鸡兔同笼》教案

时间:2022-12-19 03:31:21 作者:程程程 教案 收藏本文 下载本文

“程程程”通过精心收集,向本站投稿了15篇鸡兔同笼》教案,以下是小编精心整理后的鸡兔同笼》教案,希望对大家有所帮助。

篇1: 《鸡兔同笼》教案

[教学目标]

1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

2、通过列表举例、作图分析等方法,解决鸡与兔的数量问题。

[教学重、难点]

通过列表举例、作图分析等方法,解决鸡与兔的数量问题。

[教学过程]

一、呈现鸡兔同笼问题。组织学生探索解决问题的方法。

1、小组活动

2、交流方法

3、

二、做一做

独立完成第1—3题,并交流解决的方法。

第4题的答案有多种,启发学生找出不同的答案。

讨论第4题与前3题所给条件的不同,从而让学生知道哪些题的答案是唯一的,哪些题是有多种答案的。

[板书设计]

鸡兔同笼问题

篇2: 《鸡兔同笼》教案

一、古语鸡兔同笼题,揭示课题。

1、今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

生模仿古人读题,说说自己的理解。

2、揭示课题

二、自主探索,解决问题

1、简化鸡兔同笼。

笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?

2、探究方法

(1)列表法

鸡876543210兔012345678

(2)画图假设

用圆圈来表示鸡兔的头。那么,不管鸡兔具体有几只,我们首先要画几个圆圈?

现在,我想请一位同学来说说看,接下来该怎么办了?

师根据学生的述说添画脚,并适时地提问、板书:

少了几只脚?

2只2只地添,得添几个这样的2只?

94-70=24

24÷2=12

35-12=23

小结:看来,画图确实挺形象、直观的,同学们也容易理解。

三、推广应用,形成技能

“鸡兔同笼”问题不仅在中国非常有名,还流传到许多其他的国家。比方说

我们的邻国日本,有一种“龟鹤算”的数学问题,就是从“鸡兔同笼”演变过去的。

出示:有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

师:请你们用今天这节课学到的方法来解决这道题。

四、全总课总结

今天这节课,我们跨越了1500多年的历史,探讨了中国古代的数学名题。其实,像“鸡兔同笼”这样有趣的数学问题,在中国古代还有很多,有兴趣的同学可以多了解这方面的资料,我想,对你们的学习是很有帮助的。

本节亮点:

1、本节课,杨老师主要介绍的是”表格法“和”画图假设法“,让学生一一列举出来或者画图,化抽象为具体。

2、杨老师在处理”画图假设法“中,借助画图,把每一步列式所求的什么,引导学生说清楚。

篇3:鸡兔同笼教案

教学目标:

1、在“鸡兔同笼”的活动中,经历自主探索、合作交流的过程,体会列表举例、作图分析等解决问题的不同策略。

2、能解决有关“鸡兔同笼”鸡与兔的数量问题及其相类似的数学问题,提高解决实际问题的能力。

3、在探索规律的过程中体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和自信心。

教学重点:

能解决“鸡兔同笼”鸡与兔的数量问题及与其相类似的数学问题。

教学难点:

能用不同的策略解决相关的实际问题。

教学关键:引导学生学会用假设、举例、列表、作图等方法解决问题。

教具:多媒体课件

教学过程:

一、联系现实,激趣导入

1、师:同学们,你们喜欢歌谣吗?老师这里有一首歌谣,大家一起读一读。

生:一只鸡一个头,两条腿,一只兔子,一个头,四条腿;

师:接下来的歌谣不完整,谁能把它填完整呢?

两只鸡 个头, 条腿,两只兔子, 个头, 条腿,三只鸡三只兔子一共 个头, 条腿...…

师:你是怎么知道的?

生:我把兔子的腿数乘兔子的只数然后加上鸡的腿数乘鸡的只数。

[设计意图:从学生们非常感兴趣的话题入手,让学生读歌谣、填歌谣,能深深吸引学生的积极性和探索欲望。]

2.这节课,我们就一起来研究有关“鸡兔同笼”的问题。

二、自主探索,尝试解决

1、猜一猜:出示:鸡兔同笼,有20个头,那么鸡、兔各有多少只?

(1)、指名读题

(2)、理解题意:

师:20个头表示什么?

生:20个头表示鸡与兔的总头数。

师:鸡与兔各有多少只?大家猜猜看?跟同桌说一说。

(3)、同桌说一说:

(4)、学生汇报,教师填表

生1:我猜鸡有3只,兔子有17只。

生2:我猜鸡有5只,兔子有15只。

生3:我猜鸡有16只,兔子有4只。

……

师:请同学们仔细观察一下表格,鸡的只数在变化,兔子的只数也在变化,什么没有变?

生:鸡兔的总只数没有变。

强调鸡兔的总只数不变

[设计意图:通过这样的设计,目的是为了让学生猜测,引出对下边例题的思考,体现思维的灵活性。]

2、自主探究

出示:鸡兔同笼,有20个头,54条腿,那么鸡、兔各有多少只?

(1)、指名读题

(2)、引导观察:

师:这两道题有什么不同呢?

生:第2个问题多了一个条件“54条腿”

(3)、理解题意:

师:20个头,54条腿是什么意思呢?

生:20个头表示鸡与兔的总只数。54条腿表示鸡与兔的总腿数。

师:你想用什么方法来解决鸡兔各有多少只?请小组的同学一起讨论。讨论前老师提个小小的要求:

①、每个小组老师都有一份材料

②、小组长组织小组成员讨论,小组长并做好记录

3、反馈交流,教师适当引导

(1)、逐一列表法:

生1:我先假设鸡1只,兔子19只,算出总腿数78条,接着假设鸡2只,兔子18只,算出总腿数76条……我一直算到鸡13只,兔子7只总腿数54条为止。

师:像这样把每一种情况一一举例,直到寻找到所求的答案的方法,我们把它叫做逐一列表法。(板书:逐一列表法)谁还有不同的方法?

(2)、跳跃列表法

生2:我先假设鸡有1只,兔子有19只,算出总腿数78条,比题目的54条多很多。接着我就假设鸡有5只,兔子有15只,算出总腿数70条,还是多。我就假设鸡有10只,兔子有10只,算出总腿数60条,还是多。我再假设鸡有15只,兔子有5只,算出总腿数50条,比54条少,说明鸡的只数应在10与15之间。我再假设鸡有13只,兔子7只,算出总腿数54条。

师:像这种“5只5只增减”,估计鸡与兔的可能范围,以减少列举的次数,我们把这种方法叫做跳跃列表法。(板书:跳跃列表法)还有其他方法吗?

(3)、折中列表法

生3:我先假设鸡有10只,兔子也是10只,算出总腿数60条,比54条多,我再假设鸡有12只,兔子8只,算出总腿数56条,还是多一点,所以我就假设鸡有13只,兔子有7只,算出总腿数54条。

师:由于鸡与兔的只数共20只,所以各取10只,然后在举例中根据实际数据的情况确定举例的方向,这样可缩小举例的范围,这种方法叫做折中举例法。(板书:折中列表法)

像同学们刚才的这几种解法,我们把它称为列表法。

[设计意图:让学生小组讨论,尝试列表解决问题,调动每个学生的学习积极性,同时对列表的方法不做统一规定,让学生自由发挥,培养了学生的发散思维]

4、画图法(板书:画图法)

师:除了列表法,我们还可以通过画图来解决问题。先画20个圆圈表示20个头,再假设20只都是鸡,在每个圆的下面画2条竖线表示2条腿,总共画出40条腿,还剩下14条腿,刚好可以给7个圆各添上2条腿,所以兔子有7只,鸡有13只。

5、归纳算法

解决“鸡兔同笼”有多种方法,你喜欢哪种方法?

三、巩固练习

生活中有许多类似“鸡兔同笼”的数学问题,你会解答吗?

(1)、出示:停车场上共停放12辆三轮车和自行车,两种车轮子总和为31个,三轮车和自行车各有几辆?

(2)、学生独立解决,全班交流。

[设计意图:通过学生的独立解决,旨在加深学生对鸡兔同笼问题的的理解。此外,不同层次的问题体现了不同学生的发展。也让学生体会到数学就在我们身边。]

四、全课

通过本节课的学习,你学会了什么?(板书:解决问题的不同策略)

五、拓展延伸

书P81“你知道吗?”

师:我国古代数学名著《孙子算经》中就记载了“鸡兔同笼”的有关问题,可见古代劳动人民的智慧,我们为之感到骄傲和自豪。

[设计意图:在教学时,对学生渗透爱国主义教育,激发学生努力学习数学热情,使他们感到学数学不是枯燥乏味的,而是风趣幽默的一门学科。]

教学反思:

反思本次教学活动,我发现了成功与遗憾共存。

成功之处在于:

1、在导入新课时我采用创设情境的方式导入,学生的积极性一下子就被调动起来了。让学生读歌谣、把歌谣补充完整,学生不仅觉得有趣,同时也复习了计算腿数的方法。

2、新授时我让学生自主探索、尝试解决鸡兔同笼的问题,然后引导学生认识三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法。由于学生的认知水平不同,我没有统一要求,允许不同的学生有不同的解题方法。而且在这个环节中,我给予学生思考的时间也比较充分,因此部分学生对列表法掌握得还蛮可以的。在教学列表法后,我又引导学生用画图的方式去试着解这种类型的问题。

3、练习时,选择与学生生活密切联系的例子,如:停车场上停着自行车和三轮车,让学生自主解决,不仅体会到数学与日常生活的联系,而且获得成功的体验,增强学习数学的兴趣和自信心。

遗憾之处在于:

1、我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型。

2、练习时,如能引导学生巧妙综合运用三种列表法,把课上得更精彩、生动一点就更好了。

篇4:鸡兔同笼教案

预设:

学生1:列表法能很清晰地解决这个问题。

学生2:因为数字比较简单,所以列表法还可以用,但是数字变大时,列表法就会比较麻烦,会浪费很多时间。

教师:说得非常好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚才列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。

学生小组交流汇报。

预设:

学生1:鸡的数量每减少1只,兔的数量就增加1只,脚的数量也跟着增加2只。

学生2:兔的数量每减少1只,鸡的数量就增加1只,脚的数量反而减少2只。

【设计意图】列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的基础,因此也是本课的重要教学内容之一。让学生以填表的方式初步体验鸡兔同笼情况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的学习做好铺垫。

4.数形结合理解假设法。

教师:同学们的想法非常好,我们一起继续来看这张表格,通过分析表格来将同学们的想法表述得更加清晰。

(1)假设全是鸡。

教师:我们先看表格中左起的第一列,8和0是什么意思?

8×4=32(只)。(如果把鸡全看成兔,一共就有8×4=32只脚。)

32-26=6(只)。(把鸡当成兔来算,2只脚的鸡当成4只脚的兔算,每只鸡就多了2只脚,6只脚是多算了鸡的脚数。)

4-2=2(只)。(假设全是兔,就是把2只脚的鸡当成4只脚的兔。所以4-2表示一只鸡当成一只兔,多算了2只脚。)

6÷2=3(只)鸡。(那要把多少只鸡当成兔来算,就会多算6只脚呢?就看6里面有几个2,也就是把几只鸡当成了兔来算,所以6÷2=3就是现在鸡的只数了。)

8-3=5(只)兔。(用鸡兔的总只数减去鸡的只数就是兔的只数,8-3=5只兔。)

(3)提出假设法概念。

刚才我们通过假设都是鸡或都是兔来解决例1的,所以把这种方法叫做假设法。这是解决“鸡兔同笼”问题的一种基本方法,也是算术方法中较为普遍的一般方法。

(板书:假设法)

【设计意图】此环节是本课的重点,也是本课的难点,假设法的算理对于大部分学生来说,都是比较难以理解和掌握的。采用画图法,数形结合地引导学生根据图较为完整、准确地说明算理,学会思考,学会解释,可以让学生更加直观地感受假设法的优越性。

(三)知识运用

学生独立完成古代趣题。

【设计意图】运用已学的技能去解决古代“鸡兔同笼”问题,创设课堂教学文化氛围,提高学生探究数学的热情。

(四)全课小结

这节课我们一起用列表法和假设法研究了古代著名的“鸡兔同笼”问题。你学会了吗?

篇5:鸡兔同笼教案

鸡兔同笼教案

鸡兔同笼教案 方正三小  作者:陈红娟 一、引入 师:先问你们一个简单的问题,我国文学史上的四大名著是那些? 生:《红楼梦》《水浒传》《三国演义》《西游记》 师:其实我们数学方面也有许多著作,有谁知道? 生:《孙子算经》…… 师:我们的数学史和文学史一样灿烂,一样伟大。课前老师也收集了一些。(可见出示:《周髀算经》、《孙子算经》、《五曹算经》、《张丘建算经》、《九章算术》、《算法统宗》) 师:在这些著作中也流传着许多有趣的数学故事。例如大约早在15前《孙子算经》中记载着这样一道数学题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? 师:你们知道这是一个什么数学问题吗? 生:鸡兔同笼 师:对,今天这节课我们就一起来学习鸡兔同笼问题。 二、新授 师:谁能解释一下这道题什么意思? 生:鸡兔同笼,从上面数,有35个头,从下面数,有94只脚。问鸡兔各几只? 师:谁听明白了? 生:鸡兔同笼,从上面数,有35个头,从下面数,有94只脚。问鸡兔各几只? 师:从这题中你得到那些数学信息? 生:35只头,94只脚。 师:根据实际生活还知道哪些隐含信息? 生:兔子有4只脚,鸡有2只脚,一共有35只兔和鸡。 师:大胆的猜猜笼子里有几只鸡,几只兔?(若有学生猜对,则让生继续猜,然后再验证,若没猜对,则让学生去验证,然后接着猜。) 师:怎么验证? 生:兔的只数乘4加鸡的只数乘2(叫几名学生回答) 师:看来问题中的数据比较大,我们不易猜到,现在我把数据换小些。(先让生说怎么办,若说不出师才说这句)(出示鸡兔同笼,有8个头,26条腿,,鸡、兔各有多少只?) 师:猜猜鸡兔各有几只? 生:兔5只,鸡3只。 师:我们一起来验证对不对? 师:你是怎么猜的? 生:我是随便猜的。 生:我是这样想的,鸡和兔各一半的话,脚就有24只,而一共有26只,所以就兔子多一只鸡少一只。 师:你很聪明,你不但猜而且讲究策略,其实猜想也要讲究策略,猜想――验证也是我们解决问题的一种好方法。 师:解决鸡兔同笼问题肯定还有一般性方法,下面我们就一起研究解决鸡兔同笼问题的几种常见的方法。 师:请同学们以这题为例,独立思考并把你的想法做在本子上。(过一会,师说做好的同学可以小组内交流下你们的想法) 汇报:1.假设全是鸡 师:假设全是鸡比原来少了10只脚,把1只兔看作1只鸡少了2只脚,一共少的`脚数除以1只少的脚数等于兔子的只数。(多叫几个生来说) 2.假设全是兔 师:假设全是兔比原来多了6只脚,把1只鸡看作1只兔多了2只脚,一共多的脚数除以1只多的脚数等于鸡的只数。(多叫几个生来说) 3.解:设鸡有x只,则兔有(8―x)只。 8-5=3(只) 师:我们解决了数据小的题目,现在回头来看原来这题(数据大的),会解决吗?在本子上完成。(挑几个学生的汇报) 师:象这样先解决数据小的再解决数据大的“化繁为简”的思想,在我们今后解决问题中经常要用到。  

篇6:《鸡兔同笼》教案

《鸡兔同笼》教案

《鸡兔同笼》教案  教学过程: (一)课前谈话:纸袋中装着一些五元和十元的人民币,总值在30元~60元之间,猜一猜共有多少钱? (二)揭示课题 鸡兔同笼是什么意思?以前接触过这种类型的同学举个手。 介绍《孙子算经》中的原题。 原题解读。 课件出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?  [设计意图:从古书中的原题引入,激发学生的兴趣,使学生感受古代数学文化,增强民族自豪感。] (三)探究新知 师:问题中的数据比较大,为了便于研究,我们把它改小一点好吗? 1、出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数有26只脚。鸡和兔各有几只? 2、从题中你知道了什么,要求什么问题? [设计意图:渗透化繁为简的思想。引导学生理解题意,找出隐藏条件,帮学生初步理解“鸡兔同笼”问题的结构特点。] 3、探究解题方法 (1)引导用列表尝试的方法解决问题 ①猜一猜笼子里可能有几只鸡,几只兔? ②师:他猜得对吗?该如何判断正误?该怎样调整鸡和兔的只数?为什么? ③请拿出答题卡一,先猜测,后验证,如果答案不对,想一想怎么调整能更快找到答案。最后数一数你试了几次?再想一想有没有更便捷的调整策略。 ④反馈交流。 A、  按顺序列表。 试了几次?从表中你发现了什么规律? B、  取中或跳跃列表。 只试了几次?有什么秘诀? ⑤小结 [设计意图:列表尝试法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法和方程法的基础,因此也是本课的重要教学内容之一。让学生以填表的方式初步体验鸡兔同笼情况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的学习做好铺垫。] (2)小组合作交流,用假设法和方程法解决问题 师:我们应该怎样用算式表示列表尝试中的调整过程? ① 尝试独立列式解答 ② 小组讨论,说一说算式表示的意义 ③ 集体反馈。 A.反馈假设法一。(假设笼子里都是鸡的情况)课件直观演示调整过程,图形结合,帮助理解算理。 B.反馈假设法二。(假设笼子里都是兔的情况),指名分析算理,其他学生复述强化。 C.比较这两种解题思路,它们有什么相似之处? 师:假设都是鸡,为什么先求的是兔?假设都是兔呢?  D.反馈方程解。 4、小结 [设计意图:此环节是本课的重点,放手让学生合作探究,学生从体验、尝试到讨论、汇报,结合课件的直观演示,学生个人或集体的智慧在这里可以得到充分的展现。方程法、假设法对于大部分学生来说至少有一种方法是他自己会理解或掌握的,老师在学生汇报的过程中应机敏地倾听,机智地诱导,引导学生较为完整、准确地说明算理,特别是假设法算理,进而让全体学生在交流的过程中学会倾听、学会思考、学会解释、学会质疑,学会辩驳。] (四)巩固练习1、解决《孙子算经》中的原题。 2、生活中“鸡兔同笼”的问题。 (1)动物园中的问题 动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只? (2)游乐园中的'问题 有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条乘6人,小船每条乘4人。大小船各租了几条? 选一道自己感兴趣的问题解决。 师:动笔前想一想,这一类问题与《鸡兔同笼》问题有什么相似之处? 学生独立练习,教师巡视及时辅差。 3、集体反馈。 引导学生建立“鸡兔同笼”问题的数学模型。 4、揭晓课前猜测的答案。 师:要想准确地猜出纸袋中的钱数,我们还需知道哪些条件?与今天所学的《鸡兔同笼》问题有什么联系? [设计意图:拓宽学生的视野,使学生体会到“鸡兔同笼”问题在生活中的广泛应用,感受数学学习的价值。引导学生观察比较,提炼出这类问题的结构特征,把学习引向深入。] 五、总结提升 师:今天我们一起研究了“鸡兔同笼”问题的三种不同的解决方法。其实1500多年来,“鸡兔同笼”问题受到许多数学家和数学爱好者的亲睐,他们又创造了很多非常有趣的解题方法。 六、课外延伸 1、阅读并思考:课本114页的“阅读资料”,介绍的是我们的祖先创造的方法,叫抬脚法,也叫金鸡独立法,曾经折服了很多的外国朋友,有兴趣的同学课后可以去研究一下。 2、完成练习二十六的1-3题。 [设计意图:课堂学习后的阅读拓展和发展性的练习,把学习研究延伸到课外,达到意犹未尽的效果。]

篇7:鸡兔同笼》教案

鸡兔同笼》教案

鸡兔同笼》教案 一、教学目标:  1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。 2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力; 3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。 4、对数学史文化的了解。 二、教学重点: 在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。 三、教学难点: 在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。 四、教学设过程 (一)创设情境 : 投影出示鸡兔图片,激发学生兴趣。 师:今天这一节课,我们要共同研究鸡兔同笼问题。(板书:鸡兔同笼)你们知道鸡兔同笼是什么意思? 生:鸡兔同笼就是鸡兔在一个笼子里。数头一共有8个,数腿一共有26条。 师:请你猜一猜,笼中大约有几只兔子,几只鸡? 生1:我猜大约是7只,兔子5只鸡。 生2:。。。。。。。 (二)探求新知 师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。 师:请同学们把自己的想法在小组内交流一下,看那个小组的方法多样。 师:哪个小组说说你们的想法? 一、列表法: 小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有0只鸡,8只兔子,脚就有32条。脚太多,然后又假设有1只鸡,7只兔子,脚还是太多了。这样试下去就得到了有3只鸡,5只兔子。 师:还有哪些小组采用不同的列表法? 小组2:我们小组也是列表法。我们是先假设鸡有4只,兔子也有4只。这样比较简便。 师:这2个小组的同学都采用了列表的方法来解决问题,但同学们想一想,为什么要列表呢? 生1:列表可以帮助我们一一举例,从中找出需要的答案。 生2:列表也就是运用假设法,通过逐步的假设,最终找到符合条件的答案。 师:那么,这2种列表的方法有什么不同呢? 生3:我认为第一小组的列表方法的特点是逐一列表,这样不容易遗漏答案。 生4:虽说第一小组的方法可以完全地列出全部的答案,但比较麻烦。我认为第三组的方法比较好,可以根据题目的`根据情况,确定假设的范围,这样可以很快寻找到需要的答案。 师:这两位同学说得都很有道理,其实同样选择列表的方法,我们因根据题目的实际条件,选择适当的方法,这样可以既快又准确地寻找到我们需要的答案。 二、画图法: 小组1:我们组是先假设都是鸡,每只鸡2只脚,一共16只脚,还差10只脚,每只鸡再长两只脚,这样就把10只脚给了5只鸡,所以就是5只兔,3只鸡。 三、计算法: 1、假设鸡(兔子全体立正,手举起来) 10×2=20(条) 为什么算出是20条腿? 人家是32条腿啊?  32-20=12(条) 12里面有几个2就有多少只兔子。 12÷2=6(只) 10-6=4(只) 四、介绍方程法。 (三)解决问题 师:根据刚才的讨论,下面两道题目,同学们可以用刚才学到的方法独立地尝试解决。 媒体出示两道题 1、鸡兔同笼,有23个头,66条腿,鸡、兔各几只?请你列表的方法解决。 2、星期日,小明一家6口到红螺寺游玩,买门票共花160元(每人都要买票)。成人票价每人30元,学生票价每人20元,其中学生有几人? 3、老师带51名学生到公园划船。一条大船坐6人,一条小船坐4人,他们租了大船、小船各几条? (学生练习后,教师组织全班进行交流。交流过程略) (四)学习总结 师:通过今天的学习,你有哪些收获?  hi.baidu.com/zhizu77/blog/item/9cef272741434e02908f9df5.html 《植树问题》教案 教学目标: [知识技能] 1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系。 2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。 [过程目标] 1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力。 2、渗透数形结合的思想,培养学生借助图形解决问题的意识。 3、培养学生的合作意识,养成良好的交流习惯。 [情感目标] 1、通过实践活动激发热爱数学的情感。 2、感受日常生活中处处有数学,体验学习成功的喜悦。 教学重点:理解植树问题(三种情况)的特征,应用规律解决实际问题。 教学难点:能把从植树问题中总结出的规律准确地应用到解决实际问题中去。 教学过程: 课前激趣渗透: 1、同学们知道每年的3月12日是什么日子吗?就是我们国家法定的植树节。你们知道植树都有什么好处吗?(树木能调节温度、减少噪音、净化空气、美观等作用)树木有这么多好的好处,怪不得我们要多栽种树木呢! 你看,(出示路边的一排树)这些树栽成一排排的,多整齐多美观呀! 2、其实植树中还有很多数学问题呢!今天我们就一起来研究植树中的数学问题。 板书课题:植树问题 一、激趣导入: 1、师伸出手掌,生观察有什么数学问题,使学生理解“间隔”。 2、出示学校招聘启事: 招聘启示 学校将对校园进一步绿化,特聘请校园设计师一名 要求设计植树方案一份,择优录取。   ***小学   4月24日 二、操作探究: 3、比一比谁的方案多: 例:在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案,并说明理由。(可用线段图表示小路) 4、学生动手操作,教师巡视。 5、学生汇报结果:(投影展示) 教师质疑:为什么同样是20米的小路,为什么有的认为是种4棵树,有的是种5棵树,还有的是种6棵树呢? 6、教师投影三种植树情况,学生观察 : (1)给三种植树方法起个名字(两端都植,两端都不植,一端植一端不植) (2)学生观察三种情况中树的棵数和间隔有什么样的关系。 (3)出示表格,根据上边植树情况总结出三种方案中棵数与间隔的关系。 (4)根据上边总结出来的棵数与间隔数的关系来说出根据棵数说出间隔数。 三、实际应用: 1、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远? 2、同学们在全长100米的小路一边植树,每隔5米在一棵(两端要栽)。一共需要栽多少棵树苗? 3、一根10米长的木头,把它平均分成5段,每锯下一段需要8分钟,锯完一共需要多少分钟? 四、说一说,在我们生活中,还有哪些像植树问题这样的现象呢?小组同学说说,然后汇报情况。如手指与间隔,栏杆与间隔,站队列,插彩旗,种白菜,围墙柱子,作业本的横线与间隔…… 5、四(2)班22人做早操,平均排成2列纵队,每2位同学的距离是5分米,从第一位同学到最后一位同学的距离有多少米? 6、“六一”庆祝,同学们布置教室,挂了7只红灯笼,每两只红灯笼之间挂2只黄灯笼,你知道同学们一共挂了几只黄灯笼吗? 五、谈谈自己的收获:本课学到了什么知识,你有什么体会?对自己满意吗? 六、巩固提高: 1、陈老师去某班教室,从一楼开始,每走一层有32个台阶,一共走了96个台阶,你知道陈老师去几楼的教室吗?   2、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?   3、刘翔奥运会跨栏跑:(投影图片,对学生进行教育,使学生为中国人而骄傲,锻炼身体) (投影图片) 起点至第一栏的距离为13.72米, 中间共有10个栏,栏间距离为9.14米, 最后一栏至终点的距离是14.02米 你们知道他从起点到终点跑了多少米吗? 课后反思: 这节课,通过生活情景的呈现,学生不但了解了生活中的有关知识,而且把三种不同情况的植树问题存在的规律进行了比较,并建立起相应的认知结构;生活情景的呈现,使整节课课充满了生活气息;从学生的心理上分析,学生是最愿意帮老师解决问题的,这一教学手段大大地激发了学生学习的兴趣;这节课,也切实让认知与技能、过程与方法、情感态度价值观得到了比较充分的体现。学生兴致盎然,乐学、爱学,学得主动,学的深入。

篇8:鸡兔同笼教案

学情分析:

鸡兔同笼问题是我国民间流传下来的一类数学妙题,它集题型的趣味性、解法的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。教材呈现三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。

教学目标:

1.知识与技能:使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。

2、过程与方法:通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性。渗透化繁为简的思想。

3、情感态度与价值观:使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:

尝试用不同的方法解决“鸡兔同笼”问题,体会用列表法和假设法解决问题的优越性。

教学难点:

理解用假设法解决“鸡兔同笼”问题的算理。

教学过程:

一、以史激趣,导入新课:

同学们,你们知道吗?数学是思维的体操,它可以让我们的头脑越来越聪明。我们中国人自古以来就喜欢数学并且研究数学,早在15前就有一部数学著作《孙子算经》,那里面记载了许多有趣的数学名题,今天我们就一起研究其中的鸡兔同笼问题。(板书:鸡兔同笼)

二、独立探索,构建新知:

(课件出示例题,指名读)鸡兔同笼,有20个头,54条腿,鸡兔各有多少只?

你从这道题中,找到了什么数学信息?

(鸡的只数+兔的只数=20只,一只鸡2条腿,一只兔4条腿,鸡的腿数+兔的腿数=54条……)

这样一道1000多年前的数学名题要大家短时间内找到答案,确实不容易,就让我们先来猜测猜测。(板书:猜测)

谁先来猜一猜,鸡可能多少只?兔可能多少只?(鸡8只,兔12只)

能说说你猜测的依据吗?(鸡的只数+兔的只数=20只)

有了猜测的依据,还有谁想继续猜?(……)

给老师一个机会,我猜鸡是1只,那兔有几只?(19只)

怎么知道我猜得对不对?(通过计算来验证)

(板书并验证)计算的腿的条数是78条和实际的腿的条数不相符,说明我的猜测怎么样?(失败了)

虽然我的猜测失败了,但如果继续猜测下去,我的这次失败的猜测和验证对以后的猜测有什么启示和帮助吗?(因为78条腿比54条腿多,这就说明兔的只数多了,再猜测应该减少兔的只数,增加鸡的只数。)

现在,就请同学们在你的练习本上,继续老师黑板上的猜测,如果你有更简单的猜测方法,也可以重新列举一个猜测。

篇9:鸡兔同笼教案

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、尝试用不同的方法解决“鸡兔同笼”问题并使学生体会代数方法的一般性。

3、在解决问题的过程中培养学生的逻辑推理能力。

教学重点:

理解并掌握用假设法和列方程法解决“鸡兔同笼”问题。

教学难点:

理解用假设法的算理并能运用不同的方法解决实际问题。

教学方法:

1、采取直观形象的方式,让学生探讨不同的方法。

2、适当把握教学要求。

一、历史激趣,导入新课

今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题请看:(出示以下情境图)

师:你能说说这道题是什么意思吗?(说明:雉指鸡)出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”的问题。(板书课题)

结合谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。

二、探究交流,尝试解决问题。

1.为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”出示)

2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息?

让学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。(出示)

3、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?

学生猜测,老师板书

4、怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。)

(一)、尝试列表法

为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(出示:把一只兔当成一只鸡算,就少了两条腿。)

(二)、假设法

1、假设全是鸡

8×2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)

26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)

4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)

10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)

8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)算出来后,我们还要检验算的对不对,谁愿意口头检验。

2、假设全是兔

我们再回到表格中,看看右起第一列中的0和8是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(出示:把一只鸡当成一只兔算,就多了两条腿)

先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。

小结:

刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这种方法能化难为易,是解答鸡兔同笼问题的一种基本方法。(板书:假设法)

篇10: 鸡兔同笼教案

一、教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、画图分析、尝试计算、列方程等方法解决鸡兔的数量问题。

3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的`能力和自信心,进而让学生体会数学的价值。

二、教材分析:

(一)设计意图:

通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、列表法(逐一列表法、跳跃式列表法、取中列表法)、假设法、列方程解决问题。学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

(二)设计思路:

遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。

在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。

教学重点:体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

三、教学设计:

<一>、提出问题

师:(出示主题图)大约在15前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”

问:这段话是什么意思?(生试说)

师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只? 这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。

(板书课题:鸡兔同笼问题)

<二>、解决问题

师:说明为了研究方便,我们不妨先将题目的条件做一个简化。

(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?(同时出示鸡兔同笼情境图)

师:同学们不妨先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)

学生初步交流,教师提炼:可以用画图的方法、可以用列表法、可以用假设法、还可以用方程的方法。

师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。

学生思考、分析、探索,接下来小组讨论、交流、争辩。(老师参与其中,启发、点拔、引导适当,师生互动。)

小组活动充分后进入小组汇报、集体交流阶段。

师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?

学生汇报探究的方法和结论:

1:画图法:(学生展示画图方法及步骤)

①先画8个头。

②每个头下画上两条腿。

数一数,共有16条腿,比题中给出的腿数少26-16=10条腿。

③给一些鸡添上两条腿,叫它变成兔.边添腿边数,凑够26条腿。

每把一只鸡添上两条腿,它就变成了兔,显然添10条腿就变出来5只兔.这样就得出答案,笼中有5只兔和3只鸡。

2.列表法:

(展示学生所列表格)

学生说明列表的方法及步骤:

学生汇报:我们先假设有8只兔这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。

鸡 8 7 6 5 4 3 2 1

兔 0 1 2 3 4 5 6 7

脚 16 18 20 22 24 26

鸡 8 7 6 5 4 3 2 1

兔 0 1 2 3 4 5 6 7

脚 16 18 20 22 24 26

学生汇报:我们组得出的结果也是只3鸡、5只兔,但我们不是一个一个地试,这样太麻烦了,我们是2个2个地试。

鸡 8 6 4 3

兔 0 2 4 5

脚 16 20 24 26

篇11: 鸡兔同笼教案

教学目标:

(一)知识技能

1、使学生初步认识“鸡兔同笼”的数学趣题,了解与此有关的数学史,感受我国传统的数学文化。

2、使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,并能选择适当方法解决一些与“鸡兔同笼”相似的数学问题。

(二)过程与方法:在学生探究方法的过程中,使学生理解并运用假设的思想解决数学问题,形成有序思考的意识,体验数学的思想方法。

(三) 情感态度价值观:过数学文化的熏陶感染培养学生的民族自信心和研究问题的科学素养。

教学重点:

使学生理解并运用假设的思想,通过画图法、列表法来解答“鸡兔同笼”及其类似的数学问题。

教学难点:

使学生发现并掌握用列表法解决鸡兔同笼及类似的数学问题。

教学过程:

一、激趣导入 渗透方法

1、出示绕口令

1只小鸡2条腿, 1只兔子4条腿;

2只小鸡( )条腿, 2只兔子( )条腿;

3只小鸡( )条腿, 3只兔子( )条腿。

【设计意图:在激发学生兴趣,缓解学生紧张情绪的同时,使学生明确鸡和兔的腿数】

2、教师出示一幅简单得不能再简单的图, 说明○代表头,线段代表腿,让学生说是鸡还是兔子?紧接着再出示两条线段。 让学生说是鸡还是兔子?观察图,比较鸡和兔子的异同

【设计意图:使学生通过观察抓住鸡兔背后的数学本质:相同之处:鸡和兔都有一个头,不同之处:鸡有2条腿,兔有4条腿。从课的一开始,就向学生渗透画图的方法】

3、笼子里有鸡和兔子共4只,鸡和兔子可能有几只?

老师把你们说的这3种情况的画出图来了,很直观。还可以怎样出示展示更清晰?

如果学生说出列表,老师先出示无序列表,再请学生帮忙修改

【设计意图:引导学生思考问题要全面、有序。同时渗透画图、列表的方法,为后面学生独立解题打下一定的基础】

接着让学生从表格中观察:你能从头数和腿数的变化中发现什么?引导学生发现:头数不变时,多一只兔子就多两条腿,多了一只鸡就减少两条腿

【设计意图:一是引导学生从数学现象背后发现数学规律,同时为后面学生出现多种列表法进行了渗透】

二、独立探究 解决问题

刚才我们把鸡和兔放在同一个笼子里,这就是有名的“鸡兔同笼”。

谁知道“鸡兔同笼”研究的是什么问题?(把鸡和兔放在同一个笼子里,给出总头数和总腿数,求鸡兔各几只)

1、出示例题,读儿歌

菜市场里真热闹,鸡兔同笼喔喔叫。

数数头儿有8个,数数腿儿26。可知鸡兔各多少?

2、指名说说已知条件和问题。

引导学生找出隐藏的条件:每只鸡有2条腿,每只兔有4条腿。

3、你们愿意自己尝试解答吗?

每个同学有2个选择

第一:卡片上画了8个圆,代表8个头,请你用线段代表腿,画一画。

第二:用填表的方法,看能否找到答案。

(如果学生提出用计算的方法,也让他们先画图和列表,之后可以再计算)

【设计意图:这节课的重点是使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,所以这里强调的是尝试使用直观的画图法、列表法。】

三、小组交流 开阔思路

小组讨论的要求是

1、给组内同学讲一讲你解题的方法和过程。

2、认真倾听组内同学的发言,你又学会了哪种解题方法?如果有疑问,请你提出来,大家共同解决。

【设计意图:提出具体明确的小组合作的要求,这样的要求便于学生进行交流,提高小组合作学习的效率。】

四、全班交流 成果共享

1、画图法

预设1:用八个圆表示鸡的头,所以每个头下面画两条腿,等于16条,比已知条件给得26条少10条。所以在每个头下面再添上2条腿,一直添到26条腿。结果是5只兔子3只鸡)

预设2:用八个圆表示兔的头,一共32条腿,多了6条腿,擦去3个2条腿结果也是5只兔子3只鸡。

为什么2条腿2条腿的添上?为什么2条腿2条腿的擦去?

你认为这两种画法哪种简单?

【设计意图:使学生思维更加简单,避免思维定势,真正掌握画图的本质。】

2、列表法

教师让学生在实物投影下讲解列表的方法。

(预设3种列表法)

3、逐一列表法

情况1:鸡的只数 1 2 3 4 5 6 7

兔的只数 7 6 5 4 3 2 1

共有足数 30 28 26 24 22 20 18

情况2

鸡的只数 1 2 3

兔的只数 7 6 5

共有足数 30 28 26

情况1与情况2进行比较

确定只有一个答案时,找到了问题答案,后面的情况可以不再列举。

情况3:兔的只数 1 2 3 4 5 6 7

鸡的只数 7 6 5 4 3 2 1

共有足数 18 20 22 24 26 28 30

情况4:兔的只数 1 2 3 4 5

鸡的只数 7 6 5 4 3

共有足数 18 20 22 24 26

情况3与情况4进行比较

确定只有一个答案时,找到了问题答案,后面的情况可以不再列举。

情况2与情况4进行比较

哪个列表能快速找到答案,为什么?

4、取中列表法

鸡的只数 4 3

兔的只数 4 5

共有足数 24 26

5、跳跃列表法

鸡的只数 1 3

兔的只数 7 5

共有足数 30 26

(如果后两种没有出现,教师可以进行引导,也可以在第二课时进行引导,具体情况根据课堂学生生成情况和课堂时间而定。

如果三种表格都出现了,那么根据每一种列表的特点,给每种列表方法分别取个名字。并建议学生采用逐一列表法)

【设计意图:培养学生有序思维的能力,同时也体现出不同的学生用不同的方法解决问题,从数据中发现蕴含的规律,培养学生灵活思维的能力。建议学生采用逐一列表法是为以后解答开放性问题做准备】

五、灵活运用 巩固方法

1、今天我们通过画图和列表方法解决了“鸡兔同笼”问题。

我们的祖先早在1500多年前就已经用巧妙的方法解决了这个问题,数学著作《孙子算经》里就有记载。这些著作流传海外,对其他国家也产生了较大影响。其中日本也进行了类似研究,不过日本称之为“龟鹤问题” 。

出示:龟和鹤共6只,龟的腿和鹤的腿共有18条,龟和鹤各有几只?

你认为“龟鹤问题”和 “鸡兔同笼”有联系吗?

用你刚才没有尝试过的方法解决

2、设计意图:

1、使学生感受我国传统的数学文化。

2、能找到二者之间内在联系,培养学生解决类似“鸡兔同笼”数学问题的能力。

3、使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法,能够尝试体验不同的解决问题的策略。

【设计意图:这两题一道比一道有难度,让孩子根据自己情况自主选择】

六、总结收获 畅谈体会

通过今天的学习,你有什么收获?

篇12: 鸡兔同笼教案

【教学目标】

1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。

3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。

【重点难点】

用假设法和列方程的方法解决“鸡兔同笼”问题。

【教学指导】

1.要注重解题策略的多样化教学中,教师通过组织学生采取讨论,自主探索等方式,多手段、多层面、多角度地探索问题,引导学生运用列表法、画图法、假设法、代数法等方法分析和解决问题,从而使学生获得分析问题和解决问题的基本方法,体验解决问题策略的多样性,发展创新意识。在注重解决问题策略多样化的同时,教师还应注重解决问题策略的自主优化(如列表法中的从两边开始,从中间开始,依据数据跳跃猜测等),并注重不同策略间的相互联系和影响,注重解决问题策略的局限性和一般性。

2.要注重逻辑思维能力的培养让学生在参与观察、猜想、证明、归纳等数学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初随意、无序的猜想到表格中的有序、有目的的猜想;从一般验证到表格中数据变化规律的发现;从列表法(8只兔0只鸡或8只鸡0只兔这两种情况中)很快自然联想到假设法(通过假设――计算――推理――解答的过程,掌握假设法的独特的特点)、代数法。学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。

3.要注重数学思想的渗透“数学广角”是人教版课程标准实验教科书中新增的教学内容之一,主要渗透一些基本的数学思想和方法。本节课作为本册教材“数学广角”中的唯一教学内容,也要求教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数据替代《孙子算经》原题中的大数据的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”解决问题,既渗透了函数的思想和方法又强调了解题策略的优化;用“假设法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。这些对于学生而言,无疑奠定了可持续发展的坚实基础。

4.要注重数学文化的传承鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,我们把《孙子算经》中关于鸡兔同笼问题的原题和《孙子算经》中用“抬腿法”这种特殊而灵巧的方法解决这一问题的过程,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味。

【知识结构】

第1课时 鸡兔同笼(1)

【教学内容】

教材第103~105页例1及“做一做”、教材第106页练习二十四第1~3题。

【教学目标】

1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。

3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。

【重点难点】

用多种方法解决“鸡兔同笼”问题。

【教学准备】

课件、列表法的表格卡片。

【情景导入】

1.师:同学们,今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”(PPT投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94条脚。鸡和兔各有几只?)(PPT展示今意。)

2.这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。鸡兔同笼问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。你们有没有信心把这节课的内容学好呢?

【新课讲授】

(一)出示情景,获取信息

1.出示“鸡兔同笼”画面。为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”

2.我们一起来看看被关在同一个笼子里的鸡和兔。鸡和兔是两种不同的动物,但我们从数学的角度思考,它们有什么相同点和不同点呢?学生理解:相同点――鸡和兔都只有1个头;不同点――鸡只有2条腿,而兔有4条腿。

(二)列表法

1.我们先来猜猜,笼子中可能会有几只鸡几只兔呢?在猜测时要抓住哪个条件?(鸡和兔一共是8只。)

2.那是不是抓住了这个条件就一定能猜对呢?怎样才能确定猜的对不对呢?(把鸡的腿和兔的腿加起来看等不等于26条腿。)

3.现在就请同学们,把你们猜测的数据填在答题卡上。师巡视,可能会出现如下四种情况:① 随意猜,直到猜对为止;② 从鸡的只数开始尝试,直到符合26条腿为止;③ 从兔的只数开始尝试,直到符合26条腿为止;④ 对半分开始尝试,不断调整,直到符合26条腿为止。

4.我们把这种方法叫做列表法。(板书:列表法)

(三)直观画图法

1.师:刚才我们同学介绍了用列表法来解决这个问题,还有别的方法吗?谁愿意来给大家讲一讲?

2.生1:还可以用画图――先画好8个圆圈代表鸡和兔的8个头,再给每只动物先安上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。因为每只兔少算了2条腿,所以一次增加2条腿,这样一只鸡就变成了一只兔,要把10条腿安完,就要把5只鸡变成兔。 所以在这个笼子里鸡有3只,兔有5只。(指名该生上台演示。)问:你们听懂他的方法吗?请同学们在练习本上画一画。

3.生2:我也是用画图法――先画好8个圆圈代表鸡和兔的8个头,但我是先给每只动物安上4条腿(也就是都看成兔。),这样一共有32条腿,多了6条腿。因为每只鸡多画了2条腿,所以一次减少2条腿,这样一只兔就变成了一只鸡,要去掉多的6条腿,就要从3只兔的身上各去掉2条腿,这样3只兔变成了鸡。所以在这个笼子里鸡有3只,兔有5只。(指名该生上台演示。)

师:画图的方法非常便于观察、非常容易理解。

4.你们觉得用猜想列表法或直观画图法解决鸡兔同笼问题怎么样?(生:我认为有局限性,当头和腿的数目较大时,用这两种方法会很麻烦。)

5.是呀!假如鸡和兔不是同关在一个笼子里,而是同关在一个养殖场里,鸡和兔共有1000只,它们共有2700条腿。问这个养殖场里的鸡和兔分别有多少只?如果用列表的方法或画图的方法来解决就太麻烦了。看来我们还有必要继续研究新的解题方法。

(四)思考交流你还能用什么办法来解决这个问题呢?

学生讨论后交流。

A、假设法现在请同学们一起来看看XXX同学表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡)

①假设笼子里的8只全是鸡,那么笼子里就只能有多少条腿?

②与实际的腿数不符,腿的条数少算了多少条?

③假设全是鸡,是把4条腿的兔当成2条腿的鸡,这样每只兔就少了多少条腿?

④少算的10条腿是把多少只兔当成了鸡来算?

⑤鸡的只数怎么算?

B、列方程解在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)

要用列方程的方法就必须找到等量关系式。

通过得到的信息能写出哪些等量关系式呢?(兔的只数+鸡的只数=8;兔的腿数+鸡的腿数=26)(课件出示)

这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设其中一个未知数为x,再用含有字母的式子表示出另一个未知数。让我们来试试吧。

小结:请同学们回忆一下,在解决鸡兔同笼问题时,可以用哪些方法?(列表法、画图法、假设法或列方程。)

(五)现在我们就用刚才学到的这些方法来解决《孙子算经》中的原题,你会用列表法和画图的方法解决吗?

【课堂作业】

完成教材第105页“做一做”。运用列表法和画图法解决这两道题,然后交流订正。

【课堂小结】

通过这节课的学习,你有什么收获?小结:鸡兔同笼问题可以用猜测列表法、假设法等多种方法解决,但数字较大时可以用列方程的方法。

【课后作业】

1.完成教材第106页练习二十四第1~3题。

2.完成练习册本课时的练习。

篇13:鸡兔同笼教案

鸡兔同笼教案

“鸡兔同笼”是我国古代数学的经典趣题,教材借助这个问题向学生提供了有趣、富有挑战性的学习素材,旨在让学生通过合作交流学习,积累解决问题的经验,掌握解决问题的策略。以下是鸡兔同笼教案:

教学内容:

教科书数学六年级上册P112-115。

教学目标:

1、了解“鸡兔同笼”问题的结构特点,尝试用不同的策略解决“鸡兔同笼”问题,使学生体会用假设法和代数法的一般性。

2、在解决问题的过程中,培养学生的思维能力,并向学生渗透化繁为简、转化、函数等数学思想和方法。

3、使学生感受古代数学问题的趣味性,体会“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:

让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。

教学难点:

理解假设法中各步的算理

教具准备:

多媒体课件

教学过程:

一、解读原题,直奔主题。

1、谈话,激情导入

师:同学们,我们的祖国有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中的一部,大约产生于一千五百年前,“鸡兔同笼”问题就是《孙子算经》中的一道古老的数学趣题。

(1)课件出示古趣题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

(2)揭示课题

(3)原题解读

师:这是一道古代的数学题,同学们读完题,能不能用现代的教学语言叙述一遍?

课件出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?

[设计意图:从我国古代数学趣题直接导入,让学生感受到我国数学文化历史的悠久与美丽,增强民族自豪感,激发学生探究的欲望。]

二、合作探究,寻找策略。

1、改变原题

师:同学们,题目中的数据较大,为了便于研究,我们可先从简单问题入手,老师把题目中的数据变小。

(1)出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数有26只脚。鸡和兔各有几只?

(2) 理解题意:从题中你获得哪些信息?

让学生找出隐藏的两条信息:一只鸡2只脚,一只兔4只脚。

探索策略

2、列表尝试法

①猜一猜:笼子里可能有几只鸡?几只兔?

②说一说:他猜的对吗?要怎么知道他猜的对不对?

③试一试:在答题卡上自主尝试,如果答案不对,想一想怎样调整能更快找到答案,最后数一数一共试了几次。

④ 展示答题卡:我试了( )次得出答案。鸡有( )只,兔有( )只。

⑤ 反馈交流

A、按顺序尝试,数一数试了几次?从表中你发现了什么规律?

B、取中或跳跃尝试,数一数试了几次?有什么秘诀?

⑥ 小结:用列表法解答不一定要一只一只地尝试,也可以2只或3只跳着尝试,这样尝试的次数就更少,就能更快地找到答案。

[设计意图:列表尝试法虽然繁琐,但它是解决问题一种重要的策略和方法。让学生通过列表尝试的方法初步体验在总只数不变的情况下,随着鸡(或兔)只数的调整,脚的总数也发生变化,为下面学习假设法和代数法做好铺垫。]

3、假设法

①. 学生独立尝试列式解答

②. 小组讨论,说一说用假设法解答的算理

③. 汇报反馈

④. 课件动态展示假设法的`两种思路,老师边演示边提问题让学生回答。

A. 假设笼子里都是鸡,一共有几只脚?

条件告诉我们几只脚,这样就少了几只脚呢?

为什么会少了10只脚呢?一只兔看成一只鸡,少了几只脚?

那么几只兔看成鸡一共少了10只脚呢?

B. 假设笼子里都是兔,一共有几只脚?与条件比多了几只脚?

为什么会多了6只脚?一只鸡看成一只兔,多了几只脚?

那么几只鸡看成兔一共多了6只脚呢?

⑤. 让学生对照课件说一说算式表示的意义

⑥. 思考:为什么假设全是鸡,先求出的是兔的只数?为什么假设全是兔,先求出的是鸡的只数?

[设计意图:让学生认识、理解、运用假设法是本课的重点,也是教学的难点。老师以列表尝试法为基础,放手让学生在独立尝试的基础上合作探究,学生从自主尝试到讨论汇报、互动,结合课件的动态演示,巧妙地将学生个人或集体的认知经验、思维过程转化为数学语言,从而形成了解决问题的新策略,发展了学生的思维水平,获得了新的数学思想方法。]

4、方程解

解:设兔有 只,则鸡有 只。

也可以设:鸡为 只,则兔有 只。(略)

师:在列方程解答时碰到什么困难?该如何解决?

[设计意图:方程解是学生在五年级已经学过的解决问题的一种基本方法,运用它解决“鸡兔同笼”问题便于学生清楚地理解数量关系,不失为解决此类问题的一种好方法,也让学生体验、领悟解决“鸡兔同笼”问题策略的多样化。]

5、梳理小结,比较优化。

三、推广应用,建立模型。

1. 选择自己喜欢的方法解决《孙子算经》中的原题。

2. 解决生活中的“鸡兔同笼”的问题。

(1)动物园中的问题。

动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

(2)游乐园中的问题。

有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条各乘6人,小船每条各乘4人。大小船各租了几条?

3. 对比联系,建立模型。

4. 小结:今天我们研究这类“鸡兔同笼”问题,不仅仅只解决鸡和兔的问题,主要是要用今天学到的方法解决生活中类似的“鸡兔同笼”问题。

5.让学生举出生活中类似的“鸡兔同笼”问题。

[设计意图:放手让学生运用学到的“策略”解决生活中类似的“鸡兔同笼”问题,及巩固了新知,又使学生体会到“鸡兔同笼”问题在生活中的广泛存在,凸显了本节课的学习价值。在此基础上进一步引导学生观察、比较、总结,提炼出此类问题的结构特征和解决的一般性策略,为学生的学习奠定了可持续发展的坚实基础]

四、引导阅读,课外延伸。

1. 阅读并思考课本114页的“阅读材料”。

2. 完成练习二十六的1—3题。

[设计意图:“抬脚法”也叫“金鸡独立法”是一种特殊而巧妙的解法,学生不容易理解,课后的阅读给学生一个自主探究、交流的空间,又让学生进一步感受到我国古代数学的魅力。练习作业设计的层次性、挑战性,满足了学生个性化学习的需要,为学生的课外发展提供平台。]

篇14:鸡兔同笼教案

教学内容:

教科书数学六年级上册P112-115。

教学目标:

1、了解“鸡兔同笼”问题的结构特点,尝试用不同的策略解决“鸡兔同笼”问题,使学生体会用假设法和代数法的一般性。

2、在解决问题的过程中,培养学生的思维能力,并向学生渗透化繁为简、转化、函数等数学思想和方法。

3、使学生感受古代数学问题的趣味性,体会“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:

让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。

教学难点:

理解假设法中各步的算理

教具准备:

多媒体课件

教学过程:

一、解读原题,直奔主题。

1、谈话,激情导入

师:同学们,我们的祖国有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中的一部,大约产生于一千五百年前,“鸡兔同笼”问题就是《孙子算经》中的一道古老的数学趣题。

(1)课件出示古趣题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

(2)揭示课题

(3)原题解读

师:这是一道古代的数学题,同学们读完题,能不能用现代的教学语言叙述一遍?

课件出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?

[设计意图:从我国古代数学趣题直接导入,让学生感受到我国数学文化历史的悠久与美丽,增强民族自豪感,激发学生探究的欲望。]

二、合作探究,寻找策略。

1、改变原题

师:同学们,题目中的数据较大,为了便于研究,我们可先从简单问题入手,老师把题目中的数据变小。

(1)出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数有26只脚。鸡和兔各有几只?

(2)理解题意:从题中你获得哪些信息?

让学生找出隐藏的两条信息:一只鸡2只脚,一只兔4只脚。

探索策略

2、列表尝试法

①猜一猜:笼子里可能有几只鸡?几只兔?

②说一说:他猜的对吗?要怎么知道他猜的对不对?

③试一试:在答题卡上自主尝试,如果答案不对,想一想怎样调整能更快找到答案,最后数一数一共试了几次。

④展示答题卡:我试了( )次得出答案。鸡有( )只,兔有( )只。

⑤反馈交流

A、按顺序尝试,数一数试了几次?从表中你发现了什么规律?

B、取中或跳跃尝试,数一数试了几次?有什么秘诀?

⑥小结:用列表法解答不一定要一只一只地尝试,也可以2只或3只跳着尝试,这样尝试的次数就更少,就能更快地找到答案。

[设计意图:列表尝试法虽然繁琐,但它是解决问题一种重要的策略和方法。让学生通过列表尝试的方法初步体验在总只数不变的情况下,随着鸡(或兔)只数的调整,脚的总数也发生变化,为下面学习假设法和代数法做好铺垫。]

3、假设法

①、学生独立尝试列式解答

②、小组讨论,说一说用假设法解答的算理

③、汇报反馈

④、课件动态展示假设法的两种思路,老师边演示边提问题让学生回答。

A、假设笼子里都是鸡,一共有几只脚?

条件告诉我们几只脚,这样就少了几只脚呢?

为什么会少了10只脚呢?一只兔看成一只鸡,少了几只脚?

那么几只兔看成鸡一共少了10只脚呢?

B、假设笼子里都是兔,一共有几只脚?与条件比多了几只脚?

为什么会多了6只脚?一只鸡看成一只兔,多了几只脚?

那么几只鸡看成兔一共多了6只脚呢?

⑤、让学生对照课件说一说算式表示的意义

⑥、思考:为什么假设全是鸡,先求出的是兔的只数?为什么假设全是兔,先求出的是鸡的只数?

[设计意图:让学生认识、理解、运用假设法是本课的重点,也是教学的难点。老师以列表尝试法为基础,放手让学生在独立尝试的基础上合作探究,学生从自主尝试到讨论汇报、互动,结合课件的动态演示,巧妙地将学生个人或集体的认知经验、思维过程转化为数学语言,从而形成了解决问题的新策略,发展了学生的思维水平,获得了新的数学思想方法。]

4、方程解

解:设兔有 只,则鸡有 只。

也可以设:鸡为 只,则兔有 只。(略)

师:在列方程解答时碰到什么困难?该如何解决?

[设计意图:方程解是学生在五年级已经学过的解决问题的一种基本方法,运用它解决“鸡兔同笼”问题便于学生清楚地理解数量关系,不失为解决此类问题的.一种好方法,也让学生体验、领悟解决“鸡兔同笼”问题策略的多样化。]

5、梳理小结,比较优化。

三、推广应用,建立模型。

1、选择自己喜欢的方法解决《孙子算经》中的原题。

2、解决生活中的“鸡兔同笼”的问题。

(1)动物园中的问题。

动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

(2)游乐园中的问题。

有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条各乘6人,小船每条各乘4人。大小船各租了几条?

3、对比联系,建立模型。

4、小结:今天我们研究这类“鸡兔同笼”问题,不仅仅只解决鸡和兔的问题,主要是要用今天学到的方法解决生活中类似的“鸡兔同笼”问题。

5、让学生举出生活中类似的“鸡兔同笼”问题。

[设计意图:放手让学生运用学到的“策略”解决生活中类似的“鸡兔同笼”问题,及巩固了新知,又使学生体会到“鸡兔同笼”问题在生活中的广泛存在,凸显了本节课的学习价值。在此基础上进一步引导学生观察、比较、总结,提炼出此类问题的结构特征和解决的一般性策略,为学生的学习奠定了可持续发展的坚实基础]

四、引导阅读,课外延伸。

1、阅读并思考课本114页的“阅读材料”。

2、完成练习二十六的1—3题。

[设计意图:“抬脚法”也叫“金鸡独立法”是一种特殊而巧妙的解法,学生不容易理解,课后的阅读给学生一个自主探究、交流的空间,又让学生进一步感受到我国古代数学的魅力。练习作业设计的层次性、挑战性,满足了学生个性化学习的需要,为学生的课外发展提供平台。]

篇15:鸡兔同笼教案

教学目标

1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。

3、通过本节课的学习,知道与鸡兔同笼有关的数学史,对学生进行数学文化的熏陶和感染。

教学过程

一、故事引入

教师:在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)

二、探究新知

1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?

让学生以两人为一组讨论。

汇报讨论的结果。

(1)、列表:

鸡876543

兔012345

脚161820222426

(2)、假设法:

假设笼子里都是鸡,那么就是82=16(只)脚,这样就比题目多26-16=10(只)脚。

因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有102=5(只)兔子。

因此,鸡就有:8-5=3(只)

(3)、用方程解:

解:设鸡有x只,那么兔就有(8-x)只。

根据鸡兔共有26只脚来列方程式

2x+(8-x)4=26

2x+84-4x=26

32-26=4x-2x

2x=6

x=3

8-3=5(只)

2、小结解题方法:

教师:以上三种解法,哪一种更方便?

小结:要解决鸡兔同笼问题,可以采用假设法或方程解都可以。用方程解更直接。

3、独立解决书中的趣题。

(1)、方程解:

解:设鸡有x只,那么兔就有(35-x)只。

根据鸡兔共有94只脚来列方程式

2x+(35-x)4=94

2x+354-4x=94

140-94=4x-2x

2x=46

x=23

35-23=12(只)

答:鸡有23只,兔有12只。

(2)、算术解:

假设都是鸡。

235=70(只)

94-70=24(只)

24(4-2)=12(只)

35-12=23(只)

答:鸡有23只,兔有12只。

三、巩固与运用

1、完成教科书第115页做一做的第1题。

学生独立读题分析后,列式解答。鼓励用方程解。

2、完成教科书第115页做一做的第2题。

提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)

请同学独立列式解答。(讲评时重点解释算术解的每步的算理)

68=48(人)

假设8条都是大船可坐48人。

48-38=10(人)

假设人数比实际的人数多10人。

多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。

10(6-4)=5(条)

8-5=3(条)

这是表示有3条大船。

四、作业

练习二十六第一、二题。

鸡兔同笼课件

鸡兔同笼练习题

鸡兔同笼教学反思

鸡兔同笼练习题及答案

四年级下册鸡兔同笼说课稿

鸡兔同笼评课发言稿

数学广角鸡兔同笼教学反思

小学数学日记之鸡兔同笼

鸡兔同笼的秘密作文600字

鸡兔同笼的课后教学反思

鸡兔同笼》教案(整理15篇)

欢迎下载DOC格式的鸡兔同笼》教案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档