一元二次方程的解法配方法教学设计

时间:2018-01-11 19:59:56 作者:逗你玩儿呢 教学设计 收藏本文 下载本文

“逗你玩儿呢”通过精心收集,向本站投稿了19篇一元二次方程的解法配方法教学设计,以下是小编整理后的一元二次方程的解法配方法教学设计,欢迎阅读分享,希望对您有所帮助。

篇1:§12.2 一元二次方程的解法2——配方法

§12.2 一元二次方程的解法(2)——配方法

[课    题] §12.2 一元二次方程的解法(2)——配方法[教学目的]  使学生掌握配方法的推导过程,能够熟练地进行配方;使学生会用配方法解数字系数的一元二次方程。[教学重点]  掌握配方法的推导过程,能够熟练地进行配方。[教学难点]  掌握配方法的推导过程,能够熟练地进行一元二次方程一般形式ax2+bx+c=0(a≠0)的配方。[教学关键]  会用配方法解数字系数的一元二次方程。[教学用具]  [教学形式]  讲练结合法。[教学用时]  45′×1 [教学过程][复习提问] 1、在(x+3)2=2中,x+3与2的关系是什么?(x+3是2的平方根。)2、试将方程的左边展开、移项、合并同类项。(x2+6 x+9=2,x2+6 x+7=0。)[讲解新课]现在,我们来研究方程:x2+6 x+7=0的解法。我们知道,方程:x2+6 x+7=0是由方程:(x+3)2=2变形得到的,因此,要解方程:x2+6 x+7=0应当如何变形?这里要求学生做尝试回答:要解方程:x2+6x+7=0,最好将其变形为:(x+3)2=2。这是因为,我们会用直接开平方法解方程:(x+3)2=2了。下面重点研究如何将方程:x2+6 x+7=0,变形为:(x+3)2=2。这里,不是只研究这一道题解法的问题,而是注意启发学生找出一般性规律。将方程:x2+6 x+7=0的常数项移到右边,并将一次项6x改写成2·x·3,得:x2+2·x·3=-7。由此可以看出,为使左边成为完全平方式,只需在方程两边都加上32,即:x2+2·x·3+32=-7+32,(x+3)2=2。解这个方程,得:x1=-3+ ,x2=-3- 。随后提出:这种解一元二次方程的方法叫做配方法。很明显,掌握这种方法的关键是“配方”。上述引例以及列3,二次项系数都是1,而例4,二次项的.系数不是1,这时,要将方程的两边都除以二次项的系数,就把该方程的二次项系数变成1了。这样,“配方”就容易了。让学生做练习:1、x2+6x+      =(x+    )2;(9,3)2、x2-5x+     =(x-    )2;( , )3、x2+ x+      =(x+    )2;( , )例3  解方程:x2-4 x-3=0。解:略。例4  解方程:2x2+3=7 x。解:略。说明:在讲解完这两个例题之后,一方面是利用“配方法”求出一元二次方程的解,另一方面是通过求解过程使学生掌握“配方”的方法。讲解应突出重点,对容易出错的地主应给予较多的讲解。如例4的解方程:2x2+3=7 x,在“分析”中指出,应先把这个方程化成一般形式:2x2-7 x +3=0。其次,这个方程的二次项系数是2,为了便于配方,可把二次项系数化为1,为此,把方程的各项都除以2,并移项,得:x2- x=- ;下一步应是配方。这里,一次项的系数是(- ),它的一半的平方是(- )2。学生在这里容易出错。讲解时,应提醒学生注意。我们知道,配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法,而用公式法。但是,配方法是导出公式法——求根公式的关键,在以后的学习中,会常常用到配方法,所以掌握这个数学方法是重要的。[课堂练习]教科书第10页练习第1,2题。[课堂小结]这堂课我们主要学习了用配方法解数字系数的一元二次方程,配方的关键是:在方程的两边都加上一次项系数一半的平方。请同学们回去后,用配方法解一下关于x的方程:ax2+bx+c=0(a≠0)。(此题为下一课讲解作准备,可指定一些同学做,从中了解在公式推导过程中存在的问题。)[课外作业]教科书第15页习题12.1A组第3,4题。[板书设计]

课题:     例题:辅助板书:

[课后记]通过本节课的学习,多数学生对配方法解一元二次方程基本掌握,但有一部分学生对一元二次方程一般式的配方法掌握的不好,希望课后多加练习。

篇2:《一元二次方程解法》教学反思

一、配方法解方程教学反思

本节共分3课时,第一课时引导学生通过转化得到解一元二次方程的配方法,第二课时利用配方法解数字系数的一般一元二次方程,第3课时通过实际问题的解决,培养学生数学应用的意识和能力,同时又进一步训练用配方法解题的技能。

在教学中最关键的是让学生掌握配方,配方的对象是含有未知数的二次三项式,其理论依据是完全平方式,配方的方法是通过添项:加上一次项系数一半的平方构成完全平方式,对学生来说,要理解和掌握它,确实感到困难,因此在教学过程中及课后批改中发现学生出现以下几个问题:

在利用添项来使等式左边配成一个完全平方公式时,等式的右边忘了加。

在开平方这一步骤中,学生要么只有正、没有负的,要么右边忘了开方。

当一元二次方程有二次项的系数不为1时,在添项这一步骤时,没有将系数化为1,就直接加上一次项系数一半的平方。

因此,要纠正以上错误,必须让学生多做练习、上台表演、当场讲评,才能熟练掌握。

二、用公式法解一元二次方程教学反思

通过本节课的教学,使我真正认识到了自己课堂教学的成功与失败。对我今后课堂教学有了一定引领方向有了很大的帮助。下面我就谈谈自己对这节课的反思。

本节课的重点主要有以下3点:

1.找出a,b,c的相应的数值。

2. 验判别式是否大于等于03. 当判别式的数值符合条件,可以利用公式求根。

在讲解过程中,我没让学生进行(1)(2)步就直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多。

其实在做题过程中检验一下判别式着一步单独挑出来做并不麻烦,直接用公式求值也要进行,提前做着一步在到求根公式时可以把数值直接代入.在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果。

3、板书不太理想。板书可以说在课堂教学也起关键作用,它可以帮学生温习本课的内容,而我许多本该板书的内容全部反映在大屏幕上,在继续讲一下个内容时,这些内容也就不会再出现,只给学生瞬间的停留,这样做也有欠妥当。

4、本节课没有激情,学习的积极性调动不起来,对学生地鼓励性的语言过于少,可以说几乎没有。

三、分解因式法解一元二次方程的教学反思

教学时可以让学生先各自求解,然后进行交流并对学生的方法与课本上对小颖、小明、小亮的方法进行比较与评析,发现分解因式是解某些一元二次方程较为简便的方法。利用分解因式法解题时。很多同学在解题时易犯的错误是进行了非同解变形,结果丢掉一根,对此教学时只能结合具体方程予以说明,另外,本节课学生易忽略一点是“或”与“且”的区别,应做些说明。

对于学有余力的学生可以介绍十字相乘法,它对二次三项式分解因式简便。

通过以上的反思,我将在以后的教学中对自己存在的优点我会继续保持,针对不足我将会不断地改进,使自己的课堂教学逐步走上一个新的台阶。

篇3:《一元二次方程解法》教学反思

一、一元二次方程的解法之间的比较:

1、直接开平方法应用简单,但受形式限制;开平方的时候要注意正负。

2、配方法较麻烦,用公式法更方便,故一般不采用。但配方法是一种较重要的数学方法,公式法就是由它推导出来的,而且在后面的函数中还要用到配方法,所以要掌握好。它的重要性,不仅仅表现在一元二次方程的解法中,在今后学习二次函数,到高中学习二次曲线时还将经常用到。配方的时候,要注意二次项系数应先化为1,再把常数项移到式子的右边,然后把方程两边都加上一次项系数一半的平方;左边就变成了一个平方的形式,再运用直接开平方的方法求出方程的解。

3、公式法是一元二次方程的基本解法,对所有的一元二次方程都适用;用公式法的时候要先把方程变为一般形式,在求出方程的判别式,最后用公式求出方程的解。

4、因式分解法使用方便,是解一元二次方程最常用的方法,但不是所有的二次三项式都能很方便地进行因式分解。应用时要注意,等号的右边一定要为0,然后再把方程的`左边进行因式分解,将方程左边分解成两个一次因式的乘积的形式,令每个因式分别为零,得到两个一元一次方程,解每个方程就求出了原方程的解。

二、一元二次方程的解法选用:

1、先观察能否用直接开平方法,能用就优先采用;

2、再观察能否用因式分解法;

3、用公式法。

篇4:《一元二次方程解法》教学反思

利用求根公式解一元二次方程的一般步骤:

1、找出a,b,c的相应的数值。

2、验判别式是否大于等于0。

3、当判别式的数值符合条件,可以利用公式求根、学生第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多。

其实在做题过程中检验一下判别式这一步单独提出来做并不麻烦,直接用公式求值也要进行,提前做这一步在到求根公式时可以把数值直接代入、在今后的教学中注意详略得当,不该省的地方一定不能省,力求达到更好的教学效果。

通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,激发了学生思维的火花,具体有以下几个特点:

本节课第一个例题,我在引导解决此题之后,总结了利用求根公式解一元二次方程的一般步骤,不仅关注结果更关注过程,让学生养成良好的解题习惯。

例2、3是例1的变式与提高,通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力提高,这是这节课中的一大亮点,在讲完例题的基础上,将更多的时间留给学生,这样学生感觉到成功的机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流,相互学习,共同提高。

课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。总之通过各种激励的教学手段,帮助学生形成积极的学习态度,课堂收效大。

需要改进的方面,由于怕完不成任务,教师讲的还是多了些,以后应最大限度的发挥学生的主体作用。

篇5:《一元二次方程解法》教学反思

本节课充分发挥了学生的主题地位,让学生尽可能的参与教学,参与小组讨论,提高学生“我是课堂主人”的认知,课堂上看似学生学的很认真,但从学生做题情况来看,并没有理解因式分解法解一元二次方程的关键:把所有的项移到方程左端,右边为0,再对左边进行因式分解,由于0乘任何数都得0,因此才有两个一次因式分别为0的这一步,感觉学生学习好像囫囵吞枣,并没有理解真正含义,懒得取分析算理,导致出错。

因此,在后续的教学中,我们更应该关注的是学生是否掌握了本质——算理,而不能只局限于学生的参与度。学生课堂上的活跃很容易给我们一种假象,看似热闹的背后,值得我们深思,优生可能更优秀,学困生可能更落后,这样,学生的两级分化会更严重。所以,对于简单内容的教学,尤其是运算,我们更应该关注的是让学生理解算理,运用算理进行相关计算,而不是机械的套用公式,只有理解了算理,学生才能做到举一反三,触类旁通。

篇6:《一元二次方程解法》教学反思

《一元二次方程解法》教学反思

一、配方法解方程教学反思

本节共分3课时,第一课时引导学生通过转化得到解一元二次方程的配方法,第二课时利用配方法解数字系数的一般一元二次方程,第3课时通过实际问题的解决,培养学生数学应用的意识和能力,同时又进一步训练用配方法解题的技能。

在教学中最关键的是让学生掌握配方,配方的对象是含有未知数的二次三项式,其理论依据是完全平方式,配方的方法是通过添项:加上一次项系数一半的平方构成完全平方式,对学生来说,要理解和掌握它,确实感到困难,因此在教学过程中及课后批改中发现学生出现以下几个问题:

在利用添项来使等式左边配成一个完全平方公式时,等式的右边忘了加。

在开平方这一步骤中,学生要么只有正、没有负的,要么右边忘了开方。

当一元二次方程有二次项的系数不为1时,在添项这一步骤时,没有将系数化为1,就直接加上一次项系数一半的平方。

因此,要纠正以上错误,必须让学生多做练习、上台表演、当场讲评,才能熟练掌握。

二、用公式法解一元二次方程教学反思

通过本节课的教学,使我真正认识到了自己课堂教学的成功与失败。对我今后课堂教学有了一定引领方向有了很大的帮助。下面我就谈谈自己对这节课的反思。

本节课的重点主要有以下3点:

1. 找出a,b,c的相应的数值2. 验判别式是否大于等于03. 当判别式的数值符合条件,可以利用公式求根.

在讲解过程中,我没让学生进行(1)(2)步就直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多.

1. a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号

2. 求根公式本身就很难,形式复杂,代入数值后出错很多.

其实在做题过程中检验一下判别式着一步单独挑出来做并不麻烦,直接用公式求值也要进行,提前做着一步在到求根公式时可以把数值直接代入.在今后的教学中注意详略得当,不该省的'地方一定不能省,力求收到更好的教学效果

3、板书不太理想。板书可以说在课堂教学也起关键作用,它可以帮学生温习本课的内容,而我许多本该板书的内容全部反映在大屏幕上,在继续讲一下个内容时,这些内容也就不会再出现,只给学生瞬间的停留,这样做也有欠妥当。

4、本节课没有激情,学习的积极性调动不起来,对学生地鼓励性的语言过于少,可以说几乎没有。

三、分解因式法解一元二次方程的教学反思

教学时可以让学生先各自求解,然后进行交流并对学生的方法与课本上对小颖、小明、小亮的方法进行比较与评析,发现分解因式是解某些一元二次方程较为简便的方法。利用分解因式法解题时。很多同学在解题时易犯的错误是进行了非同解变形,结果丢掉一根,对此教学时只能结合具体方程予以说明,另外,本节课学生易忽略一点是“或”与“且”的区别,应做些说明。

对于学有余力的学生可以介绍十字相乘法,它对二次三项式分解因式简便。

通过以上的反思,我将在以后的教学中对自己存在的优点我会继续保持,针对不足我将会不断地改进,使自己的课堂教学逐步走上一个新的台阶。

篇7:一元二次方程的解法

难点:选择恰当的方法解一元二次方程。

教学建议:

一、教材分析:

1.知识结构:一元二次方程的解法

2.重点、难点分析

(1)熟练掌握开平方法解一元二次方程

用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。

如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程 , 和方程 就可以直接开平方法求解,在开平方时注意取正、负两个平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为 的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。

(2)熟记求根公式 ( )和公式中字母的意义在使用求根公式时要注意以下三点:

1)把方程化为一般形式,并做到 、 、 之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。

2)把一元二次方程的各项系数 、 、 代入公式时,注意它们的符号。

3)当 时,才能求出方程的`两根。

(3)抓住方程特点,选用因式分解法解一元二次方程

如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。

我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。

二、教法建议

1. 教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.

2. 注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.

教学设计示例

教学目标

1. 使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0, b≠0, c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;

2. 在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;

3. 在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。

教学重点和难点

重点:掌握用配方法解一元二次方程。

难点:凑配成完全平方的方法与技巧。

教学过程设计

一 复习

1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)

2.不完全一元二次方程的哪几种形式?

(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))

3.对于前两种不完全的一元二次方程ax2=0 (a≠0)和ax2+c=0 (a≠0),我们已经学会了它们的解法。

特别是结合换元法,我们还会解形如(x+m) 2=n(n≥0)的方程。

例  解方程:(x-3) 2=4  (让学生说出过程)。

解:方程两边开方,得  x-3=±2,移项,得  x=3±2。

所以  x1=5,x2=1.      (并代回原方程检验,是不是根)

4.其实(x-3) 2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)

(x-3) 2=4,     ①

x2-6x+9=4,   ②

x2-6x+5=0.    ③

二 新课

1.逆向思维

我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m) 2=n的形式。这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m) 2。

2.通过观察,发现规律

问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。   (添一项+1)

即   (x2+2x+1)=(x+1) 2.

练习,填空:

x2+4x+( )=(x+  ) 2;     y2+6y+(  )=(y+  ) 2.

算理  x2+4x=2x・2?,所以添2的平方,y2+6y=y2+2y3?,所以添3的平方。

总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即 .+ ( ) ④

(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次

项,括号内第二项的平方,恰是配方时所添的常数项)

项固练习(填空配方)

总之,左边的常数项是一次项系数一半的平方。

问:如果左边的一次项系数是负数,那么右边括号里第二项的正负号怎么取?算理是什么?

巩固练习(填空配方)

x2-bx+(  )=(x-  ) 2;            x2-(m+n)x+(  )=(x-  ) 2.

篇8:一元二次方程的解法

教学目标

1.  初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如 的方程;

2.  初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;

3.  掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;

4.  会用因式分解法解某些一元二次方程。

5.  通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。

教学重点和难点

重点:一元二次方程的四种解法。

难点:选择恰当的方法解一元二次方程。

教学建议:

一、教材分析:

1.知识结构:

2.重点、难点分析

(1)熟练掌握开平方法解一元二次方程

用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。

如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程 , 和方程 就可以直接开平方法求解,在开平方时注意取正、负两个平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为 的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。

(2)熟记求根公式 ( )和公式中字母的意义在使用求根公式时要注意以下三点:

1)把方程化为一般形式,并做到 、、之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。

2)把一元二次方程的各项系数 、、代入公式时,注意它们的符号。

3)当 时,才能求出方程的两根。

(3)抓住方程特点,选用因式分解法解一元二次方程

如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。

我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。

二、教法建议

1.教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.

2. 注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.

第 1 2 页

篇9:一元二次方程的解法

教学目标

1.  初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如 的方程;

2.  初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;

3.  掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;

4.  会用因式分解法解某些一元二次方程。

5.  通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。

教学重点和难点

重点:一元二次方程的四种解法。

难点:选择恰当的方法解一元二次方程。

教学建议:

一、教材分析:

1.知识结构:

2.重点、难点分析

(1)熟练掌握开平方法解一元二次方程

用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。

如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程 , 和方程 就可以直接开平方法求解,在开平方时注意取正、负两个平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为 的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。

(2)熟记求根公式 ( )和公式中字母的意义在使用求根公式时要注意以下三点:

1)把方程化为一般形式,并做到 、、之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。

2)把一元二次方程的各项系数 、、代入公式时,注意它们的符号。

3)当 时,才能求出方程的两根。

(3)抓住方程特点,选用因式分解法解一元二次方程

如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。

我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。

二、教法建议

1.教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.

2. 注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.

教学设计示例

教学目标

1. 使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0, b≠0, c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;

2. 在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;

3. 在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。

教学重点和难点

重点:掌握用配方法解一元二次方程。

难点:凑配成完全平方的方法与技巧。

教学过程设计

一 复习

1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)

2.不完全一元二次方程的哪几种形式?

(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))

3.对于前两种不完全的一元二次方程ax2=0 (a≠0)和ax2+c=0 (a≠0),我们已经学会了它们的解法。

特别是结合换元法,我们还会解形如(x+m) 2=n(n≥0)的方程。

例  解方程:(x-3) 2=4  (让学生说出过程)。

解:方程两边开方,得  x-3=±2,移项,得  x=3±2。

所以  x1=5,x2=1.      (并代回原方程检验,是不是根)

4.其实(x-3) 2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)

(x-3) 2=4,     ①

x2-6x+9=4,   ②

x2-6x+5=0.    ③

二 新课

1.逆向思维

我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m) 2=n的形式。这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m) 2。

2.通过观察,发现规律

问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。   (添一项+1)

即   (x2+2x+1)=(x+1) 2.

练习,填空:

x2+4x+( )=(x+  ) 2;     y2+6y+(  )=(y+  ) 2.

算理  x2+4x=2x·2,所以添2的平方,y2+6y=y2+2y3,所以添3的平方。

总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即 .+ ( ) ④

(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次

项,括号内第二项的平方,恰是配方时所添的常数项)

项固练习(填空配方)

总之,左边的常数项是一次项系数一半的平方。

问:如果左边的一次项系数是负数,那么右边括号里第二项的正负号怎么取?算理是什么?

巩固练习(填空配方)

x2-bx+(  )=(x-  ) 2;            x2-(m+n)x+(  )=(x-  ) 2.

篇10:一元二次方程的解法

教学目标

1.  初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如 的方程;

2.  初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;

3.  掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;

4.  会用因式分解法解某些一元二次方程。

5.  通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。

教学重点和难点

篇11:一元二次方程的解法

2.重点、难点分析

(1)熟练掌握开平方法解一元二次方程

用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。

如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程 , 和方程 就可以直接开平方法求解,在开平方时注意取正、负两个平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为 的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。

(2)熟记求根公式 ( )和公式中字母的意义在使用求根公式时要注意以下三点:

1)把方程化为一般形式,并做到 、、之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。

2)把一元二次方程的各项系数 、、代入公式时,注意它们的符号。

3)当 时,才能求出方程的两根。

(3)抓住方程特点,选用因式分解法解一元二次方程

如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。

我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。

二、教法建议

1. 教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.

2. 注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.

教学设计示例

教学目标

1. 使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0, b≠0, c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;

2. 在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;

3. 在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。

教学重点和难点

重点:掌握用配方法解一元二次方程。

难点:凑配成完全平方的方法与技巧。

教学过程 设计

一 复习

1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)

2.不完全一元二次方程的哪几种形式?

(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))

3.对于前两种不完全的一元二次方程ax2=0 (a≠0)和ax2+c=0 (a≠0),我们已经学会了它们的解法。

特别是结合换元法,我们还会解形如(x+m) 2=n(n≥0)的方程。

例  解方程:(x-3) 2=4  (让学生说出过程)。

解:方程两边开方,得  x-3=±2,移项,得  x=3±2。

所以  x1=5,x2=1.      (并代回原方程检验,是不是根)

4.其实(x-3) 2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)

(x-3) 2=4,     ①

x2-6x+9=4,   ②

x2-6x+5=0.    ③

二 新课

1.逆向思维

我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m) 2=n的形式。这个转化的关键是在方程左端构造出一个未知数的'一次式的完全平方式(x+m) 2。

2.通过观察,发现规律

问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。   (添一项+1)

即   (x2+2x+1)=(x+1) 2.

练习,填空:

x2+4x+( )=(x+  ) 2;     y2+6y+(  )=(y+  ) 2.

算理  x2+4x=2x・2?,所以添2的平方,y2+6y=y2+2y3?,所以添3的平方。

总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即 .+ ( ) ④

(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次

项,括号内第二项的平方,恰是配方时所添的常数项)

项固练习(填空配方)

总之,左边的常数项是一次项系数一半的平方。

问:如果左边的一次项系数是负数,那么右边括号里第二项的正负号怎么取?算理是什么?

巩固练习(填空配方)

x2-bx+(  )=(x-  ) 2;            x2-(m+n)x+(  )=(x-  ) 2.

篇12:一元二次方程的解法

一元二次方程的解法 - 初中数学第三册教案

课题名称

§13、3公式法

课型

新授课

课时安排

1/1

教学目标

1、经历探索一元二次方程的求根公式的过程,掌握公式特点并根据公式会解一元二次方程。

重点、难点

根据公式会解一元二次方程

策略和方法

讲练结合

课前准备

课前预习

配方法

教学媒体

投影仪

教学程序

教学内容

教师活动

学生活动

备注

一、

我们发现,利用配方法解一元二次方程的基本步骤是相同的。因此,如果能用配方法解一般的`一元二次方程aχ+bχ+c=0(a≠0),得到根的一般表达式,那么再解一元二次方程时,就会方便简洁得多。

你能用配方法解方程aχ+bχ+c=0(a≠0)吗?

小亮是这样做的:

aχ+bχ+c=0(a≠0)

两边都除以a

χ+b/aχ+c/a=0

配方

如果b-4ac≥0

一般的,对于一元二次方程aχ+bχ+c=0(a≠0),当b-4ac≥0时,它的根是:

上面这个式子称为一元二次方程的求根公式。用求根公式解一元二次方程的方法叫做公式法。

公式法实际上是配方法的一般化和程式化,利用他可以更为便捷的解一元二次方程。

公式法的意义在于,对于任意的一元二次方程,只要将方程化成一般形式,就可以直接代入公式求解。他的依据就是配方法。

学生可自主探索求根公式。

牢记公式

二、

例  解方程:χ-7χ-18=0

解:这里a=1,b=-7,c=-18

∵b-4ac=(-7)-4×1×(-18)=121>0

随堂练习:

1、用公式法解下列方程:

(1)2χ-9χ+8=0

(2)9χ+6χ+1=0

(3)16χ+8χ=3

2、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长。

作业 :习题2.6   1、2

要求学生先找出a,b,c,对b-4ac进行验证,然后代入公式,熟练后可简化步骤

解方程

课后记

根据公式会解一元二次方程

课题名称

§13、3公式法

课型

新授课

课时安排

1/1

教学目标

1、经历探索一元二次方程的求根公式的过程,掌握公式特点并根据公式会解一元二次方程。

重点、难点

根据公式会解一元二次方程

策略和方法

讲练结合

课前准备

课前预习

配方法

教学媒体

投影仪

教学程序

教学内容

教师活动

学生活动

备注

一、

我们发现,利用配方法解一元二次方程的基本步骤是相同的。因此,如果能用配方法解一般的一元二次方程aχ+bχ+c=0(a≠0),得到根的一般表达式,那么再解一元二次方程时,就会方便简洁得多。

你能用配方法解方程aχ+bχ+c=0(a≠0)吗?

小亮是这样做的:

aχ+bχ+c=0(a≠0)

两边都除以a

χ+b/aχ+c/a=0

配方

如果b-4ac≥0

<

篇13:配方法解一元二次方程教学反思

配方法解一元二次方程教学反思

在“一元二次方程”这一章里,《配方法》是作为解一元二次方程的第三种解法出现的,学生往往会把配方法和前面学过的直接开平方法以及因式分解法等同理解,所以在用配方法解题时只是简单模仿老师的解题步骤,对为什么要配方理解不到位,因此在需要用配方法证明一个代数式一定为正数或负数时往往不知所措。而我认为配方法更多的是一种代数式变形的技巧,她可以为解一元二次方程服务,但不仅仅只是一种解方程的方法。事实上,一个一元二次方程在配方后还是要结合直接开平方法才能解出方程的解。

我在讲这部分内容时遇到这样的题目:“试说明代数式的值恒大于0”时,考虑到学生理解上会有问题,我把这个问题肢解为如下几个小问题来处理:

师:“代数式的.值恒大于0”中的“恒大于0”是什么意思?

生:就是永远大于0的意思。

师:你见过无论字母取什么值时值都大于0的代数式吗?试举例。

(学生交头接耳,有人明显不相信,也有少数人想到,显得很得意的样子…)

生:比如,等

(其余同学豁然大悟,原来并不陌生,接触过很多了,还可以说出很多类似的多项式)

师:所给代数式与你所举的例子间有什么差异?哪一种形式更有利于说明“恒大于0”?

生:当然是所举的例子的形式更方便说明代数式恒大于0。

师:那么如何把原代数式的形式写成你们所举例子的形式呢?

生:配方!

……

如此处理,则把原来一个比较难理解的问题分解为一个个学生能理解的小问题逐个击破,学生不但对这类题目理解深刻,并且也对配方法的意义理解更深刻了,从课后作业看,效果良好。

篇14:《一元二次方程的解法》的教学反思

《一元二次方程的解法》的教学反思

(1)一元二次方程是研究现实世界数量关系和变化规律的重要模型,引课时从生活中常见的“梯子问题”出发,根据学生应用勾股定理时所列方程的不同,引导学生对所列方程的解法展开讨论,进而获得开平方法。引课时力求体现“问题情境――建立数学模型――解释、应用与拓展”的模式,注重数学知识的形成与应用过程。

(2)如何配方是本节课的教学重点与难点,在进行这一块内容的`教学时,教师提出具有一定跨度的问题串引导学生进行自主探索;提供充分探索与交流的空间;在巩固、应用配方法时,从一元二次方程二次项系数为1讲到二次项系数不为1的情况,从方程的配方讲到代数式的配方与证明,呈现形式丰富多彩,教学内容的编排螺旋式上升。这既提高了学生的学习兴趣,又加深了对所学知识的理解。

篇15:一元二次方程配方法解题步骤

配方法的`实际应用

配方法除了可以用来解一元二次方程之外还可以应用于以下方面:

1、用于比较大小:通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小。

2、用于求待定字母的值:将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值。

3、用于求最值:将原式化成一个完全平方式后可求出最值。

4.用于证明:“配方法”在代数证明、二次函数中有着广泛的应用。

篇16:一元二次方程教学设计

教学目标:

(一)知识与技能:

1、理解并掌握用配方法解简单的一元二次方程。

2、能利用配方法解决实际问题,增强学生的数学应用意识和能力。

(二)过程与方法目标:

1、经历探索利用配方法解一元二次方程的过程,使学生体会到转化的数学思想。

2、在理解配方法的基础上,熟练应用配方法解一元二次方程的过程,培养学生用转化的数学思想解决实际问题的能力。

(三)情感,态度与价值观

启发学生学会观察,分析,寻找解题的途径,提高学生分析问题,解决问题的能力。

教学重点、难点:

重点:理解并掌握配方法,能够灵活运用用配方法解一元二次方程。

难点:通过配方把一元二次方程转化为(x+m)2=n(n≥0)的形式。

教学方法:根据教学内容的特点及学生的年龄、心理特征及已有的知识水平,本节课采用问题教学和对比教学法,用“创设情境――建立数学模型――巩固与运用――反思、拓展”来展示教学活动。

教学过程

学生活动

设计意图

一 复习旧知

用直接开平方法解下列方程:

(1)9x2=4 (2)( x+3)2=0

总结:上节课我们学习了用直接开平方法解形如(x+m)2=n(n≥0)的方程。

二 创设情境,设疑引新

在实际生活中,我们常常会遇到一些问题,需要用一元二次方程来解决。

例:小明用一段长为 20米的竹篱笆围成一个矩形,怎样设计才可以使得矩形的面积为9米?

三 新知探究

1 提问:这样的方程你能解吗?

x2+6x+9=0 ①

2、提问:这样的方程你能解吗?

x2+6x+4=0 ②

思考:方程②与方程①有什么不同?能否把它化成方程①的形式呢?

归纳总结配方法:

通过配成完全平方式的方法,得到一元二次方程的解,这样的解法叫做配方法。

配方法的依据:完全平方公式

配方法的关键:给方程的两边同时加上一次项系数一半的平方

点拨:先通过移项将方程左边化为x2+ax形式,然后两边同时加上一次项系数一半的平方进行配方,然后直接开平方求解。

四 合作讨论,自主探究

1、配方训练

(1) x2+12x+( )=(x+6)2

(2) x2-12x+( )=(x- )2

(3) x2+8x+( )=(x+ )2

(4) x2+mx+( )=(x+ )2

强调:当一次项系数为负数或分数时,要注意运算的准确性。

2、将下列方程化为(x+m)2=n

(n≥0)的形式并计算出X值。

(1)x2-4x+3=0

(2)x2+3x-1=0

解:X2-4X+3=0

移向:得X2-4X=-3

配方:得X2-4X+2^2=-3+2^2(两边同时加上一次项系数一半的平方)

即:(X-2)2=1

开平方,得:X-2=1或X-2=-1

所以:X=3或X=1

方程(2)有学生完成。

3、巩固训练:课本55页随堂练习第一题。

五 小结

1、用配方法解二次项系数为一的一元二次方程的基本思路:先将方程化为(x+m)2=n(n≥0)的形式,然后两边开平方就可以得到方程的解。

2、用配方法解二次项系数为一的一元二次方程的一般步骤:

(1) 移项(常数项移到方程右边)

(2) 配方(方程两边都加上一次项系数的一半的平方)

(3) 开平方

(4) 解出方程的根

六 布置作业

习题2.3第1,2题

两个学生黑板上那解题,剩余学生练习本上计算。

学生观看课件,思考老师提出的问题,得到:设该矩形的长为x米,依题意得

x(10-x)=9

但是发现所列方程无法用直接开平方法解。于是引入新课。

学生通过观察发现,方程的左边是一个完全平方式,可以化为( x+3)2=0,然后就可以运用上节课学过的直接开平方法解了。

方程②的左边不是一个完全平方式,于是不能直接开平方。学生陷入思考,给学生充分思考、交流的时间和空间。

在学生思考的时候,老师引导学生将方程②与方程①进行对比分析,然后得到:

x2+6x=-4

x2+6x+9=-4+9

(x+3)2=5

从而可以用直接开平方法解,给出完整的解题过程。

在学生充分思考、讨论的基础上总结:配方时,常数项为一次项系数的一半的平方。

检查学生的练习情况。小组合作交流。

学生归纳后教师再做相应的补充和强调。

学生分组完成方程(2)和课后随堂练习第一题

学生分组总结本节课知识内容。

篇17:一元二次方程教学设计

一、素质教育目标

(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题.

(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识.

二、教学重点、难点

1.教学重点:学会用列方程的方法解决有关增长率问题.

2.教学难点:有关增长率之间的数量关系.下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了.

三、教学步骤

(一)明确目标.

(二)整体感知

(三)重点、难点的学习和目标完成过程

1.复习提问

(1)原产量+增产量=实际产量。

(2)单位时间增产量=原产量×增长率。

(3)实际产量=原产量×(1+增长率)。

2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?

分析:设平均每月的增长率为x

则2月份的产量是5000+5000x=5000(1+x)(吨)。

3月份的产量是

=5000(1+x)2(吨)

解:设平均每月的增长率为x,据题意得:

5000(1+x)2=7200

(1+x)2=1.44

1+x=±1.2.

x1=0.2,x2=-2.2(不合题意,舍去)

取x=0.2=20%

教师引导,点拨、板书,学生回答

注意以下几个问题:

(1)为计算简便、直接求得,可以直接设增长的百分率为x。

(2)认真审题,弄清基数,增长了,增长到等词语的关系。

(3)用直接开平方法做简单,不要将括号打开。

练习1.教材P.42中5

学生分析题意,板书,笔答,评价

练习2.若设每年平均增长的百分数为x,分别列出下面几个问题的方程。

(1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率。

(1+x)2=b(把原来的总产值看作是1.)

(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数。

(a(1+x)2=b)

(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数.

((1+x)2=b+1把原来的总产值看作是1.)

以上学生回答,教师点拨.引导学生总结下面的规律:

设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的产值为a(1+x)2 ……增长n次后的产值为S=a(1+x)n.

规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力.

例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?

分析:设每次降价为x.

第一次降价后,每件为600-600x=600(1-x)(元)

第二次降价后,每件为600(1-x)-600(1-x)x

=600(1-x)2(元).

解:设每次降价为x,据题意得

600(1-x)2=384.

答:平均每次降价为20%

教师引导学生分析完毕,学生板书,笔答,评价,对比,总结。

引导学生对比“增长”、“下降”的区别.如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b)

(四)总结、扩展

1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程.培养学生用数学的意识以及渗透转化和方程的思想方法.

2.在解方程时,注意巧算;注意方程两根的取舍问题.

3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率.3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程.

四、布置作业

教材P.42中A8

五、板书设计

12.6 一元二次方程应用(三)

1.数量关系:例1……例2……

(1)原产量+增产量=实际产量分析:……分析……

(2)单位时间增产量=原产量×增长率解……解……

(3)实际产量=原产量(1+增长率)

2.最后产值、基数、平均增长率、时间的基本关系:

M=m(1+x)n n为时间

M为最后产量,m为基数,x为平均增长率

篇18:一元二次方程教学设计

一、学生知识状况分析

学生已经学习了一元二次方程及其解法,对于方程的解及解方程并不陌生,实际问题的应用,有些抽象,虽然学生在七、八年级已经进行了有关的训练,但还是有一定的难度。

本节内容针对的学生是才进入九年级的学生,他们已经具备了一定的抽象思维和建模能力,也具备一定的生活经验和初步的解一元二次方程的经验。

二、教学任务分析

本节课的主要是发展学生抽象思维,强化学生的应用意识,使学生能通过抽象思维将一个应用题抽象成一元二次方程使问题得以解决,这也是方程教学的重要任务。但学生抽象意识和能力的发展不是自发的,需要通过大量的应用实例,在实际问题的解决中让学生感受到其广泛应用,并在具体应用中增强学生的应用能力。因此,本节教学中需要选用大量的实际问题,通过列方程解决问题,并且在问题解决过程中,促进学生分析问题、解决问题意识和能力的提高以及抽象思维的初步形成。显然,这个任务并非某个教学活动所能达成的,而应在教学活动中创设大量的问题解决的情境,在具体情境中发展学生的有关能力。为此,本节课的教学目标是:

知识目标:

通过分析问题中的数量关系,抽象出方程解决问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程。

能力目标:

1、经历分析,抽象和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型;

2、能够抽象出一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;

情感态度价值观:

在问题解决中,经历一定的合作交流活动,进一步发展学生合作交流的意识和能力。

三、学法指导

本课是学生学习完一元二次方程的解法后的应用课,虽然学生在七八年级已经进行了一定的训练,但本课对学生而言还是有一定的难度。本课采用启发式、问题串讨论式、合作学习相结合的方式,引导学生从已有的知识和生活经验出发,以教材提供的素材为基础,引导学生对对问题中的数量进行分析从而抽象出方程解决问题;学生之间的合作交流、互助学习,能更好地调动学生的学习积极性,更符合学生的认知规律。无论是例题的分析还是练习的分析,尽可能地鼓励学生动脑、动手、动口,为学生提供展示自己聪明才智的机会,并且在此过程中发现学生分析问题、解决问题的独到见解以及思维的误区,更好地进行学法指导。

四、教学过程分析

本课时分为以下五个教学环节:第一环节:回忆巩固,情境导入;第二环节:做一做,探索新知;第三环节:练一练,巩固新知;第四环节:收获与感悟;第五环节:布置作业。

第一环节;情境导入

活动内容:提出问题:还记得梯子下滑的问题吗?

在这个问题中,梯子顶端下滑1米时,梯子底端滑动的距离大于1米,那么梯子顶端下滑几米时,梯子底端滑动的距离和它相等呢?如果梯子长度是13米,梯子顶端下滑的距离与梯子底端滑动的距离可能相等吗?如果相等,那么这个距离是多少?

分组讨论:

怎么设未知数?在这个问题中存在怎样的等量关系?如何利用勾股定理抽象出方程?

活动目的:以学生所熟悉的梯子下滑问题为素材,以前面所学的勾股定理为切入点,用熟悉的情境激发学生解决问题的欲望,用学生已有的知识为支点抽象出一元二次方程使问题得以解决,进一步让学生体会数形结合的思想。

活动的实际效果:大部分学生能够联系以前学过的勾股定理的三边关系抽象出方程对上述问题进行思考,能够在老师的引导下主动地探究问题,取得了比较理想的效果,而且也调动了学生的学习热情,激发了学生的思维,为后面的探索奠定了良好的基础。

第二环节探索新知

活动内容:见课本P53页例1:

如图:某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头。小岛F位于BC中点。一艘军舰从A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰。

已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)

在教学中要给学生充分的时间去审清题意,分析各量之间的关系,不能粗线条解决。在讲解过程中可逐步分解难点:审清题意;找准各条有关线段的长度关系;通过抽象思维建立方程模型,之后求解。

实际应用问题比较抽象,因此教学中老师要给学生充分的时间去审清题意,让学生自己反复审题,弄清各量之间的关系,分析题目中的已知条件和要求解的问题,并在这个前提下抽象出图形中各条线段所表示的量,弄清它们之间的关系,从而抽象出方程模型解决问题。

在学生分析题意遇到困难时,教学中可设置问题串分解难点:

(1)要求DE的长,需要如何设未知数?

(2)怎样建立含DE未知数的等量关系?从已知条件中能找到吗?

(3)利用勾股定理建立等量关系,如何构造直角三角形?

(4)选定后,三条边长都是已知的吗?DE,DF,EF分别是多少?

学生在问题串的引导下,逐层分析,在分组讨论后抽象出题目中的等量关系即:

速度等量:V军舰=2×V补给船

时间等量:t军舰=t补给船

三边数量关系:

弄清图形中线段长表示的量:已知AB=BC=200海里,DE表示补给船的路程,AB+BE表示军舰的路程。

学生在此基础上选准未知数,用未知数表示出线段:DE、EF的长,根据勾股定理抽象出方程求解,并判断解的合理性。

巩固练习:1、一个直角三角形的斜边长为7cm,一条直角边比另一条直角边长1cm,那么这个直角三角的面积是多少?

文本框:8cm2、如图:在RtACB中,∠C=90°,点P、Q同时由A、B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后PCQ的面积为RtACB面积的一半?

3、在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小相等的六块作试验田,要使试验田面积为570平方米,问道路应为多宽?

说明:三个题目的设计从简单问题入手,第一题通过勾股定理抽象出一元二次方程解决直角三角形边长问题;第2题构造了一个可变的直角三角形,抽象出方程解决面积问题;第三题也是面积问题,在这个问题中常设道路宽为x米,通过平移道路使六块田地变成一块田地,从而根据矩形面积公式抽象出方程解决问题。

活动目的:一元二次方程的应用题的类型较多,像数字问题、面积问题、平均增长(或降低)率问题、利润问题等;本节课以教材上的引例作为出发点,作为素材来呈现,可以将应用类型作适当的拓展,在练习中将教材中的应用问题归类呈现出来,便于学生理解和掌握。本课由数形结合问题拓展到面积问题,后面可以在练习中增加数字问题,为学生呈现更多的应用类型,让学生在不同的情境中体会数学抽象和建模的重要性。

活动实际效果:应用问题设置都经过精心准备。通过问题串的设立,将比较复杂、难以理解的题目分成多个小的题目去理解,使学生在不知不觉中克服困难,体会到通过抽象出方程解应用题的三个重要环节:整体系统的审清题意;寻找等量关系;正确求解并检验解的合理性。采取的是一讲一练,从巩固练习的准确程度上来看,学生掌握得比较好,能够达到预期的效果。

第三环节:练一练,巩固新知

活动内容:1、在一块正方形的钢板上裁下宽为20cm的一个长条,剩下的长方形钢板的面积为4800cm2。求原正方形钢板的面积。

2、有这样一道阿拉伯古算题:有两笔钱,一多一少,其和等于20,积等于96,多的一笔钱被许诺赏给赛义德,那么赛义德得到多少钱?

3、《九章算术》“勾股”章有一题:甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3。乙一直向东走,甲先向南走了10步,后又斜向北偏东方向走了一段后与乙相遇。那么相遇时,甲、乙各走了多远?

活动目的:通过三道问题的解决,查缺补漏,了解学生的掌握情况和灵活运用知识的程度。在教学过程中要以学生为主体,引导学生自主发现、合作交流。活动实际效果:学生在前面活动中积累的经验,可以帮助学生比较顺利地分析上述问题,遇有疑难可以让学生在合作交流中解决,学生在训练过程中更加理解数学抽象和建模的重要性.大部分学生能够独立解决问题。

第四环节:收获与感悟

活动内容:提问:

1、列方程解应用题的关键;2、列方程解应用题的步骤;3、列方程应注意的一些问题。

学生在学习小组中回顾与反思,并进行组间交流发言。

活动目的:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,还有什么疑难问题希望得到解决;通过对三个问题的解决,加深学生通过抽象思维抽象出方程解决实际问题的意识和能力;并且通过学生间的合作学习帮助不同层次的孩子解决实际困难,增强孩子学好数学的信心。

活动实际效果:学生通过回顾本节课的学习过程,体会利用抽象思维抽象出一元二次方程解决实际问题的方法和技巧,进一步提高自己解决问题的能力。

第五环节:布置作业

1、甲乙两个小朋友的年龄相差4岁,两个人的年龄相乘积等于45,你知道这两个小朋友几岁吗?

2、一块长方形草地的长和宽分别为20m和15m,在它四周外围环绕着宽度相等的小路,已知小路的面积为246,求小路的宽度。

3、一个两位数等于其数字之积的3倍,其十位数比个位数小2,求这两位数。

篇19:一元二次方程教学设计

一元二次方程教学设计

教学目标

知识与技能:

能说出一元二次方程及其相关概念,能判断一个方程是否为一元二次方程。 过程与方法:

1.经历从实际问题中建立一元二次方程概念的过程,进一步体会方程是刻画现实世界数量关系的重要数学模型,发展符号感。

2.从实际情境中进一步体会方程是刻画现实世界的一个有效数学模型。

情感态度价值观:

通过本节的学习,进一步体会学习和探究一元二次方程的必要性及数学知识来源于生活,又能为生活服务,从而激发学习热情。

教学重难点

重点:一元二次方程的概念和化任意的一元二次方程为一般形式

难点:从实际问题中抽象一元二次方程的概念及字母系数一元二次方程的各项系数的确定

教学媒体

多媒体

课时安排

1课时

教学过程设计

一、简要回顾,方程思想

简要回顾方程知识,方程在生活中的应用,以及用方程思想解决实际问题时的大致思路:

1.把待求的量用字母表示出来;

2.把已知量与未知量放在同等地位进行运算;

3.寻求建立等量关系

4.解方程(组)

体会感悟:往往解决一个未知数的问题,就需要建立一个等量关系;解决两个未知数的'问题,则需要建立两个等量关系。……

二、展示素材,创设情境

1.某校要在校园内墙边的空地上修建一个平面图为矩形的存车处,要求存车处的一面靠墙(墙长15m,如图中AB所示),另外三面用90m的铁栅栏围起来,并在与AB垂直的一边上开一道2m宽的门。如果矩形存车处的面积为480m2,请以矩形一边长为未知数列方程。

提问:题中有哪些等量关系?如何设未知数?

学生活动:小组讨论,回答上述问题。然后根据题意,列出方程。

师:让每个小组说出他们所列的方程,对出现的问题进行更正

提问:你们列的方程一样么?为什么?将所列的方程进行整理看看现在结果一样么? 学生整理得出两个方程分别为:x2-92x+960=0和x2-46x+240=0

提问:x2-92x+960=0和x2-46x+240=0这两个方程有什么相同之处?

学生小组讨论片刻,说出自己的认识,如都是整式方程,都含有一个未知数,未知数的最高次都是2等。

2.某住宅小区准备开辟一块面积为600m2的矩形绿地,要求长比宽多10m,设绿地宽为xm,请你列出关于x的方程。

3.如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m。如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?

由勾股定理可知,滑动前梯子底端距墙_________m,如果设梯子底端滑动xm,那么滑动后梯子底端距墙_______________m。根据题意,可得方程 ___________________________。

及时教育学生,要学会用数学的眼光观察生活中的现象,培养自己发现问题与解决问题的能力。

三、观察归纳,抽象命名

从上面的几个素材中可以看出,这类方程在生活中大量出现,上面的方程都是只含有一个未知数x的整式方程,并且都可以化为ax?bx?c?0(a、b、c为常数,a≠0)的形式,这样的方程叫做一元二次方程。

一元二次方程的一般形式:ax2+bx+c=0(a,b,c为常数,a不等于0)

其中ax2是二次项,bx是一次项,c常数项

a为:二次项系数;b为:一次项系数

四、巩固练习

1.自己编拟一元二次方程,并指出其中的二次项系数、一次项系数和常数项。

2.课本P32 练习1、2

五、小结

学生回忆总结本节课学了哪些知识?有什么体会?

六、作业

课本P32习题1、2、3

七、板书设计

实际问题与一元二次方程教学设计

一元二次方程教案

一元二次方程复习提纲

《实际问题与一元二次方程》教学设计及反思

1课时数学教案:一元二次方程

九年级数学上册《解一元二次方程》教学反思

一元一次不等式和它的解法

数学《一元一次不等式和它的解法》教学方案设计

初中数学《一元二次方程的概念》说课稿

数学教案-一元一次不等式组和它的解法

一元二次方程的解法配方法教学设计(整理19篇)

欢迎下载DOC格式的一元二次方程的解法配方法教学设计,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档