相似三角形 ―― 初中数学第三册教案

时间:2022-12-06 06:11:56 作者:魔法少女阿拉丁 教案 收藏本文 下载本文

“魔法少女阿拉丁”通过精心收集,向本站投稿了19篇相似三角形 ―― 初中数学第三册教案,以下是小编收集整理后的相似三角形 ―― 初中数学第三册教案,仅供参考,希望对大家有所帮助。

篇1:初中相似三角形教案

一、学生知识状况分析

学生的知识技能基础:

在七年级的学习中,学生通过观察、测量、画图 、拼摆 等数学活动, 体会了全等三角形中“对应关系”的重要作用。上一节课“相似多边形”的学习,使学生在探索相似形本质特征的过程中,发展了有条理地思考与表达,归纳,反思,交流等能力。

学生活动经验基础:

上述学习经历为学生继续探究“相似三角形”积累了丰富的活动经验和知识基础。

二、教学任务分析

(一)教材的地位和作用分析:

.《相似三角形》在本章中承上启下,

. 体现了从一般到特殊的数学思想;

. 是学生今后学习的基础;

. 是解决生活中许多实际问题的常用数学模型.

即相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习探索三角形相似的条件、三角函数及与此有关的比例线段等知识打下良好的基础。

(二)教学重点:

相似三角形定义的理解和认识。

(三)教学难点:

1..相似三角形的定义所揭示的本质属性的理解和应用;

2..例2后想一想中“渗透三角形相似与平行的内在联系”是本节课的第二个难点。

(四)教法与学法分析:

本节课将借助生活实际和图形变换创设宽松的学习环境; 并利用多媒体手段辅助教学,直观、形象,体现数学的趣味性。

学生则通过观察类比、动手实践、自主探索、合作交流的学习方式完成本节课的学习。

(五)教法建议

1.从知识的逻辑体系出发,在知识的引入时可考虑先复习相似形的概念,在探索归纳给出相似三角形的概念

2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念

3.在知识的引入上,还可以从知 识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识

4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解

5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解

6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握

(六)教学目标分析:

通过一些具体问题的情境设置、观察类比、动手操作;让学生积极思考、充分参与、合作探究;深化对相似三角形定义的理解和认识.发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。

教学目标:

1知识与 技能

(1). 掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。

(2). 能根据相似比进行计算,训练学生判断能力及对数学定义的运用能力。

2 过程与方法

(1). 领会教学活动中的类比思想,提高学生学习数学的积极性。

(2). 经过本节的学习,培养学生通过类比得到新知识的能力,掌握相似三角形

的定义及表示法,会运用相似比解决相似三角形的边长问题。

3 情感态度与价值观

(1). 经历相似多边形有关概念的类比,渗透类比的数学思想,并领会特殊与

一般的关系。

(2). 深化对相似三角形定义的理解和认识.发展学生的'想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。

三、教学过程分析

本节课共设计了五个环节:

1情景引入 归纳定义

2 运用定义 解决问题

3 加深理解 探索规律

4 回顾反思 课堂小结

5.布置作业

篇2:初中相似三角形教案

一、教学目标

知识目标:

1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

能力目标:

2.进一步培养学生类比的数学思想.

情感目标:

3.通过学习,养成严谨科学的学习品质

二、教学重点、难点、疑点及解析

1.重点是性质定理的应用.

2.难点是相似三角形的判定与性质等有关知识的综合运用.

3.疑点是要向学生讲清什么是对应高、对应中线、对应角平分线,它不是一个三角形中两条高、中线、角平分线的比等于相似比.另外,在定理的证明过程中,要向学生讲清由已知两三角形相似(性质)去证另外两个三角形相似(判定)的思维过程,即相似三角形性质与判定的综合运用.

三、教学方法

新授课.

四、教学过程

(一)复习提问

1.三角形中三种主要线段是什么?

2.到目前为止,我们学习了相似三角形的哪些性质?

3.什么叫相似比?

(二)讲解新课

根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.下面我们研究相似三角形的其他性质(见图5-45,图5-46,图5-47).建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

性质定理1:相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.

∵△ABC∽△ABC,

ADBC,ADBC,

教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.

分析示意图:结论∽(欠缺条件)∽(已知)

∵ △ABC∽△ABC,

BM=MC,BM=MC,

∵ △ABC∽△ABC,

2,4,

以上两种情况的证明可由学生完成.

小结:

本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.

(三)练习

课后练习节选

(四)作业

同步练习

篇3:初中数学相似三角形公式定理

相似三角形要义:对应角相等,对应边成比例的两个三角形叫做相似三角形。

相似三角形

相似三角形判定定理:

(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)

(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)

(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。

直角三角形判定定理:

(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

相似三角形性质定理:

(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

判定定理推论

推论一:顶角或底角相等的两个等腰三角形相似。

推论二:腰和底对应成比例的两个等腰三角形相似。

推论三:有一个锐角相等的两个直角三角形相似。

推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

性质

1.相似三角形对应角相等,对应边成比例。

2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

3.相似三角形周长的比等于相似比。

4.相似三角形面积的比等于相似比的平方。

5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方

6.若a:b =b:c,即b的平方=ac,则b叫做a,c的比例中项

7.c/d=a/b 等同于ad=bc.

8.必须是在同一平面内的三角形里

(1)相似三角形对应角相等,对应边成比例.

(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.

(3)相似三角形周长的比等于相似比

公式要领总结:如果两个三角形的三组对应边成比例,那么这两个三角形相似。

[初中数学相似三角形公式定理]

篇4:初中相似三角形知识点

1.相似三角形的定义

对应角相等、对应边成比例的两个三角形叫做相似三角形。

如果三边分别对应A,B,C和a,b,c:那么:A/a=B/b=C/c

即三边边长对应比例相同。

2.相似三角形判定

对应角相等,对应边成比例的两个三角形叫做相似三角形。

判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(AA)

判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似(SAS)

判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似(SSS)

判定定理4:两三角形三边对应平行,则两三角形相似。

判定定理5:两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。

其他判定:由角度比转化为线段比:h1/h2=Sabc

3.相似三角形性质

(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

篇5:初中相似三角形知识点

一、平行线分线段成比例定理及其推论:

1.定理:三条平行线截两条直线,所得的对应线段成比例。

2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。

二、相似预备定理:

平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。

三、相似三角形:

1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。

2.性质:(1)相似三角形的对应角相等;

(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;

(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。

说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。

3. 判定定理:

(1)两角对应相等,两三角形相似;

(2)两边对应成比例,且夹角相等,两三角形相似;

(3)三边对应成比例,两三角形相似;

(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。

四、三角形相似的证题思路:

五、利用相似三角形证明线段成比例的一般步骤:

一定:先确定四条线段在哪两个可能相似的三角形中;

二找:再找出两个三角形相似所需的条件;

三证:根据分析,写出证明过程。

如果这两个三角形不相似,只能采用其他方法,如找中间比或引平行线等。

六、相似与全等:

全等三角形是相似比为1的相似三角形,即全等三角形是相似三角形的特例,它们之间的区别与联系:

1.共同点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例。

2.判定方法不同,相似三角形只求形状相同的,大小不一定相等,所以改对应边相等成对应边成比例。

篇6:数学 ―― 初中数学第三册教案

数学 ―― 初中数学第三册教案

数怎么不够用了

年级:初一   执笔:徐城   审核:   授课时间:2004/9/16

数学目标:

1、知道引进负数的目的和意义;

2、掌握有理数的两种分类方法;

3、熟练地将有理数按一定的要求分类。

教学过程:

一、前提测评:

1、  请同学们完成下列计算:(注意观察图形所表达的含义)

加10分         扣10分        得0分

集体举行知识竞赛,评分标准是:答对一题加10分,答错一题扣10分,不回答得0分,每个队的基本分均分为0分,四个代表答题情况如下表:

第1题

第2题

第3题

第4题

第5题

总得分

第一队

得分

第二队

得分

第三队

得分

第四队

得分

㈡自我评价

1、  小结

1、对于比0分低的得分,我们引进“―”号。例:比0低10分表示为

“-10”。

对于比0分高的得分,我们引进“+”号。例:比0高10分表示为“+10”。

2、我们常常用负数:正数表示相反意义的量。

2、  概念:

1、  正数:像+5、1.2、

…这样的数,举例如:_________________________(正数前“+”号可写可不写)。

2、  负数:在正数前面加上“―”号的数,举例如:_________________(负数前“―”号不可以省略)。

3、  0既不是正数也不是负数。

3、  练习:把下列各数中的正数和负数分别填在表示正数集合和负数集合里。

+6    8    4     +  9.15  ―12  0  ―1   ―0.01

正数集合                       负数集合

4、数的大小:所有的正数都大于0,所有的负数都小于0。

5、练习,比较大小:0   ―5       0   +0.001   0    ―10   0(填>、<=。

6、正负数的意义,表示相反意义的`量,例:如果零下5℃记作“+5℃”,那么零下5℃记作“―5℃”。

练习:(1)某人转动方向盘,如果+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈表示为      。

(2)某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克,记作+0.02克,那么―0.03克表示______________。

(3)在4个不同时刻,对同一水池中的水位进行测量,记录如下:

上升3厘米   下降6厘米   下降1厘米   不升不降

如果上升3厘米记作+3厘米,那么其余3个记录该表示为_____、_____、____。

(4)如果+4米表示向东走4米,那么―4米表示_________________________。

7、数的分类:             正数   正整数   如:1、2、3…

(1)有理数                   如:、0.1、

0

负数            如:―1、―2、―3…

如:―、―0.1、―

正整数   如:1、2、3…

整数

(2)有理数                  如:―1、―2、―3…

分数           如:1、0.1、+

如:―0.3、―、―4

练习:把下列各数填在相应的大括号里:

2,―3.5,0,+32,―0.8,―3  ,―10,25%,+,0.0001

①正整数集合{                            …};

②负整数集合{                            …};

③正分数集合{                            …};

④负分数集合{                            …};

⑤有理数集合{                            …}。

8、小结:① 有理数分数类;

②负数的意义。

㈢选择检测:

一、判断:

(1)0既是正数,也是负数。            (     )

(2)一个数不是正数就是负数。          (    )

(3)0是最小的正整数。                (    )

(4)一个数不是正数就是负数或零。      (    )

(5)0是整数但不是正数。               (    )

(6)正数和负数统称有理数。             (    )

二、填空:

(1)高于海平面1250米的地方高度表示为海拔+1250米,低于海平面37米的地方高度表示为海拔      米。

(2)如果+20%表示增加20%,那么―6%表示          。

(3)某日傍晚,黄山的气温由中午的零上2℃下降了7℃,这天傍晚黄山的气温是  _____℃,这天傍晚黄山的气温是_____℃。

(4)_____统称整数,_____统称分数。整数和分数统称_____   。

(5)比较大小0___―5    ―___0   100___25    +0.101___0

(6)将下列各数填在相应的集合内:

―13  5.2  0  ―7  +  ―0.12  π  35%  880  +20

整数集合{                …};分数集合{                …};

正数集合{                …};负数集合{                …};

思考题:

(1)A市某天的温差为7℃,如果这天的最高温度是5℃,那么这天的最底气温是____℃。

(2)小明和小华同时从A地出发,如果小明向东走36米记为+36米,则小华向西走记作_____米,这时两人相距_____米。

(3)产量增加-150千克是什么意思?

篇7:初中数学相似三角形定理知识点总结

初中数学相似三角形定理知识点总结

相似三角形定理

1.相似三角形定义:

对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比:

相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

从表中可以看出只要将全等三角形判定定理中的“对应边相等”的'条件改为“对应边

成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:

(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的性质定理:

(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

8. 相似三角形的传递性

如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

篇8:初中数学三角形教案

一、教学目标

1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1.教学重点:是性质定理1的应用.

2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

[复习提问]

1.三角形中三种主要线段是什么?

2.到目前为止,我们学习了相似三角形的哪些性质?

3.什么叫相似比?

[讲解新课]

根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.

下面我们研究相似三角形的其他性质(见图).

建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比

篇9:初中数学三角形教案

教学目的

1.理解三角形、三角形的边、顶点、内角、外角等概念.

2.会将三角形按角分类.3.理解等腰三角形、等边三角形的概念.

重点、难点

1.重点:三角形内角、外角、等腰三角形、等边三角形等概念.2.难点:三角形的外角.

教学过程

一、引入新课

在我们生活中几乎随时可以看见三角形,它简单、有趣,也十分有用,三角形可以帮助我们更好地认识周围世界,可以帮助我们解决很多实际问题.

本章我们将学习三角形的基本性质.

二、新授

1.三角形的概念:

(1)什么是三角形呢?

三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形,这三条线段就是三角形的边.如图:AB、BC、AC是这个三角形的三边,两边的公共点叫三角形的顶点.(如点A)三角形约顶点用大写字母表示,整个三角形表示为△ABC.

A(顶点)

B C

(2)三角形的内角,外角的概念:每两条边所组成的角叫做三角形的内角,如∠BAC.

每个三角形有几个内角?

三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如下图中∠ACD是∠ABC的一个外角,它与内角∠ACB相邻.

A

外角

B C D

与△ABC的内角∠ACB相邻的外角有几个?它们之间有什么关系?

练习:(1)下图中有几个三角形?并把它们表示出来.

A

D

B C

(2)指出△ADC的三个内角、三条边.

学生回答后教师接着问:∠ADC能写成∠D吗?∠ACD能写成∠C吗?为什么?

(3)有人说CD是△ACD和△BCD的公共的边,对吗?AD是△ACD和△ABC的公共边,对吗?

(4)∠BDC是△BCD的什么角?是△ACD的什么角?∠BCD是△ACD的外角,对吗?

(5)请你画出与△BCD的内角∠B相邻的外角.

2.三角形按角分类.

让学生观察以下三个三角形的内角,它们各有什么特点?并用量角器或三角板加以验证.

1 2 3

第一个三角形三个内角都是锐角;第二个三角形有一个内角是直角;第三个三角形有一个内角是钝角.

所有内角都是锐角的三角形叫锐角三角形;有一个内角是直角的三角形叫直角三角形;有一个内角是钝角的三角形叫钝角三角形.

三角形按角分类可分为:

锐角三角形(三个内角都是锐角)

直角三角形(有一个内角是直角)

钝角三角形(有一个内角是钝角)

3.等腰三角形、等边三角形的概念:让学生观察以下三个三角形,它们的边各有什么特点?

1 2 3

经过观察,测量可知:第一个三角形的三边互不相等;第二个三角形有两条边相等(AB=AC);第三个三角形的三边都相等.

(1)等腰三角形:两条边相等的三角形叫等腰三角形.

相等的两边叫做等腰三角形的腰,如上图(2)AB、AC是这个等腰三角形的腰.

(2)等边三角形;三条边都相等的三角形叫等边三角形(或正三角形)

问:等边三角形是不是等腰三角形?

[等边三角形是特殊的等腰三角形,但等腰三角形不一定都是等边三角形]

三角形按边来分,可分为:

三边都不相等的三角形

只有两边相等的三角形

等边三角形

三、巩固练习

教科书图9.1.6中找出等腰三角形、正三角形、锐角三角边、直角三角形、钝角三角形.

四、小结

l、三角形的概念,一个三角形有三个顶点,三条边,三个内角,六个外角,和三角形一个内角相邻的外角有2个,它们是对顶角,若一个顶点只取一个外角,那么只有3个外角.

2.三角形的分类:按角分为三类:①锐角三角形,②直角三角形,③钝角三角形.按边分为三类:①三边都不相等的三角形;②等腰三角形.

等边三角形只是等腰三角形中的一种特殊的三角形.

五、作业

教科书第61页练习1、2.

篇10:九年级数学相似三角形知识点

九年级数学相似三角形知识点

一、平行线分线段成比例定理及其推论:

1、定理:三条平行线截两条直线,所得的对应线段成比例。

2、推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

3、推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。

二、相似预备定理:

平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。

三、相似三角形:

1、定义:对应角相等,对应边成比例的三角形叫做相似三角形。

2、性质:(1)相似三角形的对应角相等;

(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;

(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。

说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。

3、判定定理:

(1)两角对应相等,两三角形相似;

(2)两边对应成比例,且夹角相等,两三角形相似;

(3)三边对应成比例,两三角形相似;

(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。

数学学习技巧

1、求教与自学相结合

在学习过程中,即要争取教师的指导和帮助,但是又不能过分依赖教师,必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。

2、学习与思考相结合

在学习过程中,对课本的内容要认真研究,提出疑问,追本究源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果、内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。

3、学用结合,勤于实践

在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

4。博观约取,由博返约

课本是获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本以外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究,掌握其知识结构。

5。既有模仿,又有创新

模仿是数学学习中不可缺少的.学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。

6。及时复习增强记忆

课堂上学习的内容,必须当天消化,要先复习,后做练习,复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。

7。总结学习经验,评价学习效果

学习中的总结和评价有利于知识体系的建立、解题规律的掌握、学习方法与态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。

数学什么叫和什么叫差

差是数学运算的一种,特指两个数的减法的结果。和是指两个及两个以上同属性的事物相加所获得的新事物,也可以狭义地理解为两个数相加所得的结果。和的产生:加数+加数=和。

篇11:数学九年级相似三角形知识点

数学九年级相似三角形知识点

定义

对应角相等、对应边成比例的两个三角形叫做相似三角形。

如果三边分别对应A,B,C和a,b,c:那么:A/a=B/b=C/c

即三边边长对应比例相同。

相似三角形判定

对应角相等,对应边成比例的`两个三角形叫做相似三角形。

判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(AA)

判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似(SAS)

判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似(SSS)

判定定理4:两三角形三边对应平行,则两三角形相似。

判定定理5:两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。

其他判定:由角度比转化为线段比:h1/h2=Sabc

相似三角形性质

(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

提高数学成绩的方法

1.要提高初中生对数学学习的兴趣和动力。首先可以从家庭引导,家长可以对数学产生浓厚的兴趣,言传身教,让孩子对数学有一种神秘的好感。老师也可以和学生进行贴心的交流,打造自己的人格魅力,让学生被自己吸引从而更好的对数学感兴趣。

2.初中生想要提高数学成绩就一定要重视基础,千里之堤始于砖泥,不重视基础的下场就是你觉得自己的数学学得很好成绩会很好,但是在你成绩出来的时候会低于你的预期很多。很多初中生经常是知道怎么演算就算了,而不去认真的做几遍,好高骛远,总想去冲击难题,结果连考试中最基础的方程都会错。

3.要抓好几个提高数学成绩的必要条件。数学运算,数学解题(保证数量和质量),准备错题本,准备一本参考书,遇到难题尽量靠自己去解决而不是直接看答案,再保持勤奋和多动笔练习。

初中数学垂直平分线定理

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

角平分线:把一个角平分的射线叫该角的角平分线。

篇12:相似三角形的判定数学教学教案

1、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。利用三角板画平行线、相交线,通过测量对比,学生基本能全员参与,调动了学生学习的兴趣和积极性。学生更易于从图形当中得到结论,这样引入能很好的使学生体验到生活中的数学知识。通过后来练习及作业反馈、九年级四班的同学也比较容易得出了平行线分线段成比例定理这个结论,说明这种引入的方法是成功的。

2、对教学内容进行了合理整合。把相似三角形的判定方法放到下一节课学习,使学生对相似三角形的识别方法有个整体的认识,然后再利用第

二、三节课巩固深入,杜绝传统的“学生在一节课内学完一个知识点就做相应的练习,模仿套用知识而不需选择,当学完全部相似知识点进行综合练习时,容易产生混淆”的现象。本节课只学习了平行线分线段成比例定理的内容,以及由此演变而形成的“A字型”图和“X型图”从一开始就摆脱学生的依赖心理,把问题抛给学生,有效的锻炼了学生的思维,同时还利用全等三角形的识别类比相似三角形的识别,学生容易理解。

3、注意到了推理的逻辑性和严密性。教学中在结论的推导得出过程中,注意了数学符号语言的应用和书写,保证了证明的规范性和作图的合理性。这一点主要表现在“A字型”图的证明上,学生通过几分钟的短暂讨论,书写得出这个定理。在学生亲自操作、探究的过程中,获得三角形相似的第一个简单的识别方法;培养学生提出问题、解决问题的能力;从整堂课学生的表现看到,这节课基本上实现了以上目标。

本节课尽管在以上几个方面做得较为成功,但仍然有些地方值得商榷。课后,经过教研组同志的集体评课以及自我反思,认为需要从以下几个方面改进:

1、在平行线分线段成比例定理的得出过程中,更应当注意图形的一般情况,不应当以点带面。表现在如果两线相交构成的是直角梯形这种情况,而在课堂教学中,由于时间关系、学生关系,在上课作图未涉及到这种情况,这一点需要改进。

2、在证明“A字型”图的结论过程中,没有必要证明DE是三角形中位线这种情况,因为它的证明方法和后面的都相同。如果这样做的话,会浪费大量的时间,导致课堂教学前松后紧。

3、有些学生操作计算的速度太慢了,没有时间等他们探索得出结论,而大多数的同学已经得出了结论。这样可能使他们不能充分理解这节课的内容。

4、教学的方式过于单一,学生的参与面较低。主要是我没有调动好他们的情绪,说明我对课堂的驾驭能力还需要提高。

总之,本节课的教学任务已基本完成,但站在更高的角度来思考,反映出我还有些急燥,在课后及联系中,应该把这种题型至少要细分为基本图形的形成、基本图形的巩固、基本图形的拓展应用三个层次,逐步推进教学,效果可能会更好。

篇13:相似三角形的判定数学教学教案

【教学目标】

1、掌握相似三角形的判定定理1 。

2、会用三角形相似的判定定理1,来证明有关问题;

3、通过用三角形全等的判定方法类比得出三角形相似的判定方法,使学生进一步领悟类比的思想方法。 【重点和难点】

理解相似三角形的判定定理1,并能用其来解决有关问题 【教 具】

三角板、多媒体设备 【教学设计】

一、复习旧知识,运用类比的思想方法引导学生提出问题

1、什么叫相似三角形?怎么表示?

(在学生回答完后,教师总结)对应角相等,对应边成比例的三角形,叫做相似三角形。(注意:三角形相似不一定限定在两个三角形之间,可以是两个以上,但不能是一个。)表示:如果∆ABC与∆DEF相似,则记作∆ABC∽∆DEF

ABACBC用数学符号表示:∵∠A=∠D,∠B=∠E,∠C=∠F,且DEDFEF,∴∆ABC∽∆DEF. 注意:与三角形全等的书写类似,表示对应角的字母顺序需要一样

2、上节课我们还学习了一个判定两三角形相似的定理,哪位同学能说说?

学生回答完之后投影:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.

AAEDADEBCB图(1)CD图(2)EB图(3)C

3、除了用定义和上面的定理来判定三角形相似外,还有什么方法可判定两个三角形相似?我们知道判定两个三角形全等的方法有“AAS”、“ASA”、“SAS”、“SSS”、“HL”等,那么类似地,判定两个三角形相似还有哪些方法?今天我们开始来研究这个问题。

二、讲授新课

1、观察你和同伴的三角尺,同样角度(30度与60度,或45度与45度)的三角尺,它们相似吗?

2、任意画两个三角形,使三对角分别对应相等,再量一量对应边,看看是否成比例.

3、师生共同总结

4、结论:三角形相似判定方法1:两角分别相等的两个三角形相似

5、已知:如图(4)所示,在∆ABC与∆A'B'C'中,若∠A=∠A',∠B=∠B',试猜想:∆ABC与∆A'B'C'是否相似?并证明你猜的结论。

A

CB

图(4)

A'B'C'让学生思考讨论,从图形的外观,绝大多数学生会猜这两个三角形相似。结论的证明以教师讲授为主,并引导学生思考:根据题设条件,难于用定义来证明,因为用定义来证明需要的条件较多,所以不妨考虑用定理来证明。为此,需要构造出符合定理条件的图形:在∆ABC中,作BC的平行线,且在∆ABC中截得的三角形与∆A'B'C'又有着非常紧密的联系(全等),这样师生共同分析,完成证明。教师把证明过程投影到屏幕。

证明:在∆ABC 的边AB上截取AD=A'B',过点D作DE∥BC,交AC于点E,则有

∆ADE∽∆ABC. ∵∠ADE=∠B, ∠B=∠B', ∴ ∠ADE=∠B'. 又∠A=∠A' ,AD=A'B', ∴ ∆ADE≌ ∆A'B'C'. ∴∆ABC ∽ ∆A'B'C'.

A

A' DE

C'CB'B

告诉学生,如图(5)、图(6)这样作辅助线也可以证明这个问题。

A'ED

A

B'C'

CBDE 图(6)图(5)

最后师生共同归纳,得出结论:(投影)

思考:如果两个三角形仅有一对角是对应相等的,那么它们是否一定相似?

2、如图,△ABC中,DE∥BC, EF∥AB,证明: △ADE∽△EFC.

证明 ∵ DE∥BC,EF∥AB,

∴ ∠ADE=∠B=∠EFC,

∠AED=∠C,

∴ △ADE∽△EFC (两组对应角相等,两三角形相似)

想一想:如果D恰好是AB的中点,那么E是AC的中点吗?

此时DE和BC有何关系?

三、拓展运用

图24.3.5

课本练习

1、2

四、课堂小结:

本节课你学到了什么?有什么感悟?

五、作业:

P75习题23.3 第

1、5题。

篇14:相似三角形的判定数学教学教案

《相似三角形的判定1》是湘教版义务教育课程标准教科书九年级数学第三章《图形的相似》第四节《相似三角形的判定和性质》的内容。本节课是第二课时。

《相似三角形的判定》是在学生认识相似图形,了解相似多边形的性质的基础上进行学习的,是本章的重点内容。本课时首先利用“平行于三角形一边的直线与其他两边相交,截得的三角形与原三角形相似。”证明两个三角形相似,然后引导学生通过测量来探究得到两角分别相等的两个三角形相似,继而引导出相似三角形的判定:“两角分别相等的两个三角形相似”。通过类比的方法进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。

通过这节课的教学,我有以下几点反思: 成功方面:

1、绝大多数学生都能参与到数学活动中来。

2、通过出示学习目标,让学生对本节课的学习内容有清楚的认识,学生明确了本节课的学习任务;

3、通过对两角分别相等的两个三角形相似定理及推论的观察-探索-猜测-证明,部分学生理解并掌握了两角分别相等的两个三角形相似定理及推论;

5、通过学习,部分学生能运用本节课所学的知识进行相关的计算和证明;

6、本节课基本调动了学生积极思考、主动探索的积极性。 存在的不足之处是:

1、少数学生不理解相似比具有顺序性,在写相似三角形时不注意字母的对应关系,在找对应边时很容易出错;

2、少数学生在自主探究中,不知如何观察,如何验证;

3、少数学生在探究两角分别相等的两个三角形相似定理时,不会用学过的知识进行证明;

4、学生做练习时不细心,出现常规错误,做题的正确率较低;

5、由于学生基础差,配合不够默契,导致课堂气氛不活跃,教学效果一般。

篇15:相似三角形的判定数学教学教案

教学目标

(一)教学知识点

1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.

2.能根据相似比进行计算.

(二)能力训练要求

1.能根据定义判断两个三角形是否相似,训练学生的判断能力.

2.能根据相似比求长度和角度,培养学生的运用能力.

(三)情感与价值观要求

通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.

教学重点

相似三角形的定义及运用.

教学难点

根据定义求线段长或角的度数.

教学方法

类比讨论法

教具准备

投影片三张

第一张(记作§4.5 A)

第二张(记作§4.5 B)

第三张(记作§4.5 C)

教学过程

Ⅰ.创设问题情境,引入新课

[师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.

[生]对应角相等,对应边成比例的两个多边形叫做相似多边形.

相似多边形对应边的比叫做相似比.

[师]很好.请问相似多边形指的是哪些多边形呢?

[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.

[师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.

篇16:相似三角形的判定教案

掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相似的定理.

阅读教材P32-34,自学“探究2”、“探究3”、“思考”与“例1”,掌握相似三角形判定定理1与判定定理2. 自学反馈学生独立完成后集体订正

①如果两个三角形的三组边对应成比例,那么这两个三角形. ②如果两个三角形的两组对应边的比相等,并且相等,那么这两个三角形相似. ③下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答. 判断如图所示的两个三角形是否相似,简单说明理由.

甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,

ACAB≠≠IJHJBC,所以他们不相似. HI乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似. 注意对应关系,可类比全等三角形中找对应边和对应角的方法.

活动1 小组讨论 例2 如图,DE与△ABC的边AB、AC分别相交于D、E两点,若AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm,DE=4cm,则BC的长为多少? 3

解:∵AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm, ∴AEAD2==,而∠A=∠A, ACAB3∴△ADE∽△ABC. DEAE=. BCAC4又∵DE= cm,

342∴3=, BC3∴∴BC=2 cm. 运用相似三角形可以进行边的计算. 活动2 跟踪训练(独立完成后展示学习成果) 1.如图,在□ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF和△CDE相似,则BF长为多少?

在要使判断的两个三角形相似时,有一个角相等的情况下,夹这角的两边的比相等时有两种情形,不要只考虑一种情形,而忽视了另一种情形. 2.如图所示,DE∥FG∥BC,图中共有相似三角形(

)

A.1对

B.2对

C.3对

D.4对

按照一定的顺序去寻找相似三角形. 活动3 课堂小结

学生试述:这节课你学到了些什么?

篇17:相似三角形的判定教案

相似三角形的判定

1.两个三角形的两个角对应相等

2.两边对应成比例,且夹角相等

3.三边对应成比例

4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

相似三角形的判定方法

根据相似图形的特征来判断。(对应边成比例,对应边的夹角相等)

1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;

(这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明)

2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;

3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;

4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;

5.对应角相等,对应边成比例的两个三角形叫做相似三角形(用定义证明)

绝对相似三角形

1.两个全等的三角形一定相似。

2.两个等腰直角三角形一定相似。(两个等腰三角形,如果顶角或底角相等,那么这两个等腰三角形相似。)

3.两个等边三角形一定相似。

直角三角形相似判定定理

1.斜边与一条直角边对应成比例的两直角三角形相似。

2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。

射影定理

三角形相似的判定定理推论

推论一:顶角或底角相等的两个等腰三角形相似。

推论二:腰和底对应成比例的两个等腰三角形相似。

推论三:有一个锐角相等的两个直角三角形相似。

推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

篇18:相似三角形的判定教案

本节课的教学设计主要从以下三个方面来考虑的:

一、尊重学生主体地位

本课以学生的自主探究为主线:课前学生自己对比例线段的运用进行整理。这样不仅复习了所学知识,而且可以使学生逐渐学会反思、总结,提高自主学习的能力;课堂上学生亲身体验“实验操作—探索发现—科学论证”获得知识(结论)的过程,体验科学发现的一般规律;解决问题时学生自己提出探索方案,学生的主体地位得到了尊重;课后学有余力的学生继续挖掘题目资源,发展的眼光看问题,观察运动中的“形异实同”,提高学习效率,培养学生思维的深刻性。

2 教师发挥主导作用

在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新,哪怕是微小的进步或幼稚的想法都给予热情的赞扬。备课时思考得更多的是学生学法的突破,上课时教师只在关键处点拨,在不足时补充。教师与学生平等地交流,创设民主、和谐的学习氛围,促进教学相长。

3 提升学生课堂关注点

学生在体验了“实验操作——探索发现——科学论证”的学习过程后,从单纯地重视知识点的记忆、复习变为有意识关注学习方法的掌握,数学思想的领悟。如在原问题的取点中教师小结了从特殊到一般的归纳,学生在探究矩形的比值时就能意识地把解决特殊问题的策略、方法迁移到解决一般问题中去。在课堂小结中,学生也谈到了这点体会,而且还感悟了一题多解、一题多变等数学学习方法。

相似三角形的判定主要介绍了三种方法以及相似三角形的预备定理 ,从上下来的结果来看,不是很 理想,绝大部分学生对定理的应用不是很熟练,特别对于“两边对应成比例且夹角相等”不能灵活运用,夹角也不能准确找到.我想问题的主要原因在于学生对图形的认知不深,对定理的理解不透,一味死记结论.不能理解每个量所表示的含义.我想在下一阶段中应培养他们认识图形的能力,合情推理的能力,争取这方面有所提高。

篇19:相似三角形的判定教案

最近,我们九年级学完了《相似三角形的判定》的内容,相似三角形是初中数学学习的重点内容,对学生的能力培养与训练,有着重要的地位,而“相似三角形判定定理”又是相似三角形这章内容的重点与难点所在。在本章教学中,主要教学目标是让学生在亲自操作、探究的过程中,获得三角形相似的判定方法;培养学生提出问题、解决问题的能力。

2013年12月10日,我在九年级二班刚好就上了《相似三角形的判定》第一课时的内容。在本节课的教学中,我是通过平行线分线段成比例定理引入教学的,先让学生画三条平行线,再画两条相交直线与其相交,从而得出得出了一些线段,并再让学生自己操作:量一量、算一算、比一比,从图形中判断,得出那些结论。整个教学过程进展较为顺利,基本完成了教学任务。

在本节课的教学中,我认为以下这几个方面做得较好:

1、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。利用三角板画平行线、相交线,通过测量对比,学生基本能全员参与,调动了学生学习的兴趣和积极性。学生更易于从图形当中得到结论,这样引入能很好的使学生体验到生活中的数学知识。通过后来练习及作业反馈、九年级四班的同学也比较容易得出了平行线分线段成比例定理这个结论,说明这种引入的方法是成功的。

2、对教学内容进行了合理整合。把相似三角形的判定方法放到下一节课学习,使学生对相似三角形的识别方法有个整体的认识,然后再利用第

二、三节课巩固深入,杜绝传统的“学生在一节课内学完一个知识点就做相应的练习,模仿套用知识而不需选择,当学完全部相似知识点进行综合练习时,容易产生混淆”的现象。本节课只学习了平行线分线段成比例定理的内容,以及由此演变而形成的“A字型”图和“X型图”从一开始就摆脱学生的依赖心理,把问题抛给学生,有效的锻炼了学生的思维,同时还利用全等三角形的识别类比相似三角形的识别,学生容易理解。

3、注意到了推理的逻辑性和严密性。教学中在结论的推导得出过程中,注意了数学符号语言的应用和书写,保证了证明的规范性和作图的合理性。这一点主要表现在“A字型”图的证明上,学生通过几分钟的短暂讨论,书写得出这个定理。在学生亲自操作、探究的过程中,获得三角形相似的第一个简单的识别方法;培养学生提出问题、解决问题的能力;从整堂课学生的表现看到,这节课基本上实现了以上目标。

本节课尽管在以上几个方面做得较为成功,但仍然有些地方值得商榷。课后,经过教研组同志的集体评课以及自我反思,认为需要从以下几个方面改进:

1、在平行线分线段成比例定理的得出过程中,更应当注意图形的一般情况,不应当以点带面。表现在如果两线相交构成的是直角梯形这种情况,而在课堂教学中,由于时间关系、学生关系,在上课作图未涉及到这种情况,这一点需要改进。

2、在证明“A字型”图的结论过程中,没有必要证明DE是三角形中位线这种情况,因为它的证明方法和后面的都相同。如果这样做的话,会浪费大量的时间,导致课堂教学前松后紧。

3、有些学生操作计算的速度太慢了,没有时间等他们探索得出结论,而大多数的同学已经得出了结论。这样可能使他们不能充分理解这节课的内容。

4、教学的方式过于单一,学生的参与面较低。主要是我没有调动好他们的情绪,说明我对课堂的驾驭能力还需要提高。

总之,本节课的教学任务已基本完成,但站在更高的角度来思考,反映出我还有些急燥,在课后及联系中,应该把这种题型至少要细分为基本图形的形成、基本图形的巩固、基本图形的拓展应用三个层次,逐步推进教学,效果可能会更好。

《相似三角形》数学教学反思

相似三角形人教版的教学设计

相似三角形判定定理的证明

相似三角形的判定方法说课稿

有关初中数学三角形基本公式

三角形教案

七年级数学下学期《三角形内角》教案

认识三角形教案

全等三角形教案

小学数学四年级三角形的分类教案

相似三角形 ―― 初中数学第三册教案(精选19篇)

欢迎下载DOC格式的相似三角形 ―― 初中数学第三册教案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档