【导语】“Tarry”通过精心收集,向本站投稿了20篇数学教案-平方根,以下是小编整理后的数学教案-平方根,欢迎阅读与收藏。
- 目录
篇1:数学教案-平方根
学 科
数学
班级
初二(4)
任课教师
课 题
平方根(一)
课型
新授课
教
学
目
标
1、使学生了解数的平方根的概念和性质。
2、使学生能够根据平方根的定义正确的求出一非负数的平方根。
3、提高学生对数的认识。
教学重点
平方根的概念和求法
教学难点
非负数平方根的个数问题
教具学具
投影仪
教学方法
讲练结合
补 标 小 结)
教 学 过 程( 展 标 施 标 查 标
教 学 内 容
教师活动
学生活动
一、引入新课
以正方形的面积和边长的关系引入平方根的概念
展标
投影:
1、已知一正方形面积为4cm2,则它的边长为---------cm
2、已知一正方形面积为2cm2则它的边长为---------cm
这两个小题有什么共同特点?
这就是我们今天要来研究的一个新的概念――平方根
(板书课题)
投影教学目标
口答:
2cm
算不出来
已知一个数的平方求这个数
感知目标
教 学 过 程( 展 标 施 标 查 标 补 标 小 结)
教 学 内 容
教师活动
学生活动
二、施标
1、平方根的定义:
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)
求一个数的平方根的
平方根的运算叫做开
平方
2、平方根的性质
(1)一个正数有几个
平方根?
(2)0有几个平方根
(3)一个负数有几
个平方根?
3、平方根的表示方法
填空(投影)
1、( )2=9
2、( )2=0.25
3、( )2=16\\25
4、( )2=0
5、( )2=0.0081
这五个小题形如x2=a
X叫做a的'平方根(二次方根)
板书:
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)
求一个数的平方根的运叫做开平方
( )2=-4
提问:
是不是每个数都有平方根?
如果有的话,有几个?它们之间是什么关系?
引导学生归纳总结
二次根号
↑
a的平方根:±√a
↓
被开方数
口答
总结平方根的定义
找出:9、0.25、16\\25、
0、0.0081的平方根
此题无解
并说明理由
讨论总结
1、一个正数有两个平方根,它们互为相反数。
2、0只有一个平方根,就是0本身。
3、负数没有平方根。
教 学 过 程( 展 标 施 标 查 标 补 标 小 结)
教 学 内 容
教师活动
学生活动
平方根表示方法练习
4、求一个非负数的平方根
例1、求下列各数的平方根?
(1)361
(2)144\\49
(3)0.81
(4)23
读作:正、负二次根号下a
a的正的平方根:+√a
a的负的平方根:-√a
投影练习题:
1、用正确的符号表示下列各数的平方根
① 26、②247、③0.2
④3、⑤7\\83
2、+√7表示什么意思?
3、-√7表示什么意思?
4、±√7表示什么意思?
引导学生回答并板书解题步骤:
解:
(1)∵(±19)2=361
∴361的平方根为
±√361=±19
(2)∵(±12\\7)2=
144\\49
∴144\\49的平方根为±√144\\49=±19
(3)∵(±0.9)2=0.81
∴0.81的平方根为
±√0.81=±0.9
(4)23的平方根为
±√23
理解
写在练习本上
口答
计算:
(±19)2=361
(±12\\7)2=144\\49
(±0.9)2=0.81
(±√23)2=23
补 标 小 结)
教 学 过 程( 展 标 施 标 查 标
教 学 内 容
教师活动
学生活动
三、查标
四、小结
目标检测:46页
(一)、(二)、(三)
巡视指导学生练习
订正练习题答案
本节课我们主要学习了平方根:
一、定义
二、性质
三、表示方法
四、求法
练习
归纳总结
板
书
设
计
平方根(一)
一、定义:…… 三、表示方法……
开平方:……
二、性质 四、求法
1、…… 例:……
2、…… (1)
3、…… (2)
(3)
布置作业
书:146页 A组 第1题
课后自评
领导签字
篇2:数学教案-用计算器求平方根
教学设计示例
一.教学目标
1.会用计算器求数的平方根;
2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;
3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣.
二.教学重点与难点
教学重点:用计算器求一个正数的平方根的程序
教学难点 :准确用计算器求解一个正数的平方根
三.教学方法
讲练结合
四.教学手段
实物投影仪,计算器
五.教学过程
在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01, 等数的平方根,但对于如:2,3, ,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。
复习提问学生有关乘方如何用计算器运算的步骤。熟悉计算器基本键的功能。
现在讲计算器打开,按 键,屏幕上显示“0”此时可以进行运算。
例1.用计算器求 的值。
分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。
解:用计算器求 的步骤如下:
小结:在求解 的过程中,由于要用到 这个键上方 的功能,这就需要用上方标有“2F”的键来转换。
例2.用计算器求 的值。(保留4个有效数字)
解:用计算器求 的步骤如下:
小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
例3.用计算器求 的值。
解:用计算器求 的步骤如下:
因为计算结果要求保留4个有效数字,
例4.用计算器求1360.57的平方根。
解:用计算器求1360.57平方根的步骤如下:
因为计算结果要求保留4个有效数字,
小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。
例5.用计算器求值:
分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。
解:按键的顺序是:
显示612.65685
≈612.7
练习:
求下列正数的算术平方根:
(1)49 ; (2)0.81; (3)1.5376; (4)5 ; (6)260;
(7) ; (8)101.38
六.总结
利用计算器求解既快又精确,操作时要严格按照步骤执行。特别注意要用到第二功能键,首先要先按“2F”在按需要的键。由于各种计算器的键的功能各不相同,因此要注意操作顺序,查看说明书熟悉各键的具体功能。
八.作业
教材 A组1、2、3
九、板书设计
篇3:平方根
一、教学目标
1.理解一个数和算术的意义;
2.理解根号的意义,会用根号表示一个数的和算术;
3.通过本节的训练,提高学生的逻辑思维能力;
4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.
二、教学重点和难点
教学重点:和算术的概念及求法.
教学难点:与算术联系与区别.
三、教学方法
讲练结合.
四、教学手段
幻灯片.
五、教学过程
(一)提问
1.已知一正方形面积为50平方米,那么它的边长应为多少?
2.已知一个数的平方等于1000,那么这个数是多少?
3.一只容积为0.125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空
1.( )2=9; 2.( )2 =0.25;
3.
5.( )2=0.0081.
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.
由练习引出的概念.
(二)概念
如果一个数的平方等于a,那么这个数就叫做a的(二次方根).
用数学语言表达即为:若x2=a,则x叫做a的.
由练习知:±3是9的;
±0.5是0.25的;
0的是0;
±0.09是0.0081的.
由此我们看到+3与-3均为9的,0的是0,下面看这样一道题,填空:
( )2=-4
学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有的.下面总结一下的性质(可由学生总结,教师整理).
(三)性质
1.一个正数有两个,它们互为相反数.
2.0有一个,它是0本身.
3.负数没有.
(四)开平方
求一个数a的的运算,叫做开平方的运算.
由练习我们看到+3与-3的平方是9,9的是+3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)的表示方法
一个正数a的正的,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的用符号“- ”表示,a的合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”.根指数为2时,通常将这个2省略不写,所以正数a的也可记作“ ”读作“正、负根号a”.
练习:1.用正确的符号表示下列各数的:
①26 ②247 ③0.2 ④3 ⑤
解:①26 的是
②247的是
③0.2的是
④3的是
⑤ 的是
由学生说出上式的读法.
例1.下列各数的:
(1)81; (2) ; (3) ; (4)0.49
解:(1)∵(±9)2=81,
∴81的为±9.即:
(2)
的是 ,即
(3)
的是 ,即
(4)∵(±0.7)2=0.49,
∴0.49的为±0.7.
。
小结:让学生熟悉的概念,掌握一个正数的有两个.
六.总结
本节课主要学习了的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识.
七、作业
教材P.127练习1、2、3、4.
八、板书设计
(一)概念 (四)表示方法 例1 (二)性质 (三)开平方 |
求近似值的一种方法
求一个正数的的近似值,通常是查表.这里研究一种笔算求法.
例1.求 的值.
解 ∵92<97<102,
两边平方并整理得
∵x1为纯小数.
18x1≈16,解得x1≈0.9,
便可依次得到精确度
为0.01,0.001,……的近似值,如:
篇4:平方根
(一)概念 (四)表示方法 例1
(二)性质
(三)开平方
探究活动
求平方根近似值的一种方法
求一个正数的平方根的近似值,通常是查表.这里研究一种笔算求法.
例1.求 的值.
解 ∵92<97<102,
两边平方并整理得
∵x1为纯小数.
18x1≈16,解得x1≈0.9,
便可依次得到精确度
为0.01,0.001,……的近似值,如:
两边平方,舍去x2得19.8x2≈-1.01,
篇5:平方根
一、教学目标
1.理解一个数和算术的意义;
2.理解根号的意义,会用根号表示一个数的和算术;
3.通过本节的训练,提高学生的逻辑思维能力;
4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.
二、教学重点和难点
教学重点:和算术的概念及求法.
教学难点:与算术联系与区别.
三、教学方法
讲练结合.
四、教学手段
幻灯片.
五、教学过程
(一)提问
1.已知一正方形面积为50平方米,那么它的边长应为多少?
2.已知一个数的平方等于1000,那么这个数是多少?
3.一只容积为0.125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空
1.( )2=9; 2.( )2 =0.25;
3.
5.( )2=0.0081.
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.
由练习引出的概念.
(二)概念
如果一个数的平方等于a,那么这个数就叫做a的(二次方根).
用数学语言表达即为:若x2=a,则x叫做a的.
由练习知:±3是9的;
±0.5是0.25的;
0的是0;
±0.09是0.0081的.
由此我们看到+3与-3均为9的,0的是0,下面看这样一道题,填空:
( )2=-4
学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有的.下面总结一下的性质(可由学生总结,教师整理).
(三)性质
1.一个正数有两个,它们互为相反数.
2.0有一个,它是0本身.
3.负数没有.
(四)开平方
求一个数a的的运算,叫做开平方的运算.
由练习我们看到+3与-3的平方是9,9的是+3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)的表示方法
一个正数a的正的,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的用符号“- ”表示,a的合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”.根指数为2时,通常将这个2省略不写,所以正数a的也可记作“ ”读作“正、负根号a”.
练习:1.用正确的符号表示下列各数的:
①26 ②247 ③0.2 ④3 ⑤
解:①26 的是
②247的是
③0.2的是
④3的是
⑤ 的是
由学生说出上式的读法.
第 1 2 页
篇6:平方根
一、教学目标
1.理解一个数平方根和算术平方根的意义;
2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3.通过本节的训练,提高学生的逻辑思维能力;
4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法.
教学难点 :平方根与算术平方根联系与区别.
三、教学方法
讲练结合.
四、教学手段
幻灯片.
五、教学过程
(一)提问
1.已知一正方形面积为50平方米,那么它的边长应为多少?
2.已知一个数的平方等于1000,那么这个数是多少?
3.一只容积为0.125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的`值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空
1.( )2=9; 2.( )2 =0.25;
3.
5.( )2=0.0081.
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.
由练习引出平方根的概念.
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根).
用数学语言表达即为:若x2=a,则x叫做a的平方根.
由练习知:±3是9的平方根;
篇7:平方根
±0.09是0.0081的平方根.
由此我们看到+3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=-4
学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有平方根的.下面总结一下平方根的性质(可由学生总结,教师整理).
(三)平方根性质
1.一个正数有两个平方根,它们互为相反数.
2.0有一个平方根,它是0本身.
3.负数没有平方根.
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算.
由练习我们看到+3与-3的平方是9,9的平方根是+3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的平方根.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”.根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”.
练习:1.用正确的符号表示下列各数的平方根:
①26 ②247 ③0.2 ④3 ⑤
解:①26 的平方根是
篇8:平方根
(4)∵(±0.7)2=0.49,
∴0.49的平方根为±0.7.
。
小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个.
六.总结
本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识.
七、作业
教材P.127练习1、2、3、4.
八、板书设计
篇9:平方根
由学生说出上式的读法.
例1.下列各数的平方根:
(1)81; (2) ; (3) ; (4)0.49
解:(1)∵(±9)2=81,
∴81的平方根为±9.即:
(2)
篇10:第三册平方根
第三册平方根
学 科
数学
班级
初二(4)
任课教师
课 题
平方根(一)
课型
新授课
教
学
目
标
1、使学生了解数的平方根的概念和性质。
2、使学生能够根据平方根的定义正确的求出一非负数的平方根。
3、提高学生对数的认识。
教学重点
平方根的概念和求法
教学难点
非负数平方根的个数问题
教具学具
投影仪
教学方法
讲练结合
补 标 小 结)
教 学 过 程( 展 标 施 标 查 标
教 学 内 容
教师活动
学生活动
一、引入新课
以正方形的面积和边长的关系引入平方根的概念
展标
投影:
1、已知一正方形面积为4cm2,则它的边长为---------cm
2、已知一正方形面积为2cm2则它的边长为---------cm
这两个小题有什么共同特点?
这就是我们今天要来研究的一个新的概念――平方根
(板书课题)
投影教学目标
口答:
2cm
算不出来
已知一个数的平方求这个数
感知目标
教 学 过 程( 展 标 施 标 查 标 补 标 小 结)
教 学 内 容
教师活动
学生活动
二、施标
1、平方根的定义:
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)
求一个数的'平方根的
平方根的运算叫做开
平方
2、平方根的性质
(1)一个正数有几个
平方根?
(2)0有几个平方根
(3)一个负数有几
个平方根?
3、平方根的表示方法
填空(投影)
1、( )2=9
2、( )2=0.25
3、( )2= 16\\25
4、( )2=0
5、( )2=0.0081
这五个小题形如x2=a
X叫做a的平方根(二次方根)
板书:
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)
求一个数的平方根的运叫做开平方
( )2= -4
提问:
是不是每个数都有平方根?
如果有的话,有几个?它们之间是什么关系?
引导学生归纳总结
二次根号
↑
a的平方根:±√a
↓
被开方数
口答
总结平方根的定义
找出:9、0.25、16\\25、
0、0.0081的平方根
此题无解
并说明理由
讨论总结
1、一个正数有两个平方根,它们互为相反数。
2、0只有一个平方根,就是0本身。
3、负数没有平方根。
教 学 过 程( 展 标 施 标 查 标 补 标 小 结)
教 学 内 容
教师活动
学生活动
平方根表示方法练习
4、求一个非负数的平方根
例1、求下列各数的平方根?
(1)361
(2)144\\49
(3)0.81
(4)23
读作:正、负二次根号下a
a的正的平方根:+√a
a的负的平方根:-√a
投影练习题:
1、用正确的符号表示下列各数的平方根
① 26、②247、③0.2
④3、⑤7\\83
2、+√7表示什么意思?
3、-√7表示什么意思?
4、±√7表示什么意思?
引导学生回答并板书解题步骤:
解:
(1)∵(±19)2=361
∴361的平方根为
±√361=±19
(2)∵(±12\\7)2=
144\\49
∴144\\49的平方根为±√144\\49=±19
(3)∵(±0.9)2=0.81
∴0.81的平方根为
±√0.81=±0.9
(4)23的平方根为
±√23
理解
写在练习本上
口答
计算:
(±19)2=361
(±12\\7)2=144\\49
(±0.9)2=0.81
篇11:平方根练习题
精选平方根练习题
精选平方根练习题
1.判断题
(1)-0.01是0.1的平方根.( )
(2)-52的平方根为-5.( )
(3)0和负数没有平方根.( )
(4)因为 的平方根是 ,所以 = .( )
(5)正数的平方根有两个,它们是互为相反数.( )
(6)(-2)-3的立方根是- .
(7) 一定是a的三次算术根.
(8)若一个数的立方根是这个数本身,那么这个数一定是零.
(9) .
2.选择题
(1)下列各数中没有平方根的数是( )
A.-(-2)3 B.3-3 C.a0 D.-(a2+1)
(2) 等于( )
A.a B.-a C.a D.以上答案都不对
(3)如果a(a0)的平方根是m,那么( )
A.a2=m B.a=m2 C. =m D. =m
(4)若正方形的.边长是a,面积为S,那么( )
A.S的平方根是a B.a是S的算术平方根
C.a= D.S=
3.填空题
(1)若9x2-49=0,则x=________.
(2)若 有意义,则x范围是________.
(3)已知|x-4|+ =0,那么x=________,y=________.
(4)如果a0,那么 =________,( )2=________.
(5)若a0,则( )-3=_________.
(6)若a2=1,则 =_________.
(7)的5次方根是_________.
(8)若 ,则a_________.
(9)-0.008的立方根的平方等于_________.
4. 求下列各式中的x.
(1)8x3+27=0;
(2)x4-5= ;
(3)(x+2)3+1= ;
(4)(x-1)3=- .
5.已知一个正方形ABCD的面积是4a2 cm2,点E、F、G、H分别为正方形ABCD各边的中点,依次连结E、F、G、H得一个正方形.
(1)求这个正方形的边长.
(2)求当a=2 cm时,正方形EFGH的边长大约是多少厘米?(精确到0.1cm)
篇12:《平方根》教案
一、内容和内容解析
1.内容
算术平方根的概念,被开方数越大,对应的算术平方根也越大.
2.内容解析
算术平方根是初中数学中的重要概念,引入算术平方根,是解决实际问题的需要.作为《实数》的开篇第一课,掌握好算术平方根的概念和计算,一方面可为后续研究平方根、立方根提供方法上的借鉴,另一方面也是为认识无理数,完成数集的扩充,解决数学内部运算,以及二次根式的学习等作准备.
算术平方根的概念分两个部分,分别是关于一个正数算术平方根的定义和关于0的算术平方根的规定.由算术平方根的概念引出其符号表示、读法及什么是被开方数.
根据算术平方根的概念,可以利用互逆关系,求一些数的算术平方根.根据这些数的算术平方根的结果,不难归纳得出“被开方数越大,对应的算术平方根也越大”的结论,其间体现了从特殊到一般的思想方法.
基于以上分析,确定本节课的教学重点为:算术平方根的概念和求法.
二、目标和目标解析
1.教学目标
(1)了解算术平方根的概念,会用根号表示一个非负数的算术平方根.
(2)会求一些数的算术平方根.
2.目标解析
(1)学生能说出正数的算术平方根的定义,记住0的算术平方根是0;会用符号表示一个非负数的算术平方根,并能正确读出符号,能够说出中数的名称;理解符号中被开方数≥0(即是一个非负数)的条件,了解也是一个非负数.
(2)学生能依据算术平方根的定义判断一个数有没有算术平方根;掌握用平方运算求某些数的算术平方根的方法,会求出100以内完全平方数或分子、分母均是这类数的分数的算术平方根,以及上述这类数扩大(或缩小)100倍、10000倍的数的算术平方根;了解被开方数越大,对应的算术平方根也越大.
三、教学问题诊断分析
在本课学习之前,学生们已经掌握了一些完全平方数,对乘方运算也有一定的认识.但对于算术平方根为什么只是就正数进行定义,并对0的算术平方根作出规定,大多数学生不习惯.还有就是负数没有算术平方根,这种某数不能进行某种运算的情况在有理数的前五种代数运算中,一般不会碰到(0不能作除数除外);加之算术平方根的符号表示只涉及一个数,这与前面所学都涉及两个数的运算不一样,学生可能难以理解.
基于以上分析,本节课的教学难点是:深化对算术平方根的理解.
四、教学过程设计
1.创设情境,引入新课
教师展示教科书中本章的章前图,说明这是神舟七号宇宙飞船升空的照片,并提出下面的问题.
问题1 请同学们阅读本章的引言,你从引言中发现了哪些与数有关的概念?本章将要学习的主要内容以及大致的研究思路是什么?
师生活动 学生阅读,回答;教师补充说明数的范围不断扩大体现了人类在数的认识上的不断深入,让学生感受数的扩充的必要性.
设计意图:通过“神州七号载人飞船发射成功”引入本章学习,激发兴趣,增强学生的学习热情.
2.师生互动,学习新知
问题2 学校要举行美术作品比赛,小鸥想裁出一块面积为25d的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?
师生活动:学生可能很快答出边长为5d.
追问 请说一说,你是怎样算出来的?
师生活动:学生理清解决问题的思路,回答,教师可结合图片强调思路.
设计意图:从现实生活中提出数学问题,使学生积极主动的投入到数学活动中去,同时为学习算术平方根提供实际背景和生活素材.
问题3 完成下表:
正方形的面积/d
师生活动:学生不难回答“0的算术平方根是0”,可以表示为“”;教师指明:算术平方根的概念包含“正数算术平方根”的定义和“0的算术平方根”的规定两部分.
追问(1) 根据以上学习,你认为对于算术平方根中被开方数可以是哪些数?
师生活动:学生回答,教师明确:算术平方根中被开方数可以是正数或0,即非负数.
追问(2) 为什么负数没有算术平方根呢?
师生活动:学生思考、回答,教师点拨:因为任何一个正数的平方都不可能是负数.
设计意图:通过不断追问,由学生思考解决,体会分类讨论,既加深学生对算术平方根的理解,又让学生养成全面考虑问题的习惯.
追问(3) 请判断正误:
(1)-5是-25的算术平方根;
(2)6是的算术平方根;
(3)0的算术平方根是0;
(4)0.01是0.1的.算术平方根;
(5)一个正方形的边长就是这个正方形的面积的算术平方根.
师生活动:学生回答,其他学生讨论,教师对有难度的进行适当引导.
设计意图:检验对算术平方根的理解.
3.例题示范,学会应用
例1 求下列各数的算术平方根:
(1)100;(2);(3)0.0001.
师生活动:教师给出第(1)小题求数的算术平方根的思考过程,学生模仿独立完成第(2)、第(3)小题,两名学生板演后,全班交流.
追问 从例1中,你能发现被开方数的大小与对应的算术平方根的大小之间有什么关系吗?
师生活动:学生比较被开方数的大小以及其算术平方根的大小,试图归纳出结论.如有困难,教师再举一些具体例子加以引导,说明.
设计意图:通过求大小不同的三种形式的正数的算术平方根的实践,巩固求算术平方根的方法,由特殊到一般归纳出结论:被开方数越大,对应的算术平方根也越大.为下节课学习估计平方根的大小做准备.
例2 求下列各式的值.
(1);(2);(3).
师生活动:学生先说明所求式子的含义,然后三名学生板演,全班交流,教师点评.
设计意图:使学生熟悉算术平方根的符号表示,全面了解算术平方根.
4.即时训练,巩固新知
(1)教科书第41页的练习.
(2)求的算术平方根.
师生活动:学生独立完成,教师巡视,对个别差生进行辅导.对“求的算术平方根”,要让学生明白此题包含两层运算,即先求=?,然后再求“?”的算术平方根,实际上就是上述例1、例2类型的综合题.
设计意图:通过练习使学生在了解算术平方根及有关概念的基础上,达到能自己求一个数的算术平方根,进一步巩固、深化对算术平方根的理解.
5.课堂小结
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)什么是算术平方根?
(2)如何求一个正数的算术平方根?
(3)什么数才有算术平方根?
设计意图:让学生对本节课知识进行梳理,进一步落实相关概念.
6.布置作业:
教科书习题6.1 第1、2题.
五、目标检测设计
1.若是49的算术平方根,则=( ).
A.7 B.-7 C.49 D.-49
设计意图:本题考查学生对算术平方根概念的理解.
2.说出下列各式的意义,并求它们的值.
(1);(2);(3);(4).
设计意图:本题考查学生对算术平方根概念的理解,以及是否能正确认识符号化语言.
3.的算术平方根是_____.
设计意图:本题考查学生对算术平方根概念的全面理解.
篇13:第三册平方根
此题无解
并说明理由
讨论总结
1、一个正数有两个平方根,它们互为相反数。
2、0只有一个平方根,就是0本身。
3、负数没有平方根。
教 学 过 程( 展 标 施 标 查 标 补 标 小 结)
教 学 内 容
教师活动
学生活动
平方根表示方法练习
4、求一个非负数的平方根
例1、求下列各数的平方根?
(1)361
(2)144\\49
(3)0.81
(4)23
读作:正、负二次根号下a
a的正的平方根:+√a
a的负的平方根:-√a
投影练习题:
1、用正确的符号表示下列各数的平方根
① 26、②247、③0.2
④3、⑤7\\83
2、+√7表示什么意思?
3、-√7表示什么意思?
4、±√7表示什么意思?
引导学生回答并板书解题步骤:
解:
(1)∵(±19)2=361
∴361的平方根为
±√361=±19
(2)∵(±12\\7)2=
144\\49
∴144\\49的平方根为±√144\\49=±19
(3)∵(±0.9)2=0.81
∴0.81的平方根为
±√0.81=±0.9
(4)23的平方根为
±√23
篇14:第三册平方根
课型
新授课
教
学
目
标
1、使学生了解数的平方根的概念和性质。
2、使学生能够根据平方根的定义正确的求出一非负数的平方根。
3、提高学生对数的认识。
教学重点
平方根的概念和求法
教学难点
非负数平方根的个数问题
教具学具
投影仪
教学方法
讲练结合
补 标 小 结)
教 学 过 程( 展 标 施 标 查 标
教 学 内 容
教师活动
学生活动
一、引入新课
以正方形的'面积和边长的关系引入平方根的概念
展标
投影:
1、已知一正方形面积为4cm2,则它的边长为---------cm
2、已知一正方形面积为2cm2则它的边长为---------cm
这两个小题有什么共同特点?
这就是我们今天要来研究的一个新的概念――平方根
(板书课题)
投影教学目标
口答:
2cm
算不出来
已知一个数的平方求这个数
感知目标
教 学 过 程( 展 标 施 标 查 标 补 标 小 结)
教 学 内 容
教师活动
学生活动
二、施标
1、平方根的定义:
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)
求一个数的平方根的
平方根的运算叫做开
平方
2、平方根的性质
(1)一个正数有几个
篇15:平方根和立方根测试题
平方根和立方根测试题
一、填空题:
1、a 的立方根是 ,-a 的立方根是 ;若x3=a , 则x=
= ; = ;- = ; =
2、每一个数a 都只有 个立方根;即正数只有 个立方根;负数只有 个立方根;零只有 个立方根,就是 本身。
3、2的立方等于 ,8的立方根是 ;(-3)3= ,-27的立方根是 .。
4、0.064的立方根是 ; 的立方根是-4; 的立方根是 。
5、计算:
= ; = ; = ; =
= ;- = ;- = ; =
= ; = ;- = ; =
6、25的平方根是 ,0.04的算术平方根是 , 的算术平方根是 , 的平方根是 , 的立方根是 。
7、n为正整数,则 ,
二、选择题
(1)下列说法正确的是( ).
(A)-64的立方根是-4 (B)-64的立方根是-8
(C)8的立方根是 (D) 的立方根是-3
(2)下列各式正确的.是( ).
(A) (B) (C) (D)
(3)下列说法错误的是( ).
(A)任何一个有理数都有立方根,而且只有一个立方根
(B)开立方与立方互为逆运算
(C) 不一定是负数
(D) 一定是负数
(4)下列说法正确的是( ).
(A)一个数的立方根一定比这个数小
(B)一个数的算术平方根一定是正数
(C)一个正数的立方根有两个
(D)一个负数的立方根只有一个,且为负数
(5) 的平方根和立方根分别是( ).
(A) (B) , (C)2, (D) ,
(6)如果-b是a的立方根,则下列结论正确的是( ).
(A) (B) (C) (D)
(7) 的立方根是( ).
(A) (B) (C) (D)
(8)要使 成立,则a的取值范围是( ).
(A) (B) (C) (D)一切实数
(9)平方根和立方根相同的数为a,立方根和算术平方根相同的数为b,则a+b的立方根为( ).
(A)0 (B)1 (C)0或1 (D)
(10)已知: 那么下列各式中正确的是( ).
(A) (B)
(C) (D)
111、若 有意义,则 的取值范围是( )
A. B. C. D.
14、若 ,则 的取值范围是( )
A.3 B.9 C. D.
12、的值是( )
A. B.1 C. D.
13、若 ,则a的值为( )
A.20 B.2000 C.200 D.20000
14、若 有意义,则 能取的最小整数是( )
A. B.0 C.1 D.2
15、下列等式正确的是( )
A. B. C. D.
16、若一个数的算数平方根与它的立方根的值相同,则这个数是( )
A.1 B.0 C.0或1 D.非负数
17、的平方根是( )
A.9 B.3 C. D.
三、判断下列说法是否正确:
1、5是125的立方根 。 ( )
2、4是64的立方根 。 ( )
3、-2.5是-15.625的立方根。 ( )
4、(-4)3 的立方根是-4。 ( )
四、解答题
1.求下列各数的立方根:
(1) 27; (2)-38; (3)1; (4) 0.
2.求下列各式的值:
(1) (2); ; (3) ;(4) ;
3、计算:(1) (2)
4、求下列各式的值。
(1) (2) (3)
5、计算
篇16:平方根---教案(二)
重点:算术平方根的概念和求法.
问:
1.625的平方根是多少?这两个平方根的和是多少?
2.-7和7是哪个数的平方根?
3.正数m的平方根怎样表示?
4.下列各数的平方根各是什么?
答:
1.625的平方根是25和-25,这两个平方根的和是0.
2.-7和7是49的平方根.
(2)0的平方根是0.
(5)因为-16<0,所以-16没有平方根.
(6)因为(-4)3=-64<0,所以(-4)3没有平方根.
问:已知正方形的面积等于a,那么它的一条边长等于多少?
用几何图形可以直观地表示算术平方根的意义.如图所示,面积为a(a应是非负
(1)被开方数a表示非负数,即a≥0;
号,如a≥0
数a的正的平方根.
例1求下列各数的算术平方根:
问:怎样求各数的算术平方根?
答:可以通过平方运算求一个正数的算术平方根.
解(1)因为102=100,所以100的算术平方根是10,即
(4)因为(0.7)2=0.49,所以0.49的算术平方根是0.7,即
问:一个正数a的平方根与这个正数的算术平方根之间有什么关系?
指出:平方根与算术平方根这两个概念之间既有区别又有联系,区别在于正数的
它的算术平方根的相反数.
例2求下列各数的平方根及算术平方根:
(2)因为(±0.09)2=0.0081,所以0.0081的平方根是±0.09,即
0.0081的算术平方根则是
问:说明下列各式所表示的意义是什么?分别求出它们的值.
1.下列各式中哪些有意义?哪些无意义?
2.判断下列各题正确与错误,并将错误改正.
3.求下列各数的平方根及算术平方根:
4.求下列各式的值:
答案:1(3)无意义,其他各题均有意义.
2.(1)正确;(2),(3),(4)错误.
(6)正确. (7)正确.
3.(1)±100,100; (2)±2.7,2.7;
平方根和算术平方根是初中代数中的两个重要概念,要全面掌握它,就必须分清它们的区别,认清它们之间的联系.
1.平方根和算术平方根的区别.
(1)定义不同.如果x2=a,那么x叫做a的平方根.
一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.
如果x2=a,并且x≥0,那么x叫做a的算术平方根.
一个正数的算术平方根只有一个,非负数的算术平方根一定是非负数.
(3)平方根等于本身的数是0,算术平方根等于本身的数是0或1.
2.平方根和算术平方根的联系.
(1)二者有着包含关系:平方根中包含算术平方根,算术平方根是平方根中的非负的那一个.
(2)存在条件相同.非负数才有平方根和算术平方根.
(3)零的平方根和零的算术平方根都是零.
1.求下列各式的值:
2.求下列各数的平方根及算术平方根:
答案:
(4)±70,70; (5)±10-2,10-2.
平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方根的概念常常混淆,因此,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,这是这两节课的主要教学目标.在教学设计中,力求在以下两方面突出特点:
1.引导学生建立清晰的概念系统,首先在第1课时要求学生正确理解平方根的概念的意义和平方根的表示法;其次在第2课时专门讨论算术平方根的概念及其表示
2.编选了有针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中.
在课堂练习中设计了一组纠正错误的练习题,实践表明,这种课堂练习是引导学生正确认知的一种有效方法.
篇17:平方根教学反思
这节课主要是让学生理解算术平方根的概念,知道一个正数的正的平方根叫这个数的算术平方根,零的算术平方根是零,负数没有算术平方根;因为小学学习过正方形的面积的概念,所以在学算术平方根的概念时学生比较容易理解,我是从书上的一个问题引入,让学生由问题的答案自己得出算术平方根的概念。通过书上的例子以及问题的答案,找出正数、零的算术平方根的特点,思考负数有没有算术平方根。学生通过自己的预习、比较、理解得出结论,印象比较深刻,也易于掌握。当然,老师的引导也很重要,引导学生类比、归纳,在知识的比较、迁移过程中领悟所学内容。在学习过程中,学生利用数学语言归纳知识点的能力、互助学习、合作学习的能力得到锻炼和提高,自主学习的意识得到深化。数学课堂教学应该联系生活,让生活数学进入课堂,使数学变得具体、生动、从而诱发学生学习数学的`兴趣,促使学生积极地参与数学知识的形成过程,培养学生勇于探索、敢于创新的精神。
本节课也存在一些问题,主要表现在以下几个方面:
1、在小组学习以后,可以多点强调小组之间的合作成果,让学生更多地体会小组学习的优势;
2、在课后小测中,发现有的学生在求“算术平方根”时,答案错写为“4”;还有的学生“”符号写不好,可能是有的学生对算术平方根的理解不到位,有的学生是学习态度不够好。应该再做些书写过程方面的训练;
3、在运用算术平方根解决实际问题时,个别学生有困难;
在今后的教学中,要更好地把握学生的主体地位,同时注意细节方面的问题,引导学生发挥自己的主观能动性,培养学生各方面的素质。
篇18:平方根教学反思
平方根教学反思
对于数学课堂教学,我们教师要时刻关注学生的参与程度、合作交流的意识、情感、态度的发展以及对问题探讨的深度与广度等,例如在探讨一个数的平方根时,学生就提出了“是什么数”的`问题,对于出现这种情况,作为老师这是意料之中的情况,但是从学生的角度这就足以说明学生是在“数学地”思考问题,所以在设计同一个问题时,教师要设计不同层次的问题,力求每一个学生都“有题可答”,真正意义上让每一个学生都能得到不同程度的发展,培养其学习数学的自信心。在教学过程中学生常见的几种错误主要有:在求数a的平方根时,学生往往会用连等的式子来表示,错在符号乱用,添加或缺少正负号,导致等式无法成立。
改进措施:
(1)在以后的教学过程中要通过练习发现学生存在的问题,并对一些典型的错题进行分析讲解,通过练习规范学生的解题格式,提高学生解决实际问题的能力。
(2)注重尖子生时间分配,重视思维能力的培养。
(3)强调书写的规范化。
(4)可选择适当方法调动学生学习兴趣,使学生爱学、乐学。
篇19:《平方根》课堂教学反思
《平方根》课堂教学反思
平方根这一节是数的开方的第一课时,主要是一节以概念为主的新授课。求平方根与开平方是互逆运算,因此在本课的教学中,我充分利用这一点来引人新课的教学。在新课引入时,我先利用已知正方形边长求面积,然后反过来已知正方形面积求边长,一个面积是恰好能开出来的,另一个面积是开不出来的,从而让学生明白以上两种运算过程恰好是相反的,同时让学生明白已知正方形面积边长用现有的知识是不能准确表示出来的。这样顺利成章的引出本课的概念平方根。第二部分是利用平方根的定义求平方根,先让学生填空,什么数的`平方等于16,反之,16的平方根是多少,0的平方是0,0的平方根是多少,负数的平方是什么数,从而说明了什么。在这部分教学中我重在多举出实例,让学生通过例子自己去归纳总结平方根的求法和正数、零、负数的平方根的情况,理解负数没有平方根。然后是平方根和算术平方根的表示方法,这部分主要是学生多练,逐步熟悉平方根和算术平方根的符号。然后是处理练习,进行小结,在小结时对比了平方运算和开平方运算这两者之间的关系,也运用表格对比平方根、算术平方根、负的平方根之间的区别,同时指出开不出来的数应该保留在根号里,是一个精确数。
在这堂课的教学中,学生数学基础较差,所以在教学中以实例为主,尽量引导学生去观察、去归纳总结,整个教学的节奏虽然比较快,但是进度却是比较慢的,因此在习题的处理上时间显得比较仓促。同时部分学生对用符号表示仍然显得不熟练,需要在今后的教学中进一步加强。
篇20:《平方根》课堂教学反思
1、概念的讲解得不够详细到位
从学生的作业情况中,我认真地反思整个教学过程,发现自己基本上重视了展现概念的形成过程,让学生从感性的认识上升为理性的认识。不过,我并没有紧紧地抓住概念的内涵。平方根这一概念,关键在于“根”字上。我通过实际例子培养了学生的数学建模能力,也顺利地列出方程x2=25,就是没有
2、忽视平方根表示的规范化
由于我忽视了在课堂上的平方根表示的示范,使得有不少学生能够知道一个数的平方根,但是表示不规范。
3、没有对概念进行总结
在实际操作时,由于临近下课,时间较仓促,所以无论是学生的总结还是教师的总结都显得比较贫乏,没有抓住实质。在今后的总结中,应注意引导学生从知识方面,数学思想方法等不同方面进行有效的小结,而不要只流于形式。
4、学生的练习不够
学生对概念的理解只停留在死记硬背,机械模仿的阶段,后果就像一座没有合格框架结构的摩天大厦一样,早晚会因为经不住考验而倒塌。所以,今后在课堂上要多给学生练习巩固的时间,多提供一些类型不同的题目,使学生在练习中慢慢强化对概念的理解。
★ 平方根教案
★ 平方根说课稿
★ 数学教案
★ 八年级数学教案
★ 数学教案-对数
★ 中学数学教案
★ 学前班数学教案
★ 初三数学教案
数学教案-平方根(锦集20篇)




