七年级数学下学期《三角形内角》教案

时间:2023-03-04 04:06:30 作者:dazzling晗坨坨 教案 收藏本文 下载本文

【导语】“dazzling晗坨坨”通过精心收集,向本站投稿了17篇七年级数学下学期《三角形内角》教案,以下是小编为大家整理后的七年级数学下学期《三角形内角》教案,希望对您有所帮助。

篇1: 七年级数学下学期《三角形内角》教案

七年级数学下学期《三角形内角》教案

一、教材背景分析

《三角形的内角》是九年制义务教育人教版七年级下册第七章《三角形》的第二节内容。本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作、实践,说出“三角形的内角和等于180°”成立的理由,然后由浅入深,循序渐进,引导学生观察、实验、猜想、证明,逐步培养学生的逻辑推理能力。

二、教学目标设计

根据新课程标准的要求以及七年级学生的认知水平,我制定本节课的教学目标如下:

⑴了解三角形的内角;

⑵会用平行线的性质与平角的定义证明三角形的内角和等于180°;

⑶初步学会解决与角有关的实际问题;

⑷初步培养学生的说理能力;

根据对教材的.分析和学情的分析我认为本节课的教学的重点与难点如下:

重点:了解三角形的内角和性质,学会解决简单的实际问题。

难点:证明三角形的内角和等于180°。

三、课堂结构设计

四、教学媒体设计

本节课我主要采用了常规手段和计算机辅助相结合的方式进行教学。

本节课的板书设计如下:

五、教学过程设计

(一)创设情境、激发情趣

爱因斯坦说过:“问题的提出往往比解答问题更重要”。上课开始,我设计了一个趣味性问题。在一个直角三角形里住着三个内角,老二对老大说:“你凭什么度数最大,我也要和你一样大。”老大说:“这是不可能的,否则我们这个家再也围不起来了…”。设置悬念让学生评理说理,为三兄弟排忧解难,自然导入三角形内角和的学习。

(二)动手操作、初步感知

提问:三角形内角和是多少?由于学生在小学学过这样的知识,可以预测到学生能轻松答出。紧接着提出第二个问题:有什么办法可以验证这个结论呢?学生可能会提出度量、拼图等方法,然后让每个学生画出一个三角形,并将它的内角剪下,试着拼拼看,再通过小组内部交流拼图的方法,最后教师在学生的基础上总结拼图方法。从而让学生从丰富的实践活动中发展思维的灵活性、创造性,为下一环节“说理”证明作好准备,使学生体会到数学来源于实践,同时对新知识的学习有了期待。

(三)实践说明、深入新知

教是为学服务的,教的最终目的是为了不教,教给学生学习方法,证明方法比单纯教给学生证明更有效。教师设问:从刚才拼图的过程中,你能说出证明:“三角形内角和等于180°”这个结论的正确方法吗?⑴把你的想法与同伴交流。⑵各小组派代表展示说理方法。⑶请同学们归纳上述不同的方法。教师从中挑选一种方法进行讲解,其余方法让学生自己证明。通过小组讨论,让学生各抒己见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的合作探究精神,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力,培养学生的一题多思,一题多解的创新精神,让学生体会数学辅助线的桥梁作用,在潜移默化中渗透了初中阶段一个重要数学思想-转化思想,为学好数学打下坚实的基础。

(四)巩固练习、拓展新知

我设计了一个问题:一个三角形中最多有几个直角、钝角,最多有几个锐角,最少有几个锐角。目的是为学生提供充分从事数学活动的时间、空间,让学生在自主探索、合作交流的氛围中,有机会分享同学的想法,培养了学生之间良好的人际关系。

(五)启发诱导、实际运用

出示两个练习题,让学生进行巩固和加深。

通过例题的解析,让学生体会分析问题的基本方法,渗透初中阶段一个重要数学思想:数形结合思想,使学生巩固概念,加深认识,初步具备解决相关问题的能力,然后让小组交流不同的解法,培养学生思维能力。

六、教学评价

本节课通过让学生自主探究,合作学习来理解和掌握了三角形内角和定理,充分发挥了学生的主体意识,取得了良好的教学效果。

同时也让我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯。

篇2:《三角形内角和》教案

一、教材分析

“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

二、教学目标

1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

三、教学重难点

教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

教学难点:采用多种途径验证三角形的内角和是180°。

四、学情分析

通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

五、教学法分析

本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。

六、课前准备

1、教师准备:多媒体课件、三角形教具。

2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

七、教学过程

(一)、创设情境,激趣导入

导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。

课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。

(二)、自主探究、合作交流

1、探索特殊三角形内角和

拿出自己的一副三角板,同桌之间互相说一说各个角的度数。

三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°

90°+45°+45°=180°

从刚才两个三角形内角和的计算中,你发现了什么?

2、探索一般三角形的内角和

一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。

3、汇报交流

请小组代表汇报方法。

1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)

没有统一的结果,有没有其他方法?

2)剪D拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)

3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)

4)教师课件验证结果。

请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?

学生回答后教师板书:三角形的内角和是180°

为什么有的小组用测量的方法不能得到180°?(误差)

4、验证深化

质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)

谁能说一说不能画出有两个直角的三角形的原因?

(三)、应用规律,解决问题:

揭示规律后,学生要掌握知识,就要通过解答实际问题。

1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。

第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)

第二关,提高练习,

①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。

让学生灵活应用隐含条件来解决问题,进一步提高能力。

2、小组合作练习,完成相应做一做。

(四)、课堂总结,效果检测。

一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。

(五)作业课下继续探究三角形,看你有什么新发现。

篇3:三角形内角和教案

教学目标:

1、通过操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。

3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:对不同探究方法的指导和学生对规律的灵活应用。

教具学具准备:课件、学生准备不同类型的三角形各一个,量角器。

教学过程:

一、创设情景,引出问题

1、猜谜语:(课件)

形状似座山,稳定性能坚。

三竿首尾连,学问不简单。

(打一图形名称)三角形(板书)

2、猜三角形(课件)

师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你知道这是什么三角形吗?

师:提问第3个图形时问:被遮住的两个角是什么角?

会是两个直角吗?为什么?

(引导学生开始对“三角形的内角和是多少”进行思索。)

3、引出课题。

师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)

二、探究新知

1、三角形的内角、内角和

(1)什么是三角形内角(课件)

三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。

(2)三角形内角和

师:内角和指的是什么?

生:三角形的三个角的度数的和,就是三角形的内角和。

(多让几个学生说一说)

2、猜一猜。

师:这个三角形的内角和是多少度?

师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

3操作验证:小组合作。

选1个自己喜欢的三角形,选喜欢的方法进行验证。

(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)

4学生汇报。

(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?

师:有没有别的方法验证。

(2)剪拼

a、学生上台演示。

B、请大家四人小组合作,用他的方法验证其它三角形。

C、展示学生作品。

D、师展示。

(3)折拼

师:有没有别的验证方法?

师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。

(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)

(4)数学文化

师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的`内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662) ,法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。

5、巩固知识。

(1)师:你对三角形内角和是多少度还有疑问吗?现在我们可以肯定的说:三角形的内角和是?度。

(2)解决课前问题,为什么画不出1个含有2个直角的三角形?

1个三角形中有没有2个钝角?

(3)师:我们对三角形的认识已经非常清晰,

出示2个三角形,生分别说出内角和。

把两个小三角形拼在一起,问:大三角形的内角和是?度。

教师:为什么不是360°?

三、解决相关问题

师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

1、看图,求未知角的度数

2、书上88页10题。

教师:刚才,我们利用了三角形的什么?

3、教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?

求出下面三角形各角的度数。

(1)我三边相等。

(2)我是等腰三角形,我的顶角是96°。

(3)我有一个锐角是40°。

4、判断。

5、求4边形、5边形内角和。

下课的时间就要到了,我们来一个挑战题。你们敢接受挑战吗?

如果要求10边形的内角和,你会求吗?你有什么发现?

(我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。)

四、总结。

师:这节课你有什么收获?

篇4:三角形内角和教案

【设计意图】

让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的“横空出现”。

猜测

提出问题:长方形内角和是360°,那么三角形内角和是多少呢?

【设计意图】

引导学生提出合理猜测:三角形的内角和是180°。

(三)验证

(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度。

(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。

(3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。

(4)画:根据长方形的内角和来验证三角形内角和是180°。

一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。

【设计意图】

利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥。

深化

质疑: 大小不同的三角形, 它们的内角和会是一样吗?

观察:指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变。

结论: 角的两条边长了, 但角的大小不变。因为角的大小与边的长短无关。

实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。

结论:活动角就是一个平角180°, 另外两个角都是0°。

【设计意图】

小学生由于年龄小, 容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用“角的大小与边的长短无关”的旧知识来理解说明。

对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。

【设计意图】

习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。

第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。

第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。

第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。

第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。

篇5:三角形内角和教案

教学内容

人教版小学数学第八册第五单元第85页。

任务分析

教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想—验证—结论的过程,来认识和体验三角形内角和的特点。

学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。

教学目标

1、通过实验、操作、推理归纳出三角形内角和是180°。

2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。

3、通过拼摆,感受数学的转化思想。

教学重点

探究发现和验证“三角形的内角和180度”。

教学难点

验证三角形的内角和是180度。

教学准备

多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。

教学过程

一、复习旧知,学习铺垫

1、一个平角是多少度?等于几个直角?

2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?

二、探究新知,理解规律

1、说明三角形的三个内角和:

说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?

师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。

板书课题:“三角形的内角和”。

揭示课题:今天我们一起来探究三角形的内角和有什么规律。

2、探究三角形的内角和规律

探究1:量一量,算一算

以小组为单位,用量角器计算出三种三角形的内角和各是多少度?

生讨论汇报,并引导学生发现:三角形的内角和接近180°。

师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?

学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?

探究2:摆一摆,拼一拼

引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?

生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做

如图:

(1)

锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°。

(2)

让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°。

(3)

让学生独立用同样的方法,发现:钝角三角形的内角和也是180°。

引导学生归纳:三角形的内角和是180°。

是不是所有的三角形的内角和都是180°呢?

篇6:三角形内角和教案

【设计理念】

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。

【教材分析】

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

【学情分析】

学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

【学习目标】

1、通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。

2、学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。

3、在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

4、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

【教学重点】

探索和发现“三角形的内角和是180°”。

【教学难点】

运用三角形的内角和解决实际问题。

【教学准备】

教师:多媒体、剪好的不同类型的三角形。

学生:量角器、剪刀、剪好的不同类型的三角形。

【教学过程】

一、创设情景,引出问题

1、猜谜语。

师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(出示谜语)。

师:打一几何图形。猜猜看!

学生猜谜语。

根据学生的回答,出示谜底。

师:真是三角形,同学们的反应真快!

2、复习三角形的内容。

其实,三角形我们并不陌生,它是一种特别的平面图形。关于三角形,你们已经掌握了哪些知识?

指名学生回答。

3、引出课题。

师:同学们知道的还真不少,可见你们平时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。

(板书课题:三角形的内角和)

二、探究新知

1、讨论、交流验证知识的方法。

师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)

学生汇报:

①用量的方法;

②用拼的方法;

③用折的方法。

2、操作验证。

师:同学们的点子还真多!现在请同学们拿出准备好的三角形。

选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。等研究完了我们再交流,发现了什么,好吗?好,现在开始!

3、学生汇报。

师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?

学生汇报,教师适时板书。

①用量的方法:

指名学生汇报度量的结果,教师板书。(指两名学生汇报)

教师白板演示测量方法,并计算和板书出结果。

教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)

师:可能我们测量的时候会有误差,但是同学们选择比较精确的测量工具,使用正确的测量方法,还是可以得到精确的.结果。看来这个办法不能使人很信服,有没有别的方法验证?

②用拼的方法

a、学生汇报拼的方法并上台演示。

我这里也有一个钝角三角形,请两名同学上台演示。

b、请大家四人小组合作,用他的方法验证其它三角形。

c、展示学生作品。

d、师展示。

师:我们用量、拼得到了180度,还有什么方法?

③用折的方法

师:还想向同学们请同学们看一看他是怎么折的(演示)。

师:刚才我们用量的方法、拼的方法和折的方法研究了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了?

教师根据学生板书:(任意)三角形的内角和是180度。

④数学文化

师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还要更严密的方法证明三角形的内角和是180°。其实,早在300多年前就有一位伟大的数学家,用科学的数学方法见证了任意三角形的内角和都是180度。这位伟大的数学家就是帕斯卡(出示帕斯卡),他是法国著名的数学家、物理学家。他在12岁时发现了三角形内角和定律,17时写出了《圆锥截线论》19岁设计了第一架计算机。

三、巩固练习

数学家发现了知识,今天我们也能够总结出知识。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦!

1、出示:我是小判官(对的打“√”错的“×”。)。

强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度?

教师:为什么不是360°?学生回答。

2、接下来我要奖励你们一个游戏:《帮角找朋友》。

3、求未知角的度数。

师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

①出示第一个三角形,学生尝试独立完成,教师巡视。

教师:刚才,我们利用了三角形的什么?

②教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。

a、我三边相等。

b、我是等腰三角形,我的顶角是96°。

c、我有一个锐角是40°。

教师:如果我们去求一个三角形内角的度数的时候,首先我们要去观察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。

四、拓展延伸

师:看来三角形内角和的知识难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今天学的知识算出它的内角和吗?

接着让学生尝试求5边形和6边形的内角和。

篇7:四年级数学三角形内角和教案

探索与发现:三角形内角和

课型

新授课

设计说明

本节课是在学生已经掌握了钝角、锐角、直角、平角及三角形分类的基础上,让学生通过直观操作来认识和学习的。

1.重视知识的探究与发现。

在教学中,概念的形成没有直接给出,而是整节课都是在引导学生的实验操作、活动探究中进行。在探究活动中,不但重视知识的形成过程,而且注意留给学生充分进行主动探究和交流的空间,让学生归纳出三角形内角和等于180°。

2.重视学生的合作探究学习。

使学生能够积极主动地参与到数学活动中,能在实践中感知、发表自己的见解,学生感受到通过自己的努力取得成功所带来的满足感,同时也培养了学生的探究能力和创新能力。

课前准备

教师准备:PPT课件 量角器 直尺 三角尺

学生准备:量角器 三角尺

教学过程

一、常识导入。(3分钟)

1.介绍帕斯卡:早在300多年前有一个科学家,他在12岁时验证了任意三角形的内角和都是180°,他就是法国科学家、物理学家帕斯卡。

2.导入新课:这节课我们也来验证一下三角形的内角和。

1.倾听教师的介绍,了解帕斯卡。

2.明确本节课的学习内容。

1.填空。

(1)有一个角是钝角的三角形是( )三角形;有一个角是直角的三角形是( )三角形;三个角都是锐角的三角形是( )三角形。

(2)平角=( )°

直角=( )°

周角=( )°

二、合作交流,探究新知。(18分钟)

(一)量算法。

1.探究特殊三角形的内角和。

(1)出示一副三角尺,引导学生说一说各个角的度数。

(2)引导学生算一算它们的内角和各是多少度。

(3)引导学生得出结论。

2.探究一般三角形的内角和。

(1)引导学生猜一猜其他三角形的内角和是多少度。

(2)组织学生验证一般三角形的内角和是180°。

①引导学生量出每个内角的度数,再计算三个内角的和。

②引导学生分工合作,把结果填入记录表中。

③引导学生说说自己的发现。

(3)引导学生明确由于测量有误差,实际上三角形的内角和是180°。

(二)剪拼法。

1.组织学生用剪拼的方法求三角形的内角和。

2.引导学生总结发现。

3.课件演示,得出三角形的内角和是180°的结论。

(三)折拼法。

1.引导学生结合剪拼法尝试折拼法。

2.引导学生得出结论。

3.课件演示折拼法。

(一)1.(1)说出每个三角尺中各个角的度数。

①90°;60°;30°。

②90°;45°;45°。

(2)独立算出每个三角尺的内角和。

(3)得出结论:这两个三角尺的内角和都是180°。

2.(1)同桌之间互相说说自己的看法。

猜测:一种是内角和可能是180°,另一种是内角和一定是180°。

(2)小组合作进行探究,量一量,算一算,说一说。

三角形种类

每个内角

的度数

三个内

角的和

锐角三角形

65°

46°

68°

179°

钝角三角形

110°

25°

46°

181°

等腰三角形

70°

55°

55°

180°

等边三角形

60°

60°

60°

180°

通过观察发现:三角形的内角和都在180°左右。

(3)听老师讲解,明确三角形的内角和是180°。

(二)1.把一个三角形的三个内角剪下来,小组内拼合。在拼合过程中要注意:顶点重合,三个角拼合。

2.发现三角形的三个内角正好拼成了一个平角,也就是180°。

3.观看课件演示,明确三角形的三个内角拼成了一个平角,所以它的内角和是180°。

(三)1.动手折一折、拼一拼。

2.得出结论:三角形的三个内角拼在一起正好是一个平角,所以三角形的内角和是180°。

3.观看课件演示,再次明确三角形的内角和是180°。

2.算一算。

在一个直角三角形中,已知一个锐角是35°,另一个锐角是多少度?

3.在能组成三角形的三个角的后面画“√”。

(1)90°;20°;70°。 ( )

(2)100°;50°;50°。( )

(3)70°;70°;70°。( )

(4)80°;70°;30°。( )

4.猜一猜。

有一个三角形,其中一个角是20°,它可能是什么三角形?

5.已知∠1、∠2、∠3是三角形的三个内角,请你计算出每个三角形中∠1的度数。

(1)∠2=58° ∠3=48°

(2)∠2=∠3=70°

(3)∠1=∠2=∠3

三、巩固练习。(16分钟)

把正确答案的序号填在括号里。

1.把两个小三角形合成一个大三角形,这个大三角形的内角和是( )。

A.90° B.180° C.360°

2.一个三角形中有两个锐角,则第三个角( )。

A.也是锐角

B.一定是直角

C.一定是钝角

D.无法确定

小组合作,选一选,明确答案。

1.明确任何一个三角形的内角和都是180°,三角形的内角和与三角形的大小无关。

2.通过讨论,明确任何一个三角形都至少有两个锐角,所以无法确定。

6.如下图,在直角三角形中,已知∠2=30°,不计算,你知道∠1的度数吗?

四、课堂总结,拓展延伸。(3分钟)

1.总结本节课的学习内容。

2.布置课后作业。

谈自己本节课的收获。

篇8:小学四年级下学期数学三角形内角和练习题

小学四年级下学期数学三角形内角和练习题

大部分同学在学过新知识之后,都觉得自己对这部分知识没有问题了,但是一做题就遇到很多问题,为了避免这种现象,编辑老师整理了这篇四年级数学三角形内角和练习题,希望大家练习!

1.填空。

(1)等边三角形的三个内角都是度。

(2)在三角形中,已知∠1=67°,∠2=35°,那么,∠3=()。

(3)等腰三角形的`底角是65度,则顶角是()。

2.选择。

(1)等腰三角形的一个底角是30度,这个三角形又叫做()。

①锐角三角形②钝角三角形③直角三角形

(2)一个等腰三角形的底角的3倍等于三角形的内角和,则这个三角形是()。

①钝角三角形②直角三角形③等边三角形

(3)一个三角形,其中两个内角的和,等于第三个内角的度数,这个三角形是()。

①锐角三角形②直角三角形③钝角三角形

篇9:小学数学三角形内角和教案优秀

【设计理念】

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。

【教材分析】

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的`学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

【学情分析】

学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

【学习目标】

1、通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。

2、学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。

3、在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

4、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

【教学重点】

探索和发现“三角形的内角和是180°”。

【教学难点】

运用三角形的内角和解决实际问题。

【教学准备】

教师:多媒体课件、剪好的不同类型的三角形。

学生:量角器、剪刀、剪好的不同类型的三角形。

【教学过程】

一、创设情景,引出问题

1、猜谜语。

师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(课件出示谜语)。

师:打一几何图形。猜猜看!

学生猜谜语。

根据学生的回答,课件出示谜底。

师:真是三角形,同学们的反应真快!

2、复习三角形的内容。

其实,三角形我们并不陌生,它是一种特别的平面图形。关于三角形,你们已经掌握了哪些知识?

指名学生回答。

(当学生回答出三角形有3个顶点、3条边和3个角时,请这名学生到台上分别指出三角形的3个角,并标出角。)

3、引出课题。

师:同学们知道的还真不少,可见你们平时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。

(板书课题:三角形的内角和)

二、探究新知

1、讨论、交流验证知识的方法。

师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)

学生汇报:①用量的方法;②用拼的方法;③用折的方法......

2、操作验证。

师:同学们的点子还真多!现在请同学们拿出准备好的三角形,

选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。(或说研究)等研究完了我们再交流,发现了什么,好吗?好,现在开始!

3、学生汇报。

师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?

学生汇报,教师适时板书。

①用量的方法:

指名学生汇报度量的结果,教师板书。(指两名学生汇报)

教师白板演示测量方法,并计算和板书出结果。

教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)

师:可能我们测量的时候会有误差,但是同学们选择比较精确的测量工具,使用正确的测量方法,还是可以得到精确的结果。看来这个办法不能使人很信服,有没有别的方法验证?

②用拼的方法

a、学生汇报拼的方法并上台演示。

我这里也有一个钝角三角形,请两名同学上台演示。

b、请大家四人小组合作,用他的方法验证其它三角形。

c、展示学生作品。

d、师课件展示。

师:我们用量、拼得到了180度,还有什么方法?

③用折的方法

师:还想向同学们请同学们看一看他是怎么折的(课件演示)。

师:刚才我们用量的方法、拼的方法和折的方法研究了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了?

教师根据学生板书:(任意)三角形的内角和是180度。

④数学文化

师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还要更严密的方法证明三角形的内角和是180°。其实,早在300多年前就有一位伟大的数学家,用科学的数学方法见证了任意三角形的内角和都是180度。这位伟大的数学家就是帕斯卡(课件出示帕斯卡),他是法国著名的数学家、物理学家。他在12岁时发现了三角形内角和定律,17时写出了《圆锥截线论》19岁设计了第一架计算机。

三、巩固练习

数学家发现了知识,今天我们也能够总结出知识。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦!

1、课件出示:我是小判官(对的打“√”错的“×”。)

强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度?

教师:为什么不是360°?学生回答。

2、接下来我要奖励你们一个游戏:《帮角找朋友》

3、求未知角的度数。

师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

①课件出示第一个三角形,学生尝试独立完成,教师巡视。

教师:刚才,我们利用了三角形的什么?

②教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。

a、我三边相等;b、我是等腰三角形,我的顶角是96°。c、我有一个锐角是40°。

教师:如果我们去求一个三角形内角的度数的时候,首先我们要去观察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。

四、拓展延伸

师:看来三角形内角和的知识难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(课件出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今天学的知识算出它的内角和吗?

接着让学生尝试求5边形和6边形的内角和。

小结:求多边形的内角和,可以从一个顶点出发,引出它的对角线,这样就把这个多边形分割成了N个三角形,它的内角和就是N个180°

五、课堂总结。

师:这节课你有什么收获?

学生自由发言。

师生交流后总结:知道了三角形的内角和是180度,根据这个规律知道可以用180°减去两个内角的度数,求出第三个未知角的度数。

同学们,只要我们在日常的学习中,细心观察,大胆质疑,认真研究,一定会有意想不到的收获。

六、作业布置

完成教材练习十六的第1、3题。

七、板书设计:

(任意)三角形的内角和是180°

∠1+∠2+∠3=180°

度量剪拼折拼

篇10:小学数学三角形内角和教案优秀

【教学目标】

1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学重点】

探究发现和验证“三角形的内角和为180度”的规律。

【教学难点】

理解并掌握三角形的内角和是180度。

【教具准备】

PPT课件、三角尺、各类三角形、长方形、正方形。

【学生准备】

各类三角形、长方形、正方形、量角器、剪刀等。

【教学过程】

口算训练(出示口算题)

训练学生口算的速度与正确率。

一、谜语导入

(出示谜语)

请画出你猜到的图形。谁来公布谜底?

同桌互相看一看,你们画出的三角形一样吗?

谁来说说,你画出的是什么三角形?(学生汇报)

(1)锐角三角形,(锐角三角形中有几个锐角?)

(2)直角三角形,(直角三角形中可以有两个直角吗?)

(3)钝角三角形,(钝角三角形中可以有两个钝角吗?)

看来,在一个三角形中,只能有一个直角或一个钝角,为什么不能有两个直角或两个钝角呢?三角形的三个角究竟存在什么奥秘呢?这节课,我们一起来学习“三角形的内角和。”(板书课题:三角形的内角和)

看到这个课题,你有什么疑问吗?

(1)什么是内角?有没有同学知道?

内:里面,三角形里面的角。

三角形有几个内角呢?请指出你画的三角形的内角,并分别标上∠1、∠2、∠3。

(2)谁还有疑问?什么是内角和?谁来解释?(三个内角度数的和)。

(3)大胆猜测一下,三角形的内角和是多少度呢?

【设计意图】创设数学化的情境。学生用已经学的三角形的特征只能解释“不能是这样”,而不能解释“为什么不能是这样”。这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣。

二、探究新知

有猜想就要有验证,我们一起来探究用什么方法能知道三角形的内角和呢?

1、确定研究范围

先请大家想一想,研究三角形的内角和,是不是应该包括所用的三角形?

只研究你画出的那一个三角形,行吗?

那就随便画,挨个研究吧?(太麻烦了)

怎么办?请你想个办法吧。

分类研究:锐角三角形,直角三角形,钝角三角形(贴图)

2、探究三角形的内角和

思考一下:你准备用什么方法探究三角形的内角和呢?

小组合作:从你的学具袋中,任选一个三角形,来探究三角形的内角和是多少度?

小组汇报:

(1)量一量:把三角形三个内角的度数相加。

直接测量的方法挺好,虽然测量有误差,但我们知道了三角形的内角和在180°左右。究竟是不是一定就是180°呢?哪个小组还有不同的方法?

(2)拼一拼:把三角形的三个内角剪下来,拼成了一个平角。

能想到这种剪一剪拼一拼的方法,真不简单。三个角拼在一起,看起来像个平角,究竟是不是平角呢?谁还有别的方法?

(3)折一折:把三角形的三个角折下来,拼成了一个平角。

这种方法真了不起,能借助平角的度数来推想三角形内角和是180°。

总结:同学们动脑思考,动手操作,运用不同的方法来验证三角形的内角和。这三种方法都很好,但在操作过程中,难免会有误差,不太有说服力。我们能不能借助学过的图形,更科学更准确的来验证三角形的内角和?

3、演绎推理的方法。

正方形四个角都是直角,正方形内角和是多少度?

你能借助正方形创造出三角形吗?(对角折)

把正方形分成了两个完全一样的直角三角形,每个直角三角形的内角和:360°÷2=180°

再来看看长方形:沿对角线折一折,分成了两个完全一样的直角三角形,内角和:360°÷2=180°

这种方法避免了在剪拼过程中操作出现的误差,

举例验证,你发现了什么?

通过验证,知道了直角三角形的内角和是180度。

你能把锐角三角形变成直角三角形吗?

把锐角三角形沿高对折,分成了两个直角三角形。

一个直角三角形的内角和是180°,那么这个锐角三角形的内角和就是180°×2=360°了,对吗?(360—180=180°)

通过计算,我们知道了这个锐角三角形的内角和是180°,那么所有的锐角三角形的内角和都是180°吗?你是怎么知道的?

通过刚才的计算,你发现了什么?(锐角三角形内角和180°)

钝角三角形的内角和,你们会验证吗?谁来说说你的想法?180×2—90—90=180°

通过验证,你又发现了什么?(钝角三角形内角和180°)

4、总结

通过分类验证,我们发现:直角180,锐角180,钝角180,也就是说:三角形的内角和是180°。也验证了我们的猜想是正确的。(板书)

5、想一想,下面三角形的内角和是多少度?(小——大)

你有什么新发现?(三角形的内角和与它的大小,形状没有关系。)

【设计意图】为了满足学生的探究欲望,发挥学生的主观能动性,通过独立探究和组内交流,实现对多种方法的体验和感悟。学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。

三、自主练习

1、在一个三角形中,如果想求一个角的度数,至少得知道几个角的度数呢?(2个)那我们就试一试,挑战第一关。(两道题)

2、算得真快!如果只知道一个角的度数,还能求出未知角的度数吗?挑战第二关。(三道题)

3、说得真清楚,如果一个角的度数也不知道,你还能求出未知角的度数吗?挑战第三关。(一道题)

师:同学们真了不起,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,都能正确求出未知角的度数。

4、学无止境,课下,请你利用三角形的内角和,探究一下四边形、五边形、六边形的内角和各是多少度?

【设计意图】练习由浅入深,层层递进。从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,梯度训练,拓展思维。

四、课堂总结

同学们,回想一下,这节课我们学习了什么?通过这节课的学习,你有哪些收获呢?

真了不起,同学们不仅学到了知识,还掌握了学习的方法。“在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的”,在这节课上,重要的不是我们知道了三角形的内角和是180°,而是我们通过猜测,一步一步验证,得到这个规律的过程。

课后反思

《三角形的内角和》是五四制青岛版四年级上册第四单元的信息窗二,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一系列活动得出“三角形的内角和等于180°”。

本着“学贵在思,思源于疑”的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”。

为此,我设计了大量的操作活动:画一画、量一量、折一折、拼一拼等,我没有限定了具体的操作环节。在操作活动中,老师有“扶”有“放”。做到了“扶”而不死,“伴”而有度,“放”而不乱。利用课件演示,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。

最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,层级练习,步步加深,梯度训练。

教学是遗憾的艺术。当然本节课的教学中,存在许多不尽如意之处:

1、让学生养成良好的学具运用习惯,特别是小组学生在合作操作时,应有效指导,对学生及时评价,激励表扬,调动学生学习的积极性与主动性。

2、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。

3、在做练习时,为了赶时间,题出现的频率较快,留给学生计算思考的时间不足,可能只照顾到好学生的进程,没有关注全体学生,今后应注意这一点。

教学是一门艺术,上一节课容易,上好一节课谈何容易,在今后的课堂教学中,只有勤学、多练,才能更好的为学生的学习和成长服务,让自己的人生舞台绽放光彩。

篇11:《三角形的内角和》教案

【教学内容】:人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。

【课程标准】:认识三角形,通过观察、操作、了解三角形内角和是180度。

【学情分析】:

学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。

【学习目标】:

1、结合具体图形能描述出三角形的内角、内角和的含义。

2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。

3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。

4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

【评价任务设计】:

1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。达成目标1。

2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。达成目标2。

3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。达成目标3。

4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”和习题第9、10、12题达成目标4和目标3。

【重难点】

教学重点:探索和发现三角形的内角和是180°。

教学难点: 充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°

【教学过程】

一、复习准备。

1、三角形按角的不同可以分成哪几类?

2、一个平角是多少度?1个平角等于几个直角?两个三角板上各个角的度数?

二、探究新知

(一)创设情境,生成问题,认识三角形的内角及内角和

(播放课件)在图形王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“你虽然有一个钝角,可其它两个角都很小。但是我的三个角都不是很小。我的内角和比你大”。直角三角形说:“别争了,三角形的内角和是180°,我们的内角和是一样大的。”

师:动画片看完了,请大家想一想,什么是三角形的内角和?

师引导学生说出三角形三个内角的度数和叫做三角形的内角和。

多媒体展示:三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角(板书:内角),这三个内角的度数的和就叫做三角形的内角和。

(达成目标1:利用多媒体播放动画和孩子已有的经验,通过教师的提问和引导,学生说出什么叫三角形的内角及内角和达成目标1。多媒体创设的情景也为目标二打好铺垫)

(二)、引导猜测三角形的内角和是180度

师:在课件展示的直角三角形、钝角三角形、锐角三角形的对话中,你赞同谁的观点?

预设:学生回答直角三角形。

师:你为什么这么认为呢?

生:我是想三角板上三个角的度数是90度、45度、45度加起来是180度,90度、60度、30度加起来也是180度。

(达成目标2:激发引导学生运用已有经验猜三角形的内角和而不是盲目猜,激起学生的疑问和好奇心,这样在教师的引导下,学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。)

(三)、验证三角形的内角和是180度

1.确定研究范围

师:研究三角形的内角和,是不是应该包括所有的三角形?只研究这一个行不行?(不行)那就随便画,挨个研究吧。(学生反对)那该怎样去验证呢?请你们想个办法吧!

师:分类验证是科学验证的一种好方法,下面我们就用分类验证的方法来验证一下,看看三角形的内角和是不是180°?

2.操作验证

教师让每个学习小组拿出课前制作的各种各样的三角形,先找到三个内角,在每个内角标上序号1、2、3。然后请任意用一个三角形,想办法验证我们的猜想。如果有困难,可以启用老师提供的“智慧锦囊”或者寻求同学的帮助。

智慧锦囊:

(1)要知道三个内角的和,只要知道三个角分别是多少度就可以了,你觉得哪个工具可以测出角的度数?试一试。

(2)180°的角是个特殊的角,它是个什么角?你能想办法将这三个内角转化成这样的角吗?

3.汇报交流

师:谁来汇报你的验证结果?

(1)测算法

师小结:用量的方法验证既然有误差、不准,结论就难以让人信服,那有没有办法更好地验证我们的猜测呢?谁还有别的方法?

(2)剪拼法

(3)折拼法

师小结:用拼和折的方法都能将三角形的三个内角转化成一个平角,从而借助我们学过的平角知识证明三角形的内角和确实是180°,你们真会动脑筋!

(4)推算法

①把一个长方形沿对角线分成两个完全一样的直角三角形。因为长方形的内角和是360°,所以一个直角三角形的内角和等于180°。(课件演示过程)

师:直角三角形的内角和已经证明了是180°,现在我们只要能证明:锐角三角形和钝角三角形的内角和也是180°就可以了。

课件演示

②一个锐角三角形,从顶点往下画一条垂线,将三角形分为两个直角三角形,因为我们已经知道直角三角形的内角和是180°,所以两个直角三角形的度数和就是360°,减去两个直角的和180°,就是要证明的三角形内角和,肯定是180°。

4.总结提炼

师:孩子们,刚才我们通过“量――拼――折――推”的方法分类验证了三角形的内角和是( )度?

现在可以下结论了吗?

(板书:三角形三个内角和等于180°。)

师:那在“三角形的争吵中”谁是对的?

(达成目标3。此环节让学生通过“量――拼――折――推”的方法分类验证了三角形的内角和是180度。此环节充分体现了学生学习的主动性。)

(四)利用三角形内角和是180解决问题

1、看图,求出未知角的度数。

2、书本85页“做一做”

在一个三角形中,∠1=140。,∠3=25。,求∠2的度数。

(达成目标3和目标4:能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”达成目标3和目标4.)

三、目标达成检测方案:

1、求出三角形各个角的度数。

2、埃及金字塔建于45前的埃及古王朝时期,它是用巨大石块修砌成的方锥形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各异,外表有四个侧面,每个侧面都是等腰三角形。人们量得这个三角形的一个底角是64度。

四、课堂小结,提升认识

同学们,这节课你有哪些收获?我们是怎样得到“三角形内角和等于180度”这个结论的?

师:是啊,今天咱们不但知道了三角形的内角和是180°,更重要的是我们经历了探究三角形内角和的验证方法。咱们从猜想出发,经过验证(用量、拼、折、推等)得到了结论并利用结论解决了一些问题。孩子们,其实我们在不知不觉中已经走了数学家的探究历程……希望同学们在今后的学习中大胆应用,勇于创新,做最棒的自己

篇12:《三角形的内角和》教案

教学目标:

1、知识目标:通过测量、拼、折叠等方法探索和发现三角形的内角和等于180°;已知三角形两个角的度数,会求出第三个角的度数。

2、能力目标:通过讨论争辩、操作、推理等培养学生的思维能力和解决问题的能力;培养学生的空间观念,使学生的创新能力得到发展;使学生初步掌握由特殊到一般的逻辑思辨方法和先猜想后验证的研究问题的方法。

3、情感目标:培养学生的合作精神和探索精神;培养学生运用数学的意识。

教学重、难点:

掌握三角形的内角和是180°。验证三角形的内角和是180°。

学生分析:

在上学期学生已经掌握了角的分类及度量问题。在本课之前,学生又研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

教学流程:

一、创设情境,激发兴趣

(课件出示:两个三角形争论,大的对小的说,我的内角和比你大。)

(学生小声议论着,争论着。)

师:同学们,你们能不能帮助大三角形和小三角形解决这个问题啊?

生:可以把这两个三角形的内角比一比。

生:它们不是一个角在比较,可怎么比呀?

生:我们先画出一个大三角形,再画一个小三角形。分别量一量这两个三角形三个内角的度数,这样就知道谁的内角和大,谁的内角和小啦。

师:那好,我们今天就来研究“三角形的内角和”。(板书课题。)

【设计意图:通过多媒体出示,引起学生兴趣,使学生想探索大、小三角形的内角和到底谁大?】

二、动手操作,探索新知

1、初步感知。

师让学生分别画出不同形状的三角形。学生用量角器测量三角形三个内角的度数,并做着记录,并统一填表格。(表格略。)

生汇报测量的结果:内角和约等于180°。

师启发学生发现三角形的内角和180°。(师板书:三角形的内角和是180°。)

【设计意图:通过这种方法可以得出准确的结论,也容易被学生理解和接受。可能出现问题:用测量的方法得到的结果不是刚好180°。使学生明白是因为测量存在误差的缘故。】

2、用拼角法验证。

师:刚才同学们发现,三角形的内角和约等于180°,那么到底是不是这样呢?

生:我们手里有一些三角形,可以动手拼一拼。

生:还可以剪一剪。

师:那同学们就开始吧!

(学生动手进行拼、剪、折等方法,检验三角形内角和的度数。)

生:锐角三角形的内角可以拼成一个平角。因为平角是180°,所以锐角三角形的三个内角和是180°。

生:我把一个直角三角形的三个内角剪下来,拼成了一个平角,所以直角三角形的三个内角和也是180°。

生:钝角三角形的内角和也是180°。

(师板书:三角形的内角和是180°。)

【设计意图:使学生明确,因为全面研究了直角三角形、锐角三角形和钝角三角形这三类三角形的内角和,所以可以得出“三角形的内角和等于180°”这一结论。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。】

三、巩固新知,拓展应用

1.出示题目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度数。

2.已知∠1、∠2、∠3是三角形的三个内角,猜一猜下面的三角形各是什么三角形?(图略,分别是锐角、直角、钝角三角形。)学生猜后,教师抽去遮盖的纸,进行验证。

通过以上的练习使学生对三角形内角和的应用有个初步认识,并积累解决问题的经验。

3.师:(出示一个大三角形)它的内角和是多少度?

生:180 °。

师:(出示一个很小的三角形)它的内角和是多少度?

生:180 °。

师:(把大三角形平均分成两份。指均分后的一个小三角形)它的内角和是多少度?(生有的答90°,有的答180°。)

师:哪个对?为什么?

生:180°对,因为它还是一个三角形。

师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?(这时学生的答案又出现了180°和360°两种。)师:究竟谁对呢?(学生脸上露出疑问。经过一番激烈的讨论探究后,学生开始举手回答。)

生:180°。因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。

生:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,比原来两个三角形少180°,所以大三角形的内角和还是180°,不是360°。

师:你真聪明。(课件演示。)

四、小结

师:同学们,你们今天学了“三角形的内角和是180°”的新知识,现在能来帮助大、小三角形进行评判了吧?(生答能。)

师:说一说本节课的收获。这节课你掌握了哪些知识?学会了哪些研究问题的方法?

五、探究性作业

求下面几个多边形的内角和。(图形略。)

【设计意图:通过这样的练习,培养学生思维的灵活性、多样性,使不同层次的学生得到不同的发展,体现教学的层次性。】

反思:

1、重视动手操作,让学生在探究中收获知识。《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养空间观念和动手操作能力。

2、小组合作学习是新课程倡导的学习方式,有利于培养学生的合作意识、探索能力、团队精神。我们要从平时抓起,在平常的课堂中开展小组合作学习,可以是前后四人为一组,深入探究合作学习的方法和途径。这样学生学习方式的转变才能落到实处,才不会变成某些公开课的摆设

篇13:《三角形的内角和》教案

教学要求

1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2.能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

3.培养学生动手动脑及分析推理能力。

教学重点 三角形的内角和是180°的规律。

教学难点 使学生理解三角形的内角和是180°这一规律。

教学用具 每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。

教学过程:

一、复习准备

1.三角形按角的不同可以分成哪几类?

2.一个平角是多少度?1个平角等于几个直角?

3.如图,已知∠1=35°,∠2=75°,求∠3的度数。

二、教学新课

1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)

2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。

3.以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?

4.指名学生汇报各组度量和计算的结果。你有什么发现?

5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。

6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?

提示学生,可以把三个内角拼成一个角,就只需测量一次了。

7.请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。

8.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)

9.拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)

10.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11.老师板书结论:三角形的内角和是180°。

12.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?

13.出示教材85页做一做。让学生试做。

14.指名汇报怎样列式计算的。两种方法均可。

∠2=180°-140°-25°=15°

∠2=180°(140°+25°)=15°

三、巩固练习

1.88页第9题

这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?独立完成,集体订正。

直角三角形中的一个锐角还可以怎样算?

2、88页第10题

①等腰三角形有什么特点?(两底角相等)

②列式计算 180°-70°-70°=40°或

180°-(70°×2)=40°

2.88页第10题

①连接长方形、正方形一组对角顶点,把长方形、正方形分成两个什么图形?

②一个三角形的内角和是180°,两个三角形呢?

四、布置作业

篇14:《三角形的内角和》教案

设计说明

在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去探究、发现新知识的奥妙,从而让学生在动手操作、积极探究的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角板上每个角的度数都比较熟悉,从这里入手,先让学生算出每块三角板上三个内角的和是180°,进而引发学生猜想:其他三角形的内角和也是180°吗?接着引导学生小组合作,任意画出不同类型的三角形,通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差)。再引导学生通过剪拼的方法发现各类三角形的三个内角都可以拼成一个平角。然后利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列的活动潜移默化地向学生渗透了转化的数学思想,为后面的学习奠定了必要的基础。最后安排了三个层次的练习,逐层加深。在练习的过程中,既激发了学生主动解题的积极性,拓展了学生的思维,又兼顾到了智力水平发展较快的学生。

课前准备

教师准备 多媒体课件

学生准备 三角板

教学过程

⊙复习导入

师:请同学们回忆一下,我们以前学过哪些平面图形?(长方形、正方形、平行四边形、三角形等)

师:这些是我们早已认识的平面图形,那么你们知道长方形有什么特征吗?(学生汇报:长方形的对边相等,有四个角,且四个角都是直角)

师:这四个角一共是多少度?(360°)

师:你是怎么算的?(90°×4=360°)

师:请看大屏幕。(课件演示三条线段围成三角形的过程)三条线段围成三角形后,在三角形内形成了三个角(课件分别显示出三个角的弧线),我们把三角形里面的这三个角叫做三角形的内角。

师:通过刚才的回忆,同学们知道长方形四个内角的和是360°,那么三角形的内角和又是多少呢?这节课我们就来探究三角形的内角和。(板书课题)

设计意图:通过复习学过的平面图形,唤醒学生的认知。借助长方形四个角都是直角的特征,学生通过计算很容易知道长方形的内角和是360°,从而质疑三角形的内角和是多少。这样以问题情境开始,既丰富了学生的感官认识,又激发了学生的探究欲望。

⊙探究新知

1.探究特殊三角形的内角和。

师:(课件出示一块三角板)大家熟悉这块三角板吗?请拿出形状与这块一样的三角板,并和同桌互相说一说各个角的度数。(课件出示由三角板抽象出的三角形)

师:这个三角形三个角的度数和是多少?(180°)你是怎样知道的?(90°+45°+45°=180°)

明确:把三角形三个内角的度数合起来就叫做三角形的内角和。

师:(课件出示由另一块三角板抽象出的三角形)这个三角形的内角和是多少度?(90°+60°+30°=180°)

师:从刚才两个三角形内角和的计算中你发现了什么?(这两个三角形的内角和都是180°,且这两个三角形都是直角三角形)

2.探究一般三角形的内角和。

(1)刚才我们探究了直角三角形的内角和是180°,那么其他任意三角形的内角和又是多少度呢?请大家猜一猜。(大多数学生认为也是180°)

(2)操作、验证一般三角形的内角和是180°。

师:刚才大多数同学认为三角形的内角和是180°,但也有几个同学不敢肯定,那么我们用什么方法来验证这个猜想是否正确呢?

①小组合作,探究验证方法。

师:请每位同学先独立思考,然后把你的想法在小组内交流,看一看哪个小组想出的方法最多。

②交流汇报。

预设

组1:我们小组用量角器把三角形的三个内角的度数分别量出来,再加起来看一看是不是等于180°。

组2:我们小组猜想三角形的内角和是180°,而平角的度数也是180°,如果三角形的三个内角刚好能拼成一个平角,那么就说明三角形的内角和是180°。所以我们小组把三角形的三个内角剪下来,拼一拼,看一看能不能拼成一个平角。

③动手操作,验证猜想。

师:请同学们选择一种你喜欢的方法来验证我们刚才的猜想,验证完,将你的结论在小组内交流。(出示课堂活动卡,教师巡视,参与各小组的验证活动,并给予适当的指导)

师小结:大家刚才量出来的结果或拼出来的结果都在180°左右,其实三角形的内角和就是180°,因为在测量或操作的过程中会产生误差,所以数据会有一些偏差。

3.得出结论。

师:根据上面的验证,我们可以得出一个怎样的结论?(三角形的内角和是180°,教师板书:三角形的内角和是180°)

设计意图:学生通过操作、思考、反馈等过程,真正经历了有效的探究活动,先由直角三角形算出其内角和,再用猜想、操作、验证等方法推导出一般三角形的内角和,最后归纳得出所有三角形的内角和都是180°。在这个过程中,学生不仅体会到了数学学习中归纳的思想方法,还感受到了数学与生活的密切联系。

篇15:教案:《三角形的内角和》

教案:《三角形的内角和》

三 角 形 的 内 角 和   一、教学内容: 人教版四年级数学下册第85页例5,做一做及练习十四 二、教学目标: 1、用活动的形式,让学生通过测量、撕拼、折叠等方法,推理归纳出“三角形的内角和是180”。 2、激发学生主动参与、自主探索的意识,发展空间观念。 3、培养学生动手、动脑及分析推理能力, 并能运用所学知识解决实际问题。 三、  教学难点、重点: 1、探索发现三角形的内角和是180°。 2利用内角和的知识解决实际问题。 四、教学准备 画有锐角三角形、钝角三角形、直角三角形的纸若干张、记录单若干张;量角器、三角尺、剪刀;课件。 五、教学过程: (一)、复习旧知,故事激趣,引入新课。 1、复习三角形的分类 师:今天我给大家带来了几个三角形,按角的分类,我们一起说一说它们的名称好吗?(锐角三角形、钝角三角形、直角三角形)  根据学生的回答把三种大小不等的三角形的图片贴在黑板上。    2、故事激趣。 故事:这三个三角形在三角形王国里是非常要好的朋友,平时非常团结。可有一天,它们却因为一件事吵得不可开交。你们听;一直以老大自居的钝角三角形说:“我的内角和一定比你们的大!”老二直角三角形也不不甘示弱:我的大!”老三锐角三角形听了它俩的争论半信半疑:“是这样吗?” 3、发现新名词,板书课题,理解三角形的内角、内角和的含义 师:在这个故事里,有没有听到一个新名词?(三角形的内角和)板书课题 什么是三角形的内角?内角和又是什么?   {1} 三角形里的三个角就是三角形的内角。  (2)内角和:三角形里的三个角的度数之和。为了方便,可以给三角形的内角分别起个名字∠1、∠2、∠3 板书::三个内角的度数之和   4、谈想法 你认为谁说的对?说出自己的想法。 (二)、实践活动,探究新知  1、量角:探索三角形的内角和 要想知道三角形的内角和到底是多少?口说无凭,我们要借用量角器,量出各个内角的度数,再求出它们的内角和。 (!)、小组合作,探索新知   合作要求: 1、四人一组,由组长具体分工; 2、一位同学量出每个内角的度数;一位同学把量的结果填写在记录单上;一位同学在白纸上计算内角和的度数;另一位同学监督三位同学的操作是否有误。  3、推选一位同学汇报测量结果。 记录单   量一量 (a)、我们量的是直角三角形,三个内角的度数分别是∠1(  )度,∠2( )度,∠3( )度,这个三角形的内角和( )度。 (b)、我们量的是锐角三角形,三个内角的度数分别是∠1(  )度,∠2( )度,∠3( )度,这个三角形的内角和是( )度。 (c)、我们量的是钝角三角形,三个内角的度数分别是∠1(  )度,∠2( )度,∠3( )度,这个三角形的内角和是( )度。 (2)、汇报测量及计算结果 若某组测量计算的.内角和大于或小于180度,不要急于解释误差的原因。板书孩子汇报的结果:如:180°182°178°。 2、验证“三角形的内角和是180°”  向学生发出疑问:通过测量真的认为三角形的内角和180度? 有什么办法可以验证? (!)、尝试验证   拿出自己准备的三角形尝试验证 验证方法一:剪一剪(撕一撕)、拼一拼 用剪刀剪下(或用手撕下)三个内角再拼一拼,看一看能拼成什么角?发现三角形的内角和是多少度? 验证方法二:折一折   把三角形中一个角沿中线向对边对折,其余两个角向里对折,三个角组成了一个什么角?发现三角形的内角和是多少度? (2)展示验证方法及结果 找同学演示不同三角形的拼法或折法,得出任意三角形的内角和都是180度。演示完教师通过多媒体再演示,加深印象。 (3)出示不同大小的两个三角形   找两位同学分别用自己喜欢的方式验证大小不同的两个三角形的内角和。 3、通过刚才的验证你发现了什么?°   学生总结三角的内角和都是180°。为什么测量时会出现182°和178°,解释误差。   小结:三角形不论形状、大小,内角和都是180°。现在我们可以肯定的告诉这三兄弟:任意三角形的内角和都是180°。课件展示 (三)巩固练习  1、基本练习数学课本第85页的做一做 练习十四的第9---10题   2、判断题 (1)、钝角三角形的内角和大于锐角三角形的内角和。  ( ) (2)、一个三角形里会有两个直角或两个钝角。  ( ) (3)、把一个等腰三角形平均分成两个小三角形,每个小三角形 的内角和是90°。 ( )  (4)、直角三角形的两个锐角的和等于90°。    ( ) 3 、拓展题   课件展示四边形,思考四边形的内角和是多少?   得出四边形的内角和进一步思考五边形和六边形的内角和。   四边形:180°×2=360°   五边形:180°×3=540°   六边形:180°×4=720°   六、你有什么收获 这节课你学到了什么?   板书:   三角形的内角和   直角三角形的图片 三个内角的度数之和 钝角三角形的图片 锐角三角形的图片  180°

篇16:《三角形内角和》数学教学反思

《课程标准》倡导探究性学习,力图改变学生的学习方式,引导学生主动参与、乐于探究、勤于动手,逐步培养学生收集和处理科学信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流与合作的能力等,突出创新精神和实践能力的培养。探究三角形内角和的过程的时候,我注意鼓励学生通过动手操作、小组合作的方法去探究,并利用多媒体去验证学生的结论,最终得到三角形的内角和都是180°。

给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。“为什么不能画出有两个直角的三角形?三角形的内角度数有何奥秘?”这正是小组合作的契机。通过小组内交流,让学生在小组内完成从特殊到一般的研究过程。教师引导学生通过测量、剪拼、折拼等实际操作,建立解决问题的目标意识,形成学习的氛围,给学生更多的自主学习、合作学习的机会,促进学生的主体参与意识。在此基础上,教师通过多媒体动画演示,让学生更直观、更清晰地观察到剪拼、折拼的过程,进一步验证探究结论。同学们通过自主实践、合作探究完成了本节课的教学任务。

整节课的练习设计,由易到难。在应用“三角形内角和是180°”这一结论时,第一、二层练习是已知三角形两个内角的度数,求另一个角和简单的'判断题。第三层练习是求特殊三角形内角的度数,真正做到了三角形内角和知识与三角形特点的有机结合。

在实际教学中,我多次利用超级画板、flash动画,从开始的激趣引入、观察猜想,到后来的数据验证,多媒体在整个教学中起到了不可忽视的辅助作用。另外,参与学生的探究活动是我教学的一大特点,询问、点拨、交流,使学生都能积极参与到合作学习之中,更好地完成教学任务。同时我也发现,学生在合作探究中的组织如合理分工、有效合作等方面不够科学合理,还需更具体的指导,以使每位学生都能真正参与,让合作探究更有效。

篇17:三角形内角和数学教学总结

这节课作为四年级下册中三角形的一个重要组成部分,它是学生学习三角形内角关系和其它多边形内角和的基础。即使在以前没有这部分内容,大部分教师在课后也会告诉学生三角形的内角和是180度,学生容易记住。本节课我具体抓住以下2个方面。

1、为学生营造了探究的情境。

在数学教学中,教师应提供给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。教学中,我在引出课题后,引导学生自己提出问题并理解内角与内角和的概念。在学生猜测的基础上,再引导学生通过探究活动来验证自己的观点是否正确。当学生有困难时,教师也参与学生的研究,适当进行点拨。并充分进行交流反馈。给学生创造了一个宽松和谐的探究氛围。

2、充分调动各种感官动手操作,享受数学学习的快乐。

在验证三角形的内角和是180度的过程当中,大部份同学都是用度量的方法,此时,我引导学生:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示,出现了很多种方法,有的是把三个角剪下来拼成一个平角。有的用两个大小相等的直角三角形拼成一个正方形,还有的是用折纸的方法,极大地调动了大脑,就连平时对数学不感兴趣的学生也置身其中。充分让学生进行动手操作,享受数学学习的乐趣。

一、教学现状的思考。

我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

1、通过量一量算一算拼一拼折一折的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。

2、通过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想。

3、通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。

(三)教学重,难点

因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是“内角”的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。

二,说教法,学法。

本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。

因为《课程标准》明确指出:“要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力”。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从“猜测――验证”展开学习活动,让学生感受这种重要的数学思维方式。

三,说教学过程

我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。

(一)引入

呈现情境:出示多个已学的平面图形,让学生认识什么是“内角”。( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题。

【设计意图】让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的“横空出。

(二)猜测

提出问题:长方形内角和是360°,那么三角形内角和是多少呢?

【设计意图】引导学生提出合理猜测:三角形的内角和是180°。

(三)验证

(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度?

(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。

(3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。

(4)画:根据长方形的内角和来验证三角形内角和是180°。

一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。

【设计意图】利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥。

(四)深化

质疑: 大小不同的三角形, 它们的内角和会是一样吗?

观察指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变。

结论: 角的两条边长了, 但角的大小不变。因为角的大小与边的长短无关。

实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。

结论:活动角就是一个平角180°, 另外两个角都是0°。

【设计意图】小学生由于年龄小, 容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用”角的大小与边的长短无关\"的旧知识来理解说明。

对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。

(五)应用

1、基础练习:书本练习十四的习题9,求出三角形各个角的度数。

2、变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗?

(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少?

(2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少?

4、智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题。

【设计意图】习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。

第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。

第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。

第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。

第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。

能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。

三角形内角

教案:《三角形的内角和》

三角形的内角和

三角形内角和说课稿

《三角形内角和》的数学教学反思

三角形内角和教学设计

三角形的内角和说课稿

三角形内角和教学反思

四年级数学下册《三角形的内角和》教学反思

八年级数学上册《11.2三角形内角和》优秀说课稿

七年级数学下学期《三角形内角》教案(推荐17篇)

欢迎下载DOC格式的七年级数学下学期《三角形内角》教案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档