应用,因此它成为了初中数学学习的重点。这种应用的广泛性能激发学生学习数学的兴趣和热情,能让学生体会到学数学、做数学、用数学的快乐,本节课主要侧重于一元二次方程在几何方面的应用
大量事实表明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。对于初中学生来说他们比较缺乏社会生活经历,收集信息处理信息的能力较弱,这就构成了本节课的难点。
(二)数学新课程标准要求:
人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的发展。
我根据新课标对方程的具体要求和初三学生的认知的特点,确定了如下教学目标的:
1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。以一元二次方程解决实际问题为载体,加强学生对数学建模的基本方法的掌握。
2、过程与方法:经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
3、情感、态度与价值观:通过用一元二次解决实际问题,体会数学知识应用的价值,了解数学对促进社会进步和发展的作用。激发学生学习数学的兴趣,体会做数学的快乐,培养用数学的意识。
篇14:用一元二次方程解决问题说课稿
今天我说课的内容是苏科版初中数学九年级上册第四章第3节《用一元二次方程解决问题》的第1课时。对于本节课我将从教材分析与学生现实分析、教学目标分析,教法与学法,教学过程这四个方面加以阐述。
一、教材分析与学生现实分析
一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的基础,它是研究现实世界数量关系和变化规律的重要模型。从宏观上来看,学生已经学习了一元一次方程、二元一次方程组、以及分式方程等知识,感受了方程模型的作用和价值,积累了一些用方程解决问题的经验,从微观而言,学生已经学过一元二次方程的解法为本节课的学习做好铺垫,同时作为第3节第一课时承上启下,直接影响后续的学习效果。本节课以实际问题为载体,借助有一定挑战性和思考性的现实问题情境,通过学生的自主探索研究,抽象出一元二次方程,体现数学建模的过程帮助学生增强应用认识。
然而,对于初中学生来说他们比较缺乏社会生活经历,收集信息处理信息的能力较弱,将实际问题提炼为数学问题是我们老师实施教学设计方案不容忽视的重难点。
二、教学目标分析
数学新课程标准要求:人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的发展。我根据新课标对方程的具体要求和初三学生的认知的特点,确定了如下教学目标:
1、知识与技能:会分析实际问题中的等量关系,并能够用一元二次方程解决问题。
2、过程与方法:经历将实际问题抽象为数学问题的.过程,知道解应用题的一般步骤和关键所在。
3、情感、态度与价值观:通过用一元二次方程解决实际问题,进一步理解方程是刻画客观世界的有效模型,培养学生在生活中发现问题,解决问题的能力。
重点:在实际问题中寻找等量关系,建立方程
难点:分析问题寻找等量关系
三、教法与学法
教师引导,学生自主探索、合作交流。课堂中,通过提供适当的问题情境促使学生的反思,引起学生必要的认知冲突,从而让学生最终通过其主动的思辨建构起新的的认知结构。
四、教学流程
一)课堂结构:
创设情境——互动探究——新知建构——练习巩固——小结提升
一)教学简要过程
1、创设情境
1)一个正方体的表面积是216cm2,求这个长方体的棱长。
2)一个直角三角形的面积是24cm2,两条直角边的差是2cm,求两条直角边长。
设计意图:心理学研究表明,当外部刺激唤起主体的情感活动时,就更容易成为注意的中心,由此我选了这样的建模较为的问题情境,提高学生探究欲望。
2、互动探究
问题串:
1)通过学生自己独立审题,找寻等量关系:棱长2×6=216cm2
直角边×直角边÷2=24cm2
2)如何设未知数,列方程?
3)怎样解方程?方程的解是否都符合题意?
设计意图:通过分析使学生感受到,先审清题意,抓准问题中的数量关系,找出相等关系,再设未知数和列方程,有利于理清思路,降低列方程解应用题的难度,从而发展学生思维能力。
3、新知构建,例题讲评
例:课本P94,组织员工旅游问题。
这一问题源于生活,具有浓厚的时代气息,但数量关系较为复杂,所以对题意的理解尤为重要。请学生独立审题,并设计问题:人数会超过30人吗?实际人均费用为多少?实际人均费用,人数与总费用有怎样的等量关系?怎样设未知数,列方程?在层层递进的问题串下帮助学生理清数量之间的关系,突破难点,建立数学模型。得到方程:[800—10(x—30)]x=28000,解方程,并引导到学生检验方程的解是否符合实际意义:“人数多于30人且不超过40人”与“人均旅游费用不得低于500元”。经历审、设、列、解、验、答六环节,培养学生用数学的意识,以及严谨客观的良好思维品质。
4、变式练习
变式:该公司有组织第二批员工到龙湾风景区旅游,并支付给旅社29250元,求该公司第二批参加旅游的员工人数。
初三学生已经有较强的知识迁移能力,通过变式练习,类比例题的解题思想方法进而帮助学生加深对新知的理解,提高解决此类问题的能力。
5、小结提升
学而不思则罔,最后引导学生回顾收获与交流感悟,帮助形成知识体系。
篇15:《实际问题与一元二次方程》说课稿
(一)说教材分析与学生现实分析
一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的基础,它是研究现实世界数量关系和变化规律的重要模型。本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究体现数学建模的过程帮助学生增强应用认识。
一元二次方程解实际问题的应用相当广泛,在几何、物理及其它学科中都有应用,因此它成为了初中数学学习的重点。这种应用的广泛性能激发学生学习数学的兴趣和热情,能让学生体会到学数学、做数学、用数学的快乐。本节课主要侧重于一元二次方程在几何方面的应用。
大量事实表明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。对于初中学生来说他们比较缺乏社会生活经历,收集信息处理信息的能力较弱,这就构成了本节课的难点。
数学新课程标准要求:人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的发展。
教学目标:
1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。以一元二次方程解决实际问题为载体,加强学生对数学建模的基本方法的掌握。
2、过程与方法:经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
3、情感、态度与价值观:通过用一元二次解决实际问题,体会数学知识应用的价值,了解数学对促进社会进步和发展的作用。激发学生学习数学的兴趣,体会做数学的快乐,培养用数学的意识。
教学重点、难点及解决措施:
重点:列一元二次方程解实际问题。
难点:发现问题中的等量关系。
教师引导,学生自主探索、合作交流。
(二)说教法的确定与学法指导
我们学校在去年实行了杜郎口中学的三三六的教学模式立体式、大容量、快节奏;自主学习三模块:预习、展示、反馈;课堂展示六环节:预习交流、明确目标、分组合作、展现提升、穿插巩固、达标测评。对于每个专题都要经历预习、展示和达标检测三个环节,经过一年的训练,学生们已经有较好的自学能力和小组合作能力,实践表明,学生给学生讲题,同学们会更有兴趣,也更容易接受,学生通过自我展示不但能激发他们的表现欲,还能提高语言表达能力和竞争意识。我们让各个小组轮流来当课堂“小老师”,以提高他们的合作水平和对试题的阅读理解能力,同学们和教师也会根据每个“小老师”讲解的具体情况来进行修正和补充,强调重点,总结规律。为了鼓励学生勤于思考,善于发问,我在课堂上引入“奖励分”制度,对于独特解法或有提出创造性问题的同学和小组给予1——3分的奖励。本节课是对一元二次方程应用的基本问题的学习后的探索活动课,在预习课上我已经下发了试题学案,并给每个小组分配了展示任务。学案上我选用了了四道实际问题,要求同学们找出试题特点和关键词语以及易错点,并用硬纸板和铁丝做出相应的试题模型。预习课上学生先做题再合作,同学们之间有充分的交流和讨论。
(三)说教学过程分析
心理学研究表明,当外部刺激唤起主体的情感活动时,就更容易成为注意的中心,由此我选了这样的几道题:
1、在信息时代,邮政特快专递越来越受到广大用户的青睐。我们同学要给“希望小学”邮寄一些学习用具,为了保证学习用具不受潮损坏,同学们决定自己制作一个包装盒,为此,选用长80厘米,宽60厘米的纸板,在四个角截出四个大小相同的正方形,然后把四边折起,做成一个底面积为1500平方厘米的无盖长方体盒子,并配上相应的盖子,同学们想一想怎样求出盒子的高?
我先让每一个小组展示用硬纸板制作的模型,相互比较形状各异的长方体的纸盒,谈一谈有什么发现,同学们会说:截出正方形的边长不同,盒子的高,底面积也不同,还有正方形的边长就是盒子的高。展示小组再将问题具体解答,不难列出方程并解出方程的解,教师追问展示小组请说出解这道题需要注意意的什么呢?学生会回答方程的一个解并不一定符合题意,需要舍掉,教师强调指出要结合题目的已知条件正确决定一元二次方程两个根的取舍问题。
设置这道题就完成了新课标中的要求能根据具体问题的实际意义,检验结果是否合理的教学目标。
2、用一根长22厘米的铁丝折成一个面积为30平方厘米的长方形,求这个长方形的长和宽。
我还是先让每个小组展示用铁丝折成的不同形状的长方形,比较一下,你有什么发现,同学们会说:
1、铁丝的长度就是矩形的周长;
2、周长相等的矩形可能面积不等;
3、当长与宽的差越大时其面积越小,当长与宽的差越小时其面积越大,从而得出周长一定时正方形的面积最大的结论。
教师对同学们的发现给予充分的肯定,然后由展示小组讲解本题具体解题过程,教师追问请同学们思考能折成面积为32平方厘米的长方形么?给同学们3分钟的时间思考并讨论。
教学预设:学生可能列出方程,从的根的判别式小于零来说明不能折成面积为32平方厘米的长方形。也可能根据刚刚得到的结论周长一定时正方形的面积最大这一特性来解释,正方形的边长为5、5厘米,此时面积最大是30、25平方厘米小于32平方厘米,所以不能完成。若是学生没有想到,教师可适当提示。这道题让学生经历从具体的情景中抽象出一元二次方程模型的过程,总结具体问题中的数量关系和变化规律,即复习了根的判别式知识,又培养了学生的估算能力,还让学生感受到了函数的最值和极限的思想。
3、有一个面积为150平方米的长方形鸡场,一边靠墙,墙的'长度为18米,另外三边用竹篱笆围成,如果竹篱笆的长35米,求鸡场的长和宽各是多少?如果墙的对面有一扇2米的门,竹篱笆的长不变,此时鸡场的长和宽是多少呢?
教师首先提问展示小组解答这道试题与上道试题与什么区别和要注意些什么,展示的小组学生会说鸡场这个长方形的周长不是四边,而是三边之和,而且要注意第二问中周长应是竹篱笆的长加上门的宽度,学生们也不难列出方程。选用这道题是让学生认识到仔细审题,抓住关键词语的重要性,同时也让同学们感受到一元二次方程应用的广泛性。
4、学校为美化校园,准备在长为32米,宽20米的长方形场地上修筑宽度一样的道路,余下的部分作草坪,要求草坪为540平方米,你能帮助学校设计一套方案么?请展示你的设计并计算一下设计方案中,道路的宽是多少米?(要求多种方案)
我觉得将学生置于学校的生活环境中他们会觉得亲切熟悉,参与性更强。同学们可能会提出多种设计方案,例如:图片。教师展示小组如何能得到草坪的面积?他们不难回答出:草坪面积等于场地面积减去道路面积,教师要引导学生发现其规律:无论道路的位置在哪里,我们都可以将分割的四个草坪合成一个整体,道路的面积与道路的位置没有关系,而是与道路的形状有关系。为了研究问题的方便,我们可以把道路移动到场地的边缘,这是对学生渗透划归的思想。教学预设:学生们还可能提出以下的方案,(图案)我们可以让学生讨论他们的合理性。对于不能解决的问题,我们要告诉学生有些方案以我们现在的知识还不能解决,有些方案要同学们附加一些条件按照自己的意图,来解决,还要考虑美观合理性。我们可以课下继续研究讨论。这个试题能使学生产生了积极的情感体验,激发了学生从多角度去思考问题,体会到了解决问题中与他人合作的重要性,通过对解决问题的过程的反思获得了解决的经验,充分发挥了学生的主体地位,有效地培养了学生的创新精神,同学间的互助精神也得到了发扬。
然后是小结环节,由学生来完成,总结出:
1、用一元二次方程解决实际问题均可借助图示法加以分析,关键搞清已知与未知之间的关系。
2、要仔细审题,理解题意中的已知条件,并结合实际,正确决定一元二次方程两个根的取舍问题。
小结归纳,上升到理性,巩固本节课的重点。
最后是布置作业:
1、教科书49页第9题 53页第5题 55页第11题
2、做一个社会,调查自己编一道实际生活中有关一元二次方程的问题,并给予解决。
布置的作业内容一是本节课内容的练习和拓展,内容二是为学生创设富有挑战性、具有现实意义的问题情境,使学生感受到数学问题来源于生活实际,而生活本身就是一个巨大的数学课堂。同学们通过实践来认证书本的知识,同时又加深对书本知识的理解。
我希望学生们能通过以上这几个环节感受到这是一堂愉快的合作,深刻的理解,活跃的讨论,轻松的记忆的数学课。
★ 一元二次方程教案
★ 初中数学说课稿
初中数学《一元二次方程的概念》说课稿(推荐15篇)




