“江湖辫子”通过精心收集,向本站投稿了9篇小学数学日记之鸡兔同笼,下面是小编帮大家整理后的小学数学日记之鸡兔同笼,希望对大家有所帮助。
- 目录
篇1:小学数学日记之鸡兔同笼
小学数学日记之鸡兔同笼
许多同学怕上奥数课,因为一道道难缠的奥数题会搞得人头昏脑胀。而我对它却“情有独钟”,觉得“风景这边独好”。平时的课堂老师单调重复得比较多,让人乏味。每次奥赛课却给我带来新鲜感,让我学到许多课内无法学到的知识,许多平时难以解决的思考题,在这里都能迎刃而解。
今天的一堂课,又让我感受到了学习的快乐。老师教我们用“鸡兔同笼”法解题,其中一道题是这样写的:
3头牛和8只羊共吃青草42.5千克;8头牛和23只羊一天吃共青草117.5千克,如果一头牛一天吃草的千克数是一只羊的3倍,那一只羊一天吃草多少千克?
老师问:“这道题谁会解答?”我举手了,但老师没发现,自己讲解了:“其实这道题蛮简单的。我们由3头牛和8只羊一天共吃草42.5千克,可知3×3头牛和8×3只羊一天可吃……”老师的解答步骤共有4步,而我想的才用了3步。老师讲完后,我说:“老师,我只要用3步就能解决问题。”老师说:“那你说一说你的解法。”我说:“条件里说一头牛一天吃的'草是羊一天吃草数的3倍,我把牛转化成羊来算后,3头羊就转化成3×3只羊,一共有9+8=17只羊,用3头牛和8只羊一天吃草的总量42.5÷17=2.5千克,求出每只羊每天吃草2.5千克了。”老师笑着说:“对,安婷的解题方法叫作替代法,用在这道题上使解答很简便,大家以后要向她学习这种不断求新的学习态度,不要只满足于一种解法。”夸得我心里美滋滋的。
我学习,我快乐,这里的“风景”真奇特,同学们,让我们一起来欣赏它吧!
评:“快乐学习,学习快乐。”是新课程所追求的,面对人人头痛的奥数题,小作者却“情有独钟,”可见其热爱数学,热爱奥数,善于从学习中寻找成功的快乐。日记真实纪录了小作者另辟捷径解决一道奥数题的过程,我们也看到了开放的课堂打开了学生思维定势,使课堂充满活力、生机。
篇2:鸡兔同笼的数学日记
关于鸡兔同笼的数学日记
四年级暑假数学日记:鸡兔同笼
许多同学怕上奥数课,因为一道道难缠的奥数题会搞得人头昏脑胀。而我对它却“情有独钟”,觉得“风景这边独好”。平时的课堂老师单调重复得比较多,让人乏味。每次奥赛课却给我带来新鲜感,让我学到许多课内无法学到的知识,许多平时难以解决的思考题,在这里都能迎刃而解。
今天的一堂课,又让我感受到了学习的快乐。老师教我们用“鸡兔同笼”法解题,其中一道题是这样写的:
3头牛和8只羊共吃青草42.5千克;8头牛和23只羊一天吃共青草117.5千克,如果一头牛一天吃草的千克数是一只羊的3倍,那一只羊一天吃草多少千克?
老师问:“这道题谁会解答?”我举手了,但老师没发现,自己讲解了:“其实这道题蛮简单的。我们由3头牛和8只羊一天共吃草42.5千克,可知3×3头牛和8×3只羊一天可吃……”老师的解答步骤共有4步,而我想的才用了3步。老师讲完后,我说:“老师,我只要用3步就能解决问题。”老师说:“那你说一说你的解法。”我说:“条件里说一头牛一天吃的草是羊一天吃草数的3倍,我把牛转化成羊来算后,3头羊就转化成3×3只羊,一共有9+8=17只羊,用3头牛和8只羊一天吃草的'总量42.5÷17=2.5千克,求出每只羊每天吃草2.5千克了。”老师笑着说:“对,安婷的解题方法叫作替代法,用在这道题上使解答很简便,大家以后要向她学习这种不断求新的学习态度,不要只满足于一种解法。”夸得我心里美滋滋的。
我学习,我快乐,这里的“风景”真奇特,同学们,让我们一起来欣赏它吧!
评:“快乐学习,学习快乐。”是新课程所追求的,面对人人头痛的奥数题,小作者却“情有独钟,”可见其热爱数学,热爱奥数,善于从学习中寻找成功的快乐。日记真实纪录了小作者另辟捷径解决一道奥数题的过程,我们也看到了开放的课堂打开了学生思维定势,使课堂充满活力、生机。
篇3:小学数学《鸡兔同笼》教案
一、教学目标
【知识与技能】
理解掌握并会运用列表法、假设法解决“鸡兔同笼”问题。
【过程与方法】
经历自主探索解决问题的过程,体验解决问题的策略的多样化;在解决问题的过程中,提高逻辑推理能力,增强应用意识和实践能力。
【情感态度价值观】
感受古代数学问题的趣味性。
二、教学重难点
【教学重点】
掌握运用列表法、假设法解决“鸡兔同笼”问题。
【教学难点】
理解掌握假设法,能运用假设法解决数学问题。
三、教学过程
(一)引入新课
PPT呈现课本的主题图,并提问:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?是什么意思?大家能不能算出各几何呢?
引出课题——《鸡兔同笼》
(二)探索新知
先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下
教师总结学生回答:3只兔子,5只鸡,22只脚;4只兔子,4只鸡,24只脚。均不对
追问:按顺序列表填写一下,应该是各有几只?
得出结论有3只鸡,5只兔子。
进一步追问:还有没有其他方法?
学生活动:前后四人一小组讨论。
教师总结:假设笼子里都是鸡,那么多出来的脚的个数除以2便是兔子的只数,用头数减去便得到鸡的只数。如果假设所有的动物都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。多出的10只脚均为兔子的,一只兔子比一只鸡多2只脚,所以算得有10÷2=5只兔,3只鸡。
(三)课堂练习
PPT再次出示导入中的问题“上有三十五头,下有九十四足,问雉兔各几何”
学生活动:学生自主选择喜欢的方法进行解决,一名学生到黑板上板演,其余学生独立完成,在黑板上板演的学生在结束后充当小老师给其他同学进行讲解
(四)小结作业
提问:今天有什么收获?
教师引导学生回顾解决鸡兔同笼问题的方法。
课后作业:思考还有没有其他方式能够解决鸡兔同笼问题?自己设计鸡兔同笼的问题去考考小伙伴或家人。
四、板书设计
五、课后反思
篇4:小学数学《鸡兔同笼》教案
教学目标
1、知识与技能:学会使用列表方法解决鸡兔同笼问题,了解使用假设解决鸡兔同笼问题的方法。
2、过程与方法:在尝试和列表中经历探究与解决问题的过程,掌握分析解决问题的方法。
3、情感态度与价值观:了解我国古代数学的光辉成就,增强民族自豪感;提高学生对数学的好奇心和求知欲;增强学数学的兴趣。
学情分析
对于鸡兔同笼问题,只有个别的学生在校外曾接触到会用方程法列式计算。大多数孩子不知道怎么解决,更不要说多种方法解决了。由于方程是学生五年级新接触的内容,所以大多孩子还不习惯用方程解决问题。学生不会主动想到列表。基于学生的情况,在课堂教学过程中通过引导学生自主探索,合作交流,逐步掌握用列表法解决问题的方法,并对假设的方法有进一步的认识,准备在第二节课体会方程法的优越性。
重点难点
教学重点:
在尝试、分析中掌握鸡兔同笼问题的解决方法,体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
教学难点:
理解并掌握用列表法和假设法解决“鸡兔同笼”问题。
教学过程
活动1【导入】创设情境,引入课题
1、今天老师带了一件小礼物,猜猜多少钱?猜对了就送给你?
教师:这样漫无边际的猜测什么时候能猜到啊?你们不想问我点什么吗?
生:在什么范围?老师告诉范围
教师:刚才同学们每一次猜测实际都是一种假设,假设是解决问题的重要方法,许多发明创造都是以假设为基础的,假设有对有错,那错误的假设有没有价值呢?每一次假设都会帮我们排除一种错误,使我们离成功越来越近,只要不断尝试下去就会成功。今天我们就利用假设的方法共同研究一个有趣的问题,出示课件。学生一起读出课题。板书:鸡兔同笼
2、师:你们听说过鸡兔同笼问题?你知道它出自哪吗?早在一千五百多年前,《孙子算经》中就记载着鸡兔同笼的问题,孙子算经共分三卷,(出示课件),你们知道鸡兔同笼问题记录在哪卷了吗?
3、(课件出原题)读题
师:那就让我们看看孙子算经中是如何记录这一趣题的。(出示课件)
学生读体,并理解雉的意思,请一位同学译成现代文。
设计意图】通过讲述《孙子算经》的历史,增强数学课堂的文化气息,让学生感受到我国数学文化的源远流长,激起学生研究数学问题的热情。
师:哎呀,想想就头疼,那么多头挤在一起好乱啊,怎么解决呢?
记得我们数学上一种方法,就是当问题复杂不便于研究时,我们可以先从简单的问题研究,待找到规律后再利用规律解决复杂问题,你们记起来了吗?这是什么思想啊/这是化繁为简的思想
活动2【讲授】展示情境,尝试探究
(一)出示情景,获取信息
1、教师:那老师就把数换小点,看看这类问题有什么规律。
课件出示:鸡兔同笼,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?
【设计意图】为了便于分析和研究,学生也容易接受,将数目较大的数换成比较小的数,渗透化繁为简的数学思想。
2、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了什么信息?
学生汇报,教师选取有用的信息,进行板书。还隐含了什么信息呢?课件出示鸡腿和兔腿
①鸡和兔共8只。 ②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。
(二)猜想验证,教授列表法。
1、师:我们先来猜猜,笼子中可能会有几只鸡和几只兔?
师:在猜测时,我们要抓住哪些条件?
师:怎样才能确定同学们猜想对不还是错?那现在就把你们的猜想填在表格中。
【设计意图】:培养学生检验的习惯
2、学生汇报:
1)、(假如有采用逐一列表法的)请一个采用逐一列表法解决的同学汇报,汇报讲出理由(你是如何确定第一组数据的,验证后发现了什么问题,怎样进行调整的也就是调整的方法),并且说一说调整过程中有什么发现?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2。)
还有哪些同学与他的方法相同或类似?补充说明理由和发现的规律。(贴出表格)
你们认为这种方法有什么特点?请这些同学为他们的方法命名。(板书:逐一列表法)
2)、哪个同学与他们的列表方法不同?(汇报,说出是如何确定第一组数据的,验证后发现了什么问题,你的调整策略,在调整过程中有什么发现?当计算验证腿数多时说明什么?应该怎样调整?相反呢?)
还有那些同学与他的方法相同或类似(你是怎样想到这种方法的),补充调整方法和策略以及自己的发现。(贴出表格)
种不同的列表(1)逐一列表(2)跳跃式列表(3)取中列表法
4、师:像这样把所有的情况在表格中一一列举出来,我们把这种方法叫做列表法。(板书:列表法)
(三)教授假设法
1、假设全是鸡
师:我们先看表格中左起的第一列,8和0是什么意思?
师:那笼子里是不是全是鸡呢?
生:不会
出示课件
师:可笑的是兔子非常淘气,它觉得鸡两条腿走路很可笑,于是就抬起了两条腿,也学鸡两条腿走路了,此时从下面看腿会发生什么变化呢?
生:腿会减少
师:为什么腿会少呢?
生:因为是把里面的兔当成鸡来计算了,也就是把一只4条腿的兔当成一只2条腿的鸡来算,每只兔会少2条退。
师;如果比原来总共少了8条退,你能知道有几只兔子了吗?
生:4只
师:好,现在我们把刚才假设的过程用算式表示出来。
(课件出示:把一只兔当成一只鸡算,就少了两条腿。)
师:假设笼子里全部是鸡,这时笼子里一共有几只脚呢?
课件出示:8×2=16(条)。
师:但实际是几条脚呢?(16条)与实际相比,脚的只数发生了什么变化?
课件出示:比实际少26-16=10(条)
师:为什么会少10条脚?少了的10只脚是谁的?
课件出示:因为把兔当了鸡在算。一只兔当成一只鸡算少两条腿,把兔当成了鸡算就会少算10条腿,所以会少10条脚,这些脚是兔子的。
师:兔子的只数应该怎么算?
课件出示:兔有10÷2=5(只)
师:那鸡有几只?
课件出示:鸡有8-5=3(只)
【设计意图】简单地提问,能引导学生的思考,帮助学生解题。以一问一答的形式开展,不仅能减低题目的难度,增强学生的自信心,而且还能提高学生思考问题的逻辑思维能力和口头表达能力。
2、板演假设全是鸡的书写过程
师:谁能根据我们刚才所讨论得出的信息,利用算式把这解题过程写出来?请同学们试试看。可以两人一组讨论完成。
3、学生汇报,教师板演。
假设笼子里全部是鸡
总腿数:8×2=16(条)脚
比实际腿数少:26-16=10(条)脚
一只兔比一只鸡多:4-2=2(条)脚
兔的只数:10÷2=5(只)
鸡的只数:8-5=3(只)
答:笼子里兔有5只,鸡有3只。
4、师:我们到底算的对不对呢?怎么办呢?(回顾与反思的过程)
(课件出示:3×2+5×4=26(条)脚,5+3=8(只)。
师:我们再一起回顾一下我们是如何解决这个问题的。
5、师:刚才我们假设笼子里全部是鸡的解题方法,我们叫做假设法。(板书:假设法)
【设计意图】通过把解题思路的整理和归纳,向学生渗透什么是假设法,这样可以帮助学生更好的掌握和运用假设法解决问题。
6、师:现在假设笼子里全部都是兔,你们会解决吗?
(学生独立解题。指名板演。)
7、板书:
假设笼子里全部是兔总腿数:8×4=32(条)脚
比实际腿数多32-26=6(条)脚
一只兔比一只鸡多4-2=2(条)脚
鸡的只数6÷2=3(只)
兔的只数8-3=5(只)
答:笼子兔有5只,鸡有3只。
【设计意图】放手让学生尝试从另一个角度,利用假设法解题,这样不但可以加深与巩固对假设法的理解,而且能拓展学生的思维,让学生明白同一道题用同一种方法可以有不同的思路。
8、小结:
师:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?
对比列表发法和假设法,你们觉得更喜欢哪种方法呢?(得出假设法更具一般性,列表发有局限性)
活动3【活动】巩固新知,解决问题
1、师:现在你有信心解决《孙子算经》里的问题吗?用你喜欢的一种方法来解题?(课件出示题目)
2、自己独立完成后,在小组内交流,教师巡视。幻灯展示学生解题过程。
3、课件出示“做一做”的第1题。
师:我们的鸡兔同笼问题不仅在《孙子算经》中出现,也曾远渡重洋,传播到了日本,逐渐演变成了现在流传甚广的龟鹤问题出示课件,它和鸡兔同笼问题有什么联系呢?
学生自己独立完成。展示学生作业,并让生说说思路。
2、课件出示“做一做”的第2题。
师:生活中随处可见鸡兔同笼问题,看看这道题又和鸡兔同笼问题有什么联系呢?他们不同之处在哪?
新星小学“环保卫士”小分队12人参加植树活动。男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽了32棵树。男、女同学各有几人?
分析,解答,一个同学到黑板上来写。集体讲评
【设计意图】拓宽学生的视野,使学生体会到“鸡兔同笼”问题在生活中的广泛应用,感受数学学习的价值,也让学生体会到数学就在我们身边。
四、拓展延伸
我们不同的方法解决了鸡兔同笼问题,你们知道古代人是如何解决的吗?
出示课件,学生自己读一读,看了这段资料你有什么感受?
感受古人的聪明,感受解题方法的多样化。
【设计意图】现在的解题方法与古人创造的“抬腿法”相比较,引导学生对祖先赞美,同时渗透爱国主义思想教育,激发学生努力学习数学热情。
活动4【作业】布置作业
生活中有很多类似的问题,你能尝试着编一道吗?
活动5【作业】总结收获
师:这节课我们跨越了1500多年的历史,既探讨了中国古代的数学趣题,又解决了咱们身边的一些数学问题。通过这节课的学习,你有什么收获吗?
师:你知道还有什么方法可以解决鸡兔同笼问题吗?
生:方程的方法。
教师:对,还有其他方法可以解决。下节课我们再来研究其他方法。今天数学作业是自己编一道生活中的鸡兔同笼问题。(出示课件)其实数学无处不在,只要同学们善于思考,大胆猜想,那么数学将会变得很美丽,你也会因思考而变得更有智慧。(出示课件)
五、板书设计
篇5:小学数学《鸡兔同笼》说课稿
小学数学《鸡兔同笼》说课稿
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。在北师大版教材数学五年级上册的尝试与猜测中安排了《鸡兔同笼》这一教学内容,从读懂教材这一角度来看,在本课教材中呈现了3种解决问题的方法,都是通过假设举例与列表的方法,寻找解决问题的结果。其中,第一张表格是常规的逐一举例法,第二张运用了跳跃列表法,第三张运用了中列举法。课堂上学生可能会想出画图的方法,方程法等各种方法。但需要注意的是,教材选“鸡兔同笼”这个题材,主要并不是为了解决“鸡兔同笼”这个问题本身,而是要借助“鸡兔同笼”这个载体让学生经历列表,让学生在大胆的猜测、尝试和不断调整的过程中,体会出解决问题的一般策略——列表。而且在后面相应的练习、复习中,相关的题目也都附上了表格,能够让学生较好地运用这种基本的解题策略解题。教学参考中明确指出,教师不宜补充其他解法,以免分散学生的注意力,影响学生对列表方法这一常用数学方法的掌握,更不应要求学生直接套用公式解题。同时,我们对《鸡兔同笼》问题在各种版本中不同的安排也进行了对比研究,比如,在人教版教材中,这一课时安排在六年级,它的教学目标是让学生通过不同方法研究解决鸡兔同笼问题,使学生理解并掌握鸡兔同笼问题的解题方法;而在苏教版中,这一课时是作为四年级的教学内容,一方面是为了培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。针对不同教材,认真领会编者意图的基础上,我们再次对学生进行了认真细致的研读。
说学生:
学生已经具备了应用逐一尝试法列表解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但在数学的应用意识与应用能力方面需进一步培养。
说教学目标:
基于对教材理解的和分析,结合学生的知识经验和生活经验,遵循课程标准精神,我确定了以下教学目标与重难点。
知识目标:本活动的目的是通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的`规律。
能力目标:在“鸡兔同笼”的活动中,通过列表枚举方法,解决鸡兔的数量问题。
情感目标:理解数学知识与实际生活问题的联系,让学生感受到我国数学文化的源远流长,激发学生的学习热情。
重点:明确鸡兔同笼问题中的数量关系,并会运用列表的方法解决生活中的实际问题。
难点:理解数学知识与实际生活问题的联系,掌握利用列表的方法解决实际问题的策略,能够准确的计算。
说教具:
本课时我结合自己的教学设计,制作了课件,为了便于学习,我为为学生准备了两份表格。
说教法、学法:
在教学中我主要采用引导发现法、小组合作法、讨论法、交流等方法,并引导学生进行科学的归纳、总结,以问题引领学生进行尝试、探究、调整、交流等等。使学生在知识探索的过程中体验学习的乐趣,感受数学的价值。
说教学过程:
1、课前我和学生做了一个“猜数”的小游戏,重现学生的实际生活经验,减少学生对于不同列举法的陌生感,为学习各种不同的枚举方法铺垫基础,初步感受中列举的科学性。
2、情景引入
在开课时,我借用兔和鸡这两种学生十分熟悉的动物引入课题,同时借用多媒体出示:你知道吗?说明:这就是1500多年前我国数学史上著名的数学问题——鸡兔同笼问题。同时揭示课题:鸡兔同笼。这一环节的设计,目的是为了给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。
3、尝试、探究
接着我让学生先小组讨论,采用不同的方法解决鸡兔同笼的问题,在这里我只要求学生说出解决的思路即可。紧接着的新授部分,我让学生大胆的进行猜测、尝试与调整,并引导学生观察,探究、归纳各种不同列表法的优劣所在,并重点介绍中列举法。
4、巩固,运用新知解决生活中的实际问题
在这一环节,我又重点让学生分析生活中的实际问题与鸡兔同笼相类似的地方,明确鸡兔同笼问题中的数量关系,构建这一数学模型,帮助学生学会灵活运用列表的策略,并能够找到解决问题的最佳方法。
5、课堂延伸
我让学生课外继续探讨《孙子算经》中的鸡兔同笼问题作为这一课的课堂延伸,既使整堂课前后照应,又使学生的学习从课内延伸到课外。
教学反思
反思这堂课的教学,从整体上来讲我认为还是比较成功的,具体体现在:1、我在认真研读教材、研究学生的基础上,领会了编者的意图,通过在本校几个班的教学实践,学生对列表法的基本方法,以及调试的技巧都掌握得很好;2、对鸡兔同笼这一数学模型的构建学生掌握很好,在解决问题过程中对怎样的问题适合运用列表法能够一目了然,并能选择科学、合理的方法加以解决。3、但对这节课教学本身也有自己的思考,因为《鸡兔同笼》问题本身是我国的千古趣题,解决这个问题的方法远远不止列表法一种,而在教学这一课时,学生虽然能够运用多种方法解决,但由于时间有限,我未能逐一进行讲解,这是否会限止学生的思维呢?所以我不仅在课堂上让学生以小组讨论的形势进行探讨,在结课的时候,我又提示学生早在1500多年前我国的数学名著《孙子算经》中就有所研究和记载,迄今为止,中外许多数学家都很关注鸡兔同笼的问题,并且已经研究出许多解决的方法,希望同学们课外继续研究!以引导学生课外进一步研究“鸡兔同笼”的问题。并且我也带领学生继续探究,同学们也非常有兴趣,探究出了许多方法,比如化归法、破头法、砍足法、金鸡独立法等等,名字都取得五花八门呢,我不知道我这样的设计是否科学、合理,敬请指点。
篇6:小学数学鸡兔同笼公式
(一)鸡兔同笼假设法公式:
解法1:鸡的只数=(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)兔的只数=总只数-鸡的只数
解法2:兔的只数=总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)鸡的只数=总只数-兔的只数
解法3:兔的只数=总脚数÷2―总头数鸡的只数=总只数―兔的只数
(二)方程法:
解设:兔子有х只,则鸡的只数是(总只数-х)。然后找出数量关系式列式即可。
[小学数学鸡兔同笼公式整理]
篇7:初中数学鸡兔同笼日记400字精选
约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只鸡和兔在同一个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔?我想了半天 ,百思不得其解,于是,便看了看下面的故事:
原来孙子提出了大胆的设想。他假设砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与他它们的头的数量之差,就是兔子的只数,即:47-35=12(只);鸡的数量就是:35-12=23(只)。
当然,这道题还可以用方程来解答。我们可以先设兔的只数(也就是头数)是x,因为“鸡头+兔头=35”,所以“鸡头=35-x”。由此可知,有x只兔,应该有4x只兔脚,而鸡的只数是(35-x),所以应该有2×(35-x)只鸡脚。现在已知鸡兔的脚总共是94只,因此,我们可以列出下面的关系式:
4x+2×(35-x)=94
x=12
于是可以算出鸡的只数是35-12=23只。
你说,我算的对吗?你还有别的算法吗?
篇8:初中数学鸡兔同笼日记400字精选
双休日,我做完作业在家中闲得无聊,随手拿了本数学书,一翻,一道有趣的数学题映入我的眼帘:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?”一瞧见这道题目,我一下就对它有了兴趣,提起精神,打算好好研究它。
我苦思了好久,就是没有一点头绪,怎么也想不出个所以然来,但一旁的妈妈却看得津津有味。她看我愁眉苦脸的,就给我指明了思考的方向:“你可以用假设法来解决,可以假设笼子里全部都是鸡,之后的方法你就自己思考吧!”噢,原来是这样啊,多亏妈妈提醒,接着的思考就容易多了。假设笼子里全部是鸡,那么脚就有35×2=70(只),这样就比实际少了94-70=24(只)脚。因为把一只兔看成一只鸡,减少了(4-2)只脚,所以少了24只脚,就说明有24÷2=12(只)兔。那么“35头”就代表一共35只,35-12=23(只)就能算出鸡的只数。妈妈在一旁说道:“嗯,想得真不错。这个就是‘鸡兔同笼’问题,它出自于我国古代的一部算书《孙子算经》,它是我国古代的数学名题之一。不过,许多数学问题往往不止一种解决方法,你仔细想想还有别的吗?”我思索了一会儿,恍然大悟的对妈妈说:“可以假设全是兔,先算出鸡的只数。”妈妈露出了满意的笑容,对我说:“鸡兔同笼”问题是运用了假设的方法,其实好多题目都可以用这一方法来解答。”
假设方法就像妈妈所说,运用范围十分广泛,我还根据解答“鸡兔同笼”问题的解决方法写出了两个数量关系式呢:兔子只数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数—每只鸡脚数)/鸡的只数=(每只兔子脚数×鸡兔总数—实际脚数)÷(每只兔子脚数—每只鸡脚数)。
在数学王国中,有许许多多像“鸡兔同笼”这样有趣的数学问题,只有我们去发现,去探索才能得到答案,享受数学带给我们的喜悦!
篇9:初中数学鸡兔同笼日记400字精选
今天,我在暑假作业上碰到了这样一道题:一个笼子里有许多鸡和兔,共100个头,320只脚。鸡有多少只?兔有多少只?我疑惑不解,想:只告诉我们头和脚的数量,怎么算呢?我带着这个不解的问题去问妈妈。妈妈告诉我,这叫“鸡兔同笼”问题或者“假设法解题”。
那什么叫“鸡兔同笼”?妈妈分析说:“鸡有1个头,2只脚。兔子有1个头,4只脚。如果有5个鸡头,那么就有10只鸡脚,如果有5个兔头,那么就有20只兔脚。在解题过程中,我们要用到假设法,当我们碰到说鸡兔共35个头,94只脚这样的题目,就可以把鸡兔35个头,改成兔35个头,那么就有140只脚,可这里却说是94只脚,为什么会多出46只脚呢?原来我们还没算鸡呢,每只兔子比每只鸡多2只脚,这样一共多了46只脚,就有46÷2=23(只)。这是鸡,兔子就是12只。”妈妈又说:“这道题出现在我国古代的数学著作《孙子算经》里:‘今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?’”
再来看暑假作业上的题目,对于学会的我来说,已是小菜一碟,我用了不过5分钟就轻松搞定。我是这样答题的:鸡(100×4—320)÷(4—2)
=(400—320)÷2
=80÷2
=40(只)
兔:100—40=60(只)
今天我很高兴,因为我学会了“鸡兔同笼”这类数学难题。
★ 鸡兔同笼》教案
★ 鸡兔同笼课件
★ 鸡兔同笼练习题
★ 小学作文数学日记
小学数学日记之鸡兔同笼(通用9篇)




