六年级数学《比》教案

时间:2023-10-13 03:35:12 作者:aoobx 教案 收藏本文 下载本文

【导语】“aoobx”通过精心收集,向本站投稿了14篇六年级数学《比》教案,下面是小编整理后的六年级数学《比》教案,欢迎大家阅读借鉴,并有积极分享。

篇1:六年级数学《比》教案

单元教学目标:

1、经历从具体情境中抽象出比的过程,理解比的意义及其与除法、分数的关系。

2、在实际情境中,体会化简比的必要性,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

3、能运用比的意义,解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力,感受比在生活中的广泛应用。

单元教材分析:

这部分内容是在学生已经学过分数的意义以及分数与除尘的关系的基础上学习的。本单元学习的主要内容有:生活中的比、比的化简、比的应用。本单元教材编写力图体现以下特点:

1、提供多种情境,使学生经历从具体情境中抽象出比的意义的过程。

2、注重引导学生利用比的意义解决实际问题。

教学课时:12课时

内容

课 时数

生活中的比

比的化简

比的应用

练习三

机动

篇2:六年级数学《比》教案

学材分析

已抽象出比的概念,使学生感受到需要刻画两个量之间的数量关系应该用比,体理解比与除法、分数的关系会引入比的必要性以及比在生活中的广泛存在。

学情分析

学生理解比的意义比较困难。应密切联系学生已有的生活经验和学习经验。掌握求比值的方法。解比的意义,建立比的概念。

学习目标

1、理解的意义,掌握比的读法和写法,认识比的各部分名称。

2、掌握求比值的方法,并能正确求出比的比值。

3、培养学生抽象、概括能力。

导学策略

教学准备

教师活动

学生活动

一、谈话引入

在日常生活和和工农业生产中,常常需要对两个数量进行比较.比较的方法我们已经学过两种(比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法),今天我们继续学习新的比较方法,比。

二、讲授新课

(一)教学补充例1

一面红旗,长3分米,宽2分米,长是宽的几倍?宽是长的几分之几?

板书:32==23=

1.32表示什么?长是宽的几倍也可以说成谁和谁在比?是几比几?长和宽的比是3比2表示什么?

2.23表示什么?宽是长的几分之几也可以说成是谁和谁在比?是几比几?宽和长的比是2比3表示什么?

3.小结

4.练习

有5个红球和10个白球,求红球是白球的几分之几,怎么算?也可以怎么说?求白球是红球的几倍,怎么算?也可以怎么说?

(二)教学例2

例2.一辆汽车,2小时行驶100千米,每小时行驶多少千米?

1.求的是什么?谁除以谁?也就是谁和谁进行比较?

2.汽车行驶路程和时间的比是100比2表示什么?

3.思考:单价可以说成是谁和谁的比?

4.小结

通过刚才的例子可以看出,

(三)归纳总结

教师板书:两个数相除又叫做两个数的比.

(四)练习

1.学校里有10棵杨树,7棵柳树,杨树和柳树棵数的比是,柳树和杨树棵树的比是()

2.小华用2分钟口算了50道题,小华口算的题量和所用时间的比是().

3.学校食堂买20千克青菜,用了10元钱;买了30千克萝卜,用了42元钱;买萝卜和青菜数量的比是(),青菜和萝卜单价的比是().

(五)比的各部分名称和求比值的方法

1.两个数相除又叫做两个数的比,说法变了,书写格式和名称也就变了.

例如:3比2记作:3∶2

2比3记作:2∶3

100比2记作:100∶2

2.∶叫做比号,读作比(比号在两个数中间,注意与语文中的冒号区别),比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.

板书:

3.提问:比的前项和后项能随便交换位置吗?为什么?

4.练习:求比值

教师说明:求比值不写单位名称.

(六)比、除法、分数之间的关系(演示课件比、除法、分数的异同)

1.教师提问

(1)两个数相除又叫做两个数的比,比和除法到底有什么关系?

(2)为什么要用相当于这个词?能不能用是?

(3)在除法中,除数不能是零,那比的后项呢?

2.比的分数形式

(1)教师:比还有一种表示方法,就是分数形式.例如:

板书:3除以2可以写成2∶3,仍读作2比3

(2)思考:比和分数有什么关系?

三、巩固练习

(一)填空

(三)思考题

四、课堂小结

今天这节课你学到了哪些知识?比和除法、分数之间的联系是什么?区别呢?

五、课后作业

篇3:六年级数学比和比例教案

六年级数学比和比例教案

六年级数学比和比例教案

教学目标

1.理解比和比例的意义及性质.

2.理解比例尺的含义.

教学重点

整理比和比例、求比值及比例尺.

教学难点

正、反比例概念和判断及应用.

教学步骤

一、基本训练.

43-27

5.65+0.5 4.8÷0.4 1.25÷ 100×1%

0.25×40  2-

二、归纳整理.

(一)比和比例的意义及性质.

1.回忆所学知识,填写表格【演示课件“比和比例”】

2.分组讨论:

比和分数、除法有什么联系?

比的基本性质有什么作用?比例的基本性质呢?

3.总结几种比的化简方法.【继续演示课件“比和比例”】

前项

∶(比号)

后项

比值

除法

分数

(1)整数比化简,比的前项和后项同时除以它们的最大公约数.

(2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.

(3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.

(4)用求比值的方法化简,求出比值后再写成比的形式.

解比例:12 :x=8 :2

4.巩固练习.

(1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?

(2)甲数除以乙数的商是1.4,甲数和乙数的比是多少?

(3)解比例: ∶ =8∶2

(二)求比值和化简比.【继续演示课件“比和比例”】

1.求比值:4∶

化简比:4∶

2.比较求比值和化简比的区别.

一般方法

结果

求比值

根据比值的意义,用前项除以后项

是一个商,可以是整数、小数或分数

化简比

根据比的基本性质,把比的前项和后项都乘以或者除以相同的数(零除外)

是一个比,它的前项和后项都是整数

3.巩固练习.

(1)求比值.

45∶72  ∶3

(2)化简比.

∶  0.7∶0.25

(三)比例尺.【继续演示课件“比和比例”】

1.出示中国地图.

教师提问:

(1)这幅地图的比例尺是多少?(比例尺是 )

(2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

(3)比例尺除了写成 ,以外,还可以怎样表示?

2.巩固练习.

在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?

在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

(四)正比例和反比例.【继续演示课件“比和比例”】

1.回忆正、反比例意义.

2.巩固练习.

(1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.

①收入一定,支出和结余

②出米率一定,稻谷的重量和大米的重量.

③圆柱的侧面积一定,它的底面周长和高.

(2)木料总量、每件家具的用料和制成家具的件数这三种量

当( )一定时,( )和( )成正比例;

当( )一定时,( )和( )成正比例;

当( )一定时,( )和( )成反比例.

(3)如果 =8 , 和 成( )比例.

如果 = , 和 成( )比例.

(4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?

三、全课小结.

这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的

问题?

四、课堂练习.

1.填空.

(l)根据右面的线段图,写出下面的比.

①甲数与乙数的比是( ). 甲数:

②乙数与甲数的比是( ). 乙数:

③甲数与甲乙两数和的比是( ).

④乙数与甲乙两数和的比是( ).

(2)( )24= =24 ∶( )=( )%.

(3) ∶6的`比值是( ).如果前项乘上3,要使比值不变,后项应该( ).如果前项和后项都除以2,比值是( ).

(4)把(1吨):(250千克)化成最简整数比是( ),它的比值是( ).

(5) 与3.6的最简整数比是( ),比值是( ).

(6)如果a×3=b×5,那么a∶b=( )∶( ).

(7)如果a∶4=0.2∶7,那么a=( ).

(8)把线段比例尺  改写成数值比例尺是( ).

(9)甲数乙数的比是4∶5,甲数就是乙数的( ).

(10)甲数的 等于乙数的 ,甲乙两数的比是( ).

2.选择正确答案的序号填在( )里.

(1)1克药放入100克水中,药与药水的比是( ).

①1∶99 ②1∶100 ③1∶101 ④100∶101

(2)一项工程,甲队单独做要10天,乙队单独做要8天.甲队和乙队工作效率的最简整数比是( ).

①10∶8 ② 5∶4 ③4、∶5 ④  ∶

(3)在下面各比中,与 ∶ 能组成比例的是( ).

①4∶3 ②3∶4 ③ ∶3 ④ ∶

(4)有一无,某班的出勤率是90%,出勤人数和缺勤人数的比是( ).

①9∶10 ②10∶9 ③1∶9 ④9∶1

(5)在一幅地图上用1厘米的线段表示5千米的实际距离,这幅地图的比例尺是( ).

①1∶5 ②1∶5000 ③1∶500000

(6)用3、5、9、15这四个数组成的比例式是( ).

①15∶3=5∶9 ②3∶15 ③15∶9=5∶3 ④9∶3=5∶15

(7)在比例尺 的地图上,2厘米表示( ).

①0.4千米 ②4千米 ③40千米

(8)大小两圆半径的比是3∶2,它们的面积的比是( ).

①3∶2 ②6∶4 ③9∶4

五、布置作业.

1.化简下面各比.

0.12∶56  ∶

2.写出两个比值都是3的比,并组成比例

3.写出一个比例,使它两个内项的积是12.

4.如图是用1∶20的比例尺画的一个机器零件的截面图,量出图中两个圆的半径,并计算这个零件截面的实际面积.

六、板书设计

比和比例

篇4:六年级数学《化简比》教案

六年级数学《化简比》最新教案

【教学内容】

北师大版小学数学六年级(上册)第四单元第51~53页化简比。

【教学目标】

1)在实际情境中,体会化简比的必要性,进一步体会比的意义。

2)会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

【教学重点】

会运用商不变的性质或分数的基本性质化简比。

【教学难点】

能解决一些简单的实际问题。

【教具准备】

蜂蜜、水、量筒、水杯和自制课件

【教学设计】

教学过程

教学过程说明

一. 制蜂蜜水的活动:哪一杯更甜?

同学们分成小组进行实验活动:各小组拿出课前准备好的蜂蜜、水、量筒、水杯等实验物品,动手调制蜂蜜水。

各小组选出代表在全班进行汇报、交流。议一议哪个小组调制蜂蜜水更甜。

[课件出示]课本P51图片,同时配上画外音:

一个男同学说:我调制的一杯蜂蜜水用了40毫升蜂蜜、360毫升水。

一个女同学说:我调制的一杯蜂蜜水用了10毫升蜂蜜、90毫升水。

师:他们俩调制的蜂蜜水哪一杯更甜?请估一估,再试一试。

我们先分别写出它们的比。

40:360

10:90

就这样直接比较他们俩谁调制的蜂蜜水更甜还是有困难,用什么办法来解决呢?请分组讨论一下。

40:360===1:9

10:90===1:9

得出结论:两杯水一样甜。

二.化简比。

分数可以约分,比也可以化简。

0.7:0.8:

师:刚才我们根据比与除法、分数之间的.关系,利用商不变的性质或分数的基本性质来化简整数与整数的比。现在请同学们先自己尝试一下化简小数与小数的比和分数与分数的比,然后请同学说一说是根据什么来化简的。

0.7:0.8:

=0.70.8=

=78=4

=7:8=

=8:5

完成书上试一试化简下面各比。

15:210.12:0.4:1:

请学生独立完成后,说说化简比的方法,全班集体订正。

三.课堂练习。

[课件出示]课本P52第1题:连一连

在学生中开展比赛,鼓励学生独立完成。

[课件出示]课本P52第2题:写出各杯子中糖与水的质量比。

1)写出四个杯子中糖和水的质量比。

2)这几杯糖水有一样甜的吗?

3)还能写出糖与糖水的质量比吗?

[课件出示]课本P52第3题:

(1)(2)题自己独立完成;

(3)题投球命中率同学讨论完成。

四、总结

师:同学们一起来总结本节课学习的内容:

阅读数学课本P51比的化简。

我们是根据什么来化简比的呢?

是根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简的。

我们在实际生活中什么时候需要化简比?或者说我们用化简比可以解决实际生活中的哪些问题

五、独立完成课本P53第4题和第5题。

让学生进行实际操作,动手调制蜂蜜水。通过调制蜂蜜水的活动,让学生在解决哪一杯更甜这个问题的过程中,加深对比的意义的理解,进一步感受比、除法、分数之间的关系。

体会化简比的必要性,学会化简比的方法。根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简整数与整数的比。

这是小数与小数的比和分数与分数的比,还是根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简,目的是让学生在不同题目中巩固化简比的方法。

篇5:小学六年级数学比教案

教学目标:

1.让学生掌握分数乘小数的计算方法,提高学生根据实际情况灵活选择合适的计算方法的能力。

2.在学生自主探索的基础上,引导学生自由地表达自己的想法,培养学生合作交流的能力。

3.通过解决日常生活中的实际问题,让学生体验数学的意义和价值。

教学重点:

掌握分数乘小数的计算方法。

教学难点:

提高学生根据实际情况灵活选择合适的计算方法的能力。

教具准备:

多媒体课件。

教学过程:

一、导入新课(激发兴趣,明确目标)

1.计算下面各题

2.通过计算引导学生回忆分数乘整数和分数乘分数的计算方法,并强调能约分的先约分再计算会更简便。(让学生自由回答,教师加以引导与整理。)

3.导语:前几节课我们学习了分数乘整数和分数乘分数的计算方法,今天,我们继续学习分数乘法的有关知识。

【设计意图:通过复习分数乘整数和分数乘分数的计算方法,激活学生的学习经验与学习技能,为学习分数乘小数埋下伏笔。同时,简明扼要地导入新课,让学生迅速地进入学习状态。】

二、自主学习(自主学习,生成问题)

(一)阅读理解

1.出示呈现例5情境图(数学信息),从图中你得到了哪些数学信息?根据这些数学信息你想解决什么数学问题?(学生自主提出问题,教师选择问题板书。)

(1)松鼠欢欢的尾巴有多长?

(2)松鼠乐乐的尾巴有多长?

【设计意图:由孩子们喜欢的小动物的知识引出例5,激发了学生学习的兴趣。了解题目中有哪些数学信息是解决问题的第一步,可以帮助学生更好地解决数学问题。】

1.自主解答

松鼠欢欢的尾巴有多长?怎样列式?你能计算出来吗?在练习本上试一试。(板书:,学生尝试计算,教师巡视,请不同做法的学生板演。)

2.交流探讨,体会不同算法

先在小组内交流计算方法,再全班交流,一一展示,分析出现的不同计算方法。

(1)可以把2.1化成分数,再跟相乘,结果是,化成带分数。

(dm)

(2)可以把化成小数0.75,再跟2.1相乘,结果是1.575。

2.1×=2.1×0.75=1.575(dm)

【设计意图:本环节的交流分为两个层次,一个是在小组内交流,给每个学生参与的机会,使交流活动不至于成为个别学生的专场展示,尽可能让每个学生都说出自己的解题思路;二是全班交流,使全体学生在理解自己算法的同时,知道解决同一道题目还有不同的思路,享受不同算法带来的快乐,并掌握自己未考虑到的计算方法,逐步提高综合运用所学知识解决实际问题的能力。】

3.师小结:同学们说得都很不错,这道分数乘小数的题目我们主要采用两种方法来计算,既可以把小数化成分数再计算,也可以把分数化成小数再计算,这两种方法用到了我们学过的分数乘分数和小数乘小数的知识。

【设计意图:教师的这段简单小结以旧引新,促进知识迁移,巩固掌握新知识,实现了有意识的学法指导。】

三、合作探究(小组合作,解决问题)

1.自主解答

刚才例5第(1)题大家完成得很不错,下面第(2)题有没有信心做对呢?(出示课件,学生尝试独立解答。)

2.交流反馈

(1)可以把2.4化成分数,再跟相乘,结果是。

(dm)

(2)可以把化成小数0.75,再跟2.4相乘,结果是1.8。

2.4×=2.4×0.75=1.8(dm)

3.自学课本

(1)除了上面两种计算方法,这道题还有另一种算法。同学们打开课本第8页,看一看,有没有不明白的地方?(学生看书自学。)

(2)这种算法你看懂了吗?引导学生说计算过程。(课件逐步出示第三种算法。)

小数2.4和分数的分母先约分得到0.6,0.6再跟分子3相乘,结果是1.8。

4.对比思考。

为什么可以这样约分?你觉得这样约分计算简便吗?

【设计意图:让学生独立完例5第(2)题,既复习了分数乘小数的两种计算方法,起到巩固练习的作用,又通过自主阅读教材学习先约分再计算的方法,不仅可以让学生准确掌握计算方法,更使学生深刻地体会到分数乘小数先约分再乘比较简便。】

四、回顾反思

1.既然先约分再计算这种方法这么简便,为什么第(1)题没用这种简便方法计算呢?

2.师小结:先约分再计算虽然简便,但只在小数与分数分母有共同因数的情况下适用,如果小数与分数分母没有共同的因数,就不能直接约分,只能采用把小数化成分数或把分数化成小数再计算的方法。所以在实际计算过程中,我们要特别注意观察算式中小数与分数分母的特征,明确小数与分数分母是否有共同的因数,然后再选择合适的算法进行计算。

【设计意图:在这个环节中,通过思考“为什么第(1)题没用这种简便方法计算呢?”,让学生体会到先约分再计算的局限性,从而引导学生在解决问题的过程中灵活选择合适的算法。】

五、拓展总结(应用拓展,盘点收获)

(一)对比练习

1.学生独立完成。

2.反馈:计算时你更喜欢哪种算法?

【设计意图:在前面学习分数乘整数的过程中,学生已经充分感受了先约分再计算的简便性,在这个练习中,学生会进一步感受到这种算法不仅在分数乘整数中可以让计算更简便,在分数乘小数中同样适用,培养学生简便计算的意识。】

(二)基本练习

教材第8页做一做

1.学生先观察每一道题的特征,思考:每道题可以用几种方法来做?哪种方法更简便?然后选择合适的方法进行计算。

2.反馈交流时提问:哪几题可以先约分再计算?可以把分数化成小数计算吗?

【设计意图:这个环节通过四道题的对比练习,让学生发现不仅先约分再计算有局限性,分数化小数这种算法也有一定的局限性。在引导学生比较各种方法的优缺点的同时,进一步感受计算方法的灵活性与合理性。最终在学生充分理解的基础上共同归纳出结论,以丰富学生体验知识获得结论的过程,加深记忆。】

(三)提高练习

教材第10页“练习二”第2题:美国人均淡水资源量约为1.38万立方米,我国人均淡水资源量仅为美国的。我国人均淡水资源量是多少万立方米?

1.学生独立完成,一生板演。

2.反馈计算过程,强调能约分的先约分再乘。并适时补充我国的水资源知识,进行节约用水教育。

(四)拓展练习(多余条件)(机动)

教材第10页“练习二”第4题:蜂蜜最主要的成分是果糖和葡萄糖,果糖和葡萄糖的质量占蜂蜜总质量的以上。有一种蜂蜜,果糖和葡萄糖的质量占蜂蜜总质量的。如果有2.5kg的这种蜂蜜,其中的果糖和葡萄糖共有多少千克?

1.学生独立完成。

2.交流汇报。

3.教师点拨:在解决含多余条件的实际问题时,要先弄清楚题意,看问题所需的条件是什么,选择恰当的条件,找出多余条件,然后分析数量关系,列出算式,最后检验结果是否正确。

【设计意图:这道题隐含了一个多余条件,增加了学生的审题难度,所以要引导学生在解决问题的过程中找准题目中的关键条件,提高学生的审题能力,掌握解决含多余条件的实际问题的一些基本策略。】

(五)课堂小结:今天我们学习了什么内容?(板书课题:分数乘小数)分数乘小数怎么计算?计算时应该注意什么?

【设计意图:通过让学生自主回顾本课所学知识,指导学生把新旧知识联系起来,形成知识结构,既帮助学生理清思路、把握学习重难点,又巩固新知识、强化记忆。】

篇6:小学六年级数学比教案

教学内容:

成正比例的量

教学目标:

1、使学生理解正比例的意义,会正确判断成正比例的量。

2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

教学重点:

正比例的意义。

教学难点:

正确判断两个量是否成正比例的关系。

教具准备:

媒体课件

教学过程:

一、揭示课题

1、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你能举出一些这样的例子吗?

在教师的指导下,学生会举出一些简单的例子,如

(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

(2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。

(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。

2、这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量

二、探索新知

1、教学例1

(1)出示例题情境图。

问:你看到了什么?生

杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。

(2)出示表格。

高度/㎝ 2 4 6 8 10 12

体积/㎝3 50 100 150 200 250 300

底面积/㎝2

问:你有什么发现?

学生不难发现:杯子的底面积不变,是25㎝2。

板书

教师:体积与高度的比值一定。

(2)说明正比例的意义。

①在这一基础上,教师明确说明正比例的意义。

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

②学生读一读,说一说你是怎么理解正比例关系的。

要求学生把握三个要素

第一,两种相关联的量;

第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

第三,两个量的比值一定。

(三要素可再省略:1.相关联;2.同时变化;3.比值一定)

(3)用字母表示。

如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:Y/X=K(一定)

(4)想一想

师:生活中还有哪些成正比例的量?

学生举例说明。如

长方形的宽一定,面积和长成正比例。

每袋牛奶质量一定,牛奶袋数和总质量成正比例。

衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

地砖的面积一定,教室地板面积和地砖块数成正比例。

2、教学例2。

(1)出示表格(见书)

(2)依据下表中的数据描点。(见书)

(3)从图中你发现了什么?

这些点都在同一条直线上。

(4)看图回答问题。

①如果杯中水的高度是7㎝,那么水的体积是多少?

生:175㎝3。

②体积是225㎝3的水,杯里水面高度是多少?

生:9㎝。

③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

生:水的体积是350㎝3,相对应的点一定在这条直线上。

(5)你还能提出什么问题?有什么体会?

通过交流使学生了解成正比例量的图像特征。

3、做一做。

过程要求

(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

比值表示每小时行驶多少千米。(速度)

(2)表中的路程和时间成正比例吗?为什么?

成正比例。理由

①路程随着时间的变化而变化;

②时间增加,路程也增加,时间减少,路程也随着减少;

③种程和时间的比值(速度)一定。

(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

(4)行驶120KM大约要用多少时间?指导学生估算的方法

(5)你还能提出什么问题?

4、课堂小结

说一说成正比例关系的量的变化特征。

学生回答成正比例的理由时,语言表述不清楚,要注意引导学生按照正比例中的三要素来回答

三、巩固练习

完成课文练习七第1~5题。

练习补充,可以从中挑选有关正比例的练习,其它可等学习反比例后再做。

板书设计:

成正比例的量

相关联;同时变化;比值一定

x×y=k(定值)

教学反思:

反思的第(1)个问题是:什么样的两种量叫做相关联的量,资料上解释:一种量变化,另一种量也随着变化,那么一个人的身高和体重算不算两种相关联的量?第(2)个问题是:类型过于多,到底怎么帮助学生整理方法。一节课的学习孩子们基本上理解了正比例的意义,但是对于判断两个量是否成正比例孩子们还是感到困难,在这个环节的教学上我处理的不够好。我要再去请教其他老师,吃透这个知识。帮助孩子们更好的理解。

篇7:小学六年级数学比教案

设计说明

1.利用圆内知识间的内在联系,解决实际问题。

学生在掌握了圆的面积计算公式的推导过程之后,能够利用公式解决实际问题。教材中根据圆的周长求圆的面积,对学生来说,有一定的难度,学生要在已有的圆的周长知识的基础上,求出圆的半径,再利用公式求出圆的面积。让学生体会到了知识间是环环相扣的,提高了学生利用所学知识解决实际问题的能力。

2.重视图示的作用。

结合图示来理解圆中量与量之间的关系,使抽象的条件直观化,既降低了学习难度,又利于学生找到计算圆的面积所需要的条件,进而求出圆的面积。

课前准备

教师准备 PPT课件

学生准备 圆片 剪刀

教学过程

一、创设情境,激发兴趣

师:南湖公园的草坪上安装了许多自动喷水头,喷射的距离为3米,喷水头转动一周形成的是什么图形?(圆)

师:喷水头转动一周可以浇灌多大的面积呢?这个面积就是谁的面积?(圆的面积)

师:同学们,上节课我们学习了圆的面积计算公式的推导过程,今天这节课,我们继续研究圆的面积。利用圆的面积计算公式来解决生活中的实际问题。[板书:圆的面积(二)]

设计意图:创设问题情境,让学生在生活中发现问题,激发学生探究新知的兴趣,为新知的学习做好铺垫。

二、探究新知,建构模型

1.课件演示自动旋转喷灌装置在灌溉农田的生活情境,并引导学生讨论“喷水头转动一周形成什么图形?喷水头转动一周能浇灌多大面积的农田?圆的面积是指哪一部分?”,结合提出的几个问题,引导学生区分圆的周长和面积。

师:怎么求出浇灌的面积呢?(生汇报:根据S=πr2得出3.14×32=3.14×9=28.26m2,强调要先算“平方”)

教师小结:已知圆的半径求圆的面积时,可以直接利用圆的面积计算公式进行计算。

2.课件出示教材16页例题,认真读题,想一想题中给出的已知条件有哪些。(羊圈的形状是圆、羊圈的周长是125.6m)

(1)想一想,要求羊圈的面积,首先要知道圆的哪一部分?(半径)

(2)该如何求出圆的半径呢?同桌说一说。(出示课堂活动卡) (学生反馈:根据圆的周长计算公式可知周长除以圆周率再除以2就可以求出圆的半径)

(3)根据这个解题思路让学生独立完成。[全班反馈:半径:125.6÷3.14÷2=20(m) 面积:3.14×202=1256(m2)]

3.探究推导圆的面积计算公式的其他方法。

(1)引导学生观察所拼成的图形,想一想拼成的三角形的底相当于圆的哪一部分,拼成的三角形的高相当于圆的哪一部分。(学生反馈:拼成的三角形的底相当于圆的周长,拼成的三角形的高相当于圆的半径)

(2)茶杯垫片剪开后,虽然形状变了,但剪开前后的面积并没有改变。根据三角形的面积计算公式,推导出圆的面积计算公式。

圆的面积=三角形的面积=底×高÷2=2πr×r÷2=πr2

设计意图:学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,激发研究圆的面积的兴趣。引导学生探究不同条件下求圆的面积的方法,发展学生的发散思维和积极探究的能力。用拼三角形的方法探究圆的面积计算公式,再一次体现了“化曲为直”的数学思想。

篇8:小学六年级数学比教案

数乘法应用题的结构特征及解法和方程知识的基础上进行学习的,在设计上有以下几个特点:

1.抓住解题关键。

教学中,选择解决问题所需的条件,抓住关键句,找准单位“1”,找准比较量及比较量对应单位“1”的几分之几,为画图分析做好准备。

2.直观分析问题。

教学中,把题中的已知条件和所求问题直观、形象地用线段图表示出来,并结合图示找出题中的等量关系。

3.顺向思考列式。

教学中,根据题中的等量关系,顺向思考,设未知量(单位“1”)为x,列方程解决问题。

4.明确解题规律。

教学中,引导学生通过分析、比较,找出分数乘、除法应用题的区别和联系,总结出解决分数应用题的一般规律,弄清当单位“1”的量未知时,可以用方程或算术方法解答这类实际问题。

课前准备

教师准备 PPT课件

学生准备 直尺

教学过程

复习铺垫

1.找出单位“1”并说出数量关系。

(1)已经行了全程的。(把全程看作单位“1”,全程×=已行路程)

(2)一个长方形,宽是长的。(把长看作单位“1”,长×=宽)

2.按要求解答。

课件出示:小明的体重是35kg,体内的水分占体重的,小明体内的水分是多少千克?

(1)读题,找出单位“1”及数量关系。

(把小明的体重看作单位“1”,小明体内水分的质量=小明的体重×)

(2)结合数量关系式,明确本题结构特征。(引导学生回答哪部分是已知的,哪部分是未知的)

(3)小组合作,列式解答。(结合学生的回答,引导学生归纳出此类题的解法:单位“1”已知,求它的几分之几是多少,用乘法计算)

35×=28(kg)

3.谈话导入。

分数乘法应用题的结构特征及解法我们已经掌握了,今天我们就来学习新知识,学习用方程法和算术法解决分数除法应用题。(板书课题)

设计意图:通过找单位“1”,说出数量关系,解答“求一个数的几分之几是多少”的乘法应用题,复习分数乘法应用题的结构特征及解题方法,为学习新知做准备。

探究新知

(一)“已知一个数的几分之几是多少,求这个数”的实际问题的解法。

1.课件出示教材37页例4。

(1)读题,交流信息。

根据测定,成人体内的水分约占体重的,儿童体内的水分约占体重的,小明体内有28kg水分。

(2)找出信息中存在的数量关系。(让学生分组分析、讨论、汇报,结合学生的回答,课件展示)

①成人体重×=成人体内水分的质量

②儿童体重×=儿童体内水分的质量

③小明的体重×=小明体内水分的质量

2.探究解决问题的方法。

(1)课件出示例4的问题。

小明的体重是多少千克?

(2)解决问题。

①解决例4需要哪些条件?把谁看作单位“1”?

②画图分析。

篇9:六年级数学比和比例教案

教学目标:

一、知识与技能

1、使学生理解比例的意义和基本性质,会解比例

2、使学生理解正、反比例的意义,能够正确判断成正、反比例的量,会运用比例知识解决有关的实际问题。

3、使学生能够运用比例知识,求出平面图的比例尺以及根据比例尺求图上距离和实际距离。

4、能理解图形放大与缩小的原理,并能把简单的图形进行放大与缩小。

二、过程与方法

1、经历探索两个量的变化情况的过程,理解并掌握正比例和反比例的意义。

2、能从比例知识的角度提出问题,理解问题,并能运用比例知识解决问题,发展学生的应用意识,发展学生的实践能力。

3、学会与人合作,并能与他人交流思维的过程和结果

三、情感、态度与价值观

1、使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

2、体验数学活动充满着探索与创造

3、形成实事求是的态度以及进行质疑和独立思考的习惯

教学重点:比例的意义和正、反比例的意义

教学难点:正确判断正、反比例

教学关键:理解正、反比例意义,认真分析两个量的变化情况 教学时数:18课时

课时安排:

1、比例的意义和基本性质……………………….3课时

2、正比例和反比例的意义……………………….5课时

3、比例的应用…………………………………….5课时

4、整理和复习…………………………………….4课时

5、单元测试……………………………………….1课时

《比例的意义》教学反思

比例的知识在工农业生产和日常生活中有着广泛的应用。例如绘制地图需要比例知识,在生产和生活还经常用到两种量之间成正比例关系或反比例关系。比

例的知识还是进一步学习中学数学物理,化学等知识的基础。另外,通过对比例知识的学习还可以加深学生对数量关系的`认识,使学生初步了解一种量是怎样随着另一种量的变化而变化。获得初步的函数观念,并利用这些知识解决一些简单的实际问题。因此学好比例这部分内容是很重要的。

教材是提供给学生学习内容的一个文本,教师要根据学生和自己的情况,对教材进行灵活的处理。教者对本节教材进行了再思考、再开发和再创造,真正实现了变“教教材”为“用教材”。这节课中,将例题和习题有机的穿插和调整,以学生已有的知识经验为基础,让学生在算一算、想一想、说一说中理解了比例的意义,知道了比例从生活中来,进而认识到了数学在生活中有着广泛的应用,激发了学生学好数学的信心和积极情感。此外,教者还大胆地组织学生开展探究比例的基本性质的活动,没有根据教材上所提供的现成问题“分别算一算比例的两个外项和两个内项的积,你发现了什么?”机械地执行,给学生暗示思维方向,设置思维通道,缩小探索的空间,使学生失去一次极好的锻炼思维的机会,而是大胆放手,用“四个数组成等式”这一开放练习产生新鲜有用的教学资源,再通过教师适当、精心的引导,帮助学生有效地进行探究,体验了探究的成功,增强了学生的数学素养。

通过本次的教学展示,总体感觉自己整节课的教学流程清晰,教师对本节课的两个重点突破较好,学生都理解了比例的意义,能正确地读写比例,并且能根据比例的意义正确地写出比例。也理解并掌握比例的意义和基本性质,学会了应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。练习设计新颖,能体现学生思维的递进性,练习有层次。为帮助学生理解、掌握本课的教学任务起到了很好的巩固作用。

但本节课也存在着一些不足之处:

(1)整节课一味担心自己的教学任务不能完成,对学生放手不够,有牵着学生走的嫌疑。

(2)教师讲解太过仔细,以至拓展练习无法完成。在今后的教学中将加大“放手”力度,多注意培养学生创新思维;语言力争言简意赅,把更过的时间还给学生探究问题,和独立解决问题。

篇10:六年级数学比和比例教案

教学内容:

教材第84页例1---3题,练习十七第1、3题。

教学目标:

1、进一步理解比和比例的意义与基本性质,掌握比和分数、除法的关系。能够正确、迅速地求出比值和化简比。

2、应用比的意义求出平面图的比例尺,并根据比例尺求图上距离和实际距离。

3、体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

教学重点:

掌握比和比例的意义与基本性质。

教学难点:

根据比例尺求图上距离和实际距离。

教具准备:

多媒体课件

教学过程:

一、导言引入课题

比和比例(一)

二、教学例1

先在下表中写比和比例的一些知识,再举例说明。

比 比例

意义

各部分名称

基本性质

三、教学例2

比和分数、除法有什么联系?先填写下来,说一说它们的区别。

联系 例子

各部分名称

分数 分子 分数线 分母 分数值

除法

做一做:5:6=( )( )

四、教学例3

比的基本性质、分数的基本性质、商不变规律之间有什么联系?

1、学生交流

2、化简比。

3、化简比与求比值有什么不同之处?

一般方法 结果

求比值

化简比

五、解比例

X= :2【说一说思路和方法】

六、比例尺

1、什么叫做比例尺?

2、说出下面各比例尺的具体意义。

①比例尺1:3000000表示_____________

②比例尺20:1表示 _____________

3、求比例尺: 一条绿化带长350米,在平面图上用7厘米的线段表示。这幅图的比例尺是多少?

4、求实际距离:在比例尺是 的地图上,量得A到B的距离是5厘米。求AB两地的实际距离?

5、求图上距离:甲乙两地相距200千米,在比例尺是 的地图上,甲乙两地用多少厘米表示?

七、知识应用

练习十七第1、3题。

八、总结梳理

回顾本节课的学习,说一说你有哪些收获?

板书设计:

比和比例(一)

比和比例的意义与性质。

比和分数、除法的关系。 比和比例(一)

比、比例的基本性质的`用途。

比例尺。

比例尺的应用。

教学反思:

在教学中,让学生重温小学阶段比和比例的有关知识并进行系统整理。先让学生回忆,配合相关的练习题,让学生进行训练,加深学生的理解。进一步理解掌握比和分数、除法的关系。能够应用比的意义求出平面图的比例尺,并根据比例尺求图上举例和实际距离培养学生用数学眼光观察生活的习惯。

篇11:六年级数学《比的应用》教案

六年级数学《比的应用》教案

教学目标:

1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;

3、通过实例使学生感受到数学来源于生活,生活离不开数学。

教学重点:

1、正确理解按比例分配的意义。

2、掌握按比例分配应用题的特征和解题方法。

教学难点:能正确、熟练地解答按比例分配的实际问题。

教学过程:

一、课前组织复习旧知

同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)

学生自由发言,预设推断如下:

1、全班人数是9份,男生占其中的5份,女生占其中的4份。

2、以全班为单位“1”,男生是全班的,女生是全班的。

3、以男生为单位“1”,女生是男生的,全班是男生的。

4、以女生为单位“1”,男生是女生的,全班是女生的。

5、女生比男生少(或20%)。

6、男生比女生多(或25%)。

追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)

二、探索方法,建立模型

1.理解题意

(1)什么是稀释液?怎样配置的?

(2)什么是按比例分配?

2.自主探究,合作学习

自学数学书P49例题2,思考:

(1)你从例题2中得哪些信息?

(2) 1:4表示什么?你从中得到哪些信息?

(3)你能用画图的方法给同位讲解吗?

(4)方法一先求什么?再求什么?方法二先求什么?再求什么的?

3.小组展讲

小结:方法一把各部分数的比看作份数关系,先求每一份,然后再求各部分的.量;方法二把各部分的比转化成分别占总数的几分之几,根据分数乘法的意义,直接求总数的几分之几是多少。

三、巩固练习

1.一个三角形三条边的长度比是3∶5∶4.这个三角形的周长是36厘米,三条边的长度分别是多少厘米?

2.填空

3.一个长方形的周长是28cm,长与宽的比是5:2,长与宽各是多少cm?

4.一个班,男生比女生人数多10人,男生与女生人数的比是3:2,全班有多少人?

篇12:认识比小学数学六年级教案

认识比小学数学六年级教案

【教学内容】

苏教版国标本六年级上册P68~70认识比例1、例2以及相应练习。

【教学目标】

1.使学生在具体的情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2.使学生经历探索比与除法、分数关系的过程,初步理解比与分数、除法的关系,明白比的后项不能为0的道理,会把比改写成分数的形式。

3.使学生在数学活动中,培养学生分析、综合、抽象、概括等能力,体会数学知识之间的联系,感受数学学习的乐趣。

【教学重难点】

理解比的意义,比与分数、除法的关系。

【教学过程】

一、创设情境,引入比。

1.图片激趣,引发讨论,设置悬念。

2.电脑呈现例l主题图。

提问:2杯果汁和3杯牛奶这两个数量之间有什么样的关系?你会用哪些方法表示它们的关系?

3.揭题:比较两个数量之间的关系还可以用一种新的方法比。

二、自主探索,认识比。

(一)初步理解比

1.启发谈话:用比怎样表示2杯果汁和3杯牛奶这两个数量之间的关系呢?刚才有同学会说,谁来试着说一说。

果汁的杯数相当于牛奶的'2/3,我们还可以说成果汁与牛奶杯数的比是2比3

牛奶的杯数相当于果汁的3/2还可以怎样说成牛奶与果汁杯数的比是3比2

2.看书自学, 汇报交流:

(1)写法

(2)各部分名称

(3)比是有序的。

3.完成p68试一试

(二)深入认识比

1.认识不同量之间的比。

(1)生读例2,师:读了这条信息,你能提出什么数学问题?

(请学生分别算出它们的速度,填入表格。)

(2)指出:像路程和时间这两个有着相除关系的量,我们也可以用比来表示。

交流得出:小军走的路程与时间的比是900:15、小伟走的路程与时间的比是900:20。

(3)追问:900:15表示什么?900:20呢?(速度)

2.丰富对不同类量的两个数量比的认识。

张祥买3本笔记本用了10.5元。

提问:这句话中告诉了我们哪两个量?它们之间有着怎样的关系呢?会用比来表示吗?

3.总结概括比的意义。

(1)观察一下这几组式子,总结相同的特点。

(2)提问:你认为两个数的比表示的是两个数量之间怎样的一种关系?

(3)小结:两个数的比归根结底表示的都是两个数相除。

三、自学课本,内化比。

1.自学课本p69

2.反馈:通过看书,你还知道了什么?

*求比值。

*分数形式的比。

*理解比、除法、分数之间的关系

篇13:小学六年级数学上册《比》教案

教学内容:

P7“回顾与整理”、“练习与应用”第1—4题

教学目标:

1、通过“回顾与整理”使学生逐步掌握一些整理知识的方法,养成对所学知识分阶段进行整理的习惯。

2、使学生进一步掌握有关方程的解法,体会到列方程解决实际问题的基本思考方法,加深对列方程解决实际问题的理解,激发学生进一步信息方程、应用方程的兴趣。

教学资源:小黑板

教学过程:

一、揭示课题

本单元,我们主要学习了有关列方程解决实际问题的知识。今天我们要将这些知识进行整理一下。

二、回顾与整理

1、出示小组讨论题:

(1)像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解?

(2)在列方程解决实际问题时,可以怎样找数量之间的相等关系?举例说明。

2、让学生围绕这两个问题进行独立思考。

3、把各自思考的情况在小小组内进行交流。

4、全班交流。

讨论题(1) 可以让学生说说首先要将这样的方程作怎样的变形,并提醒学生解方程时要养成检验的习惯。

讨论题(2)可以引导学生举例说说本单元学会了用方程解决哪些实际问题,并结合所举例子说明解决每一类问题的基本思路。

三、练习与应用

1、解方程

180+6x=330 27x+31x=145 x-0.8x=10

2.2x-1=10 15x÷2=60 4x+x=3.15

(1)让学生独立完成,指名板演。

(2)集体交流时要关注学生解这些方程的准确率,并及时引导学生总结解每一类方程的基本方法,反思解这些方程时可能遇到的问题。

2、解决实际问题

(1)南京长江大桥的铁路桥长6772米,公路桥长4589米。它的铁路桥比武汉长江大桥铁路桥的5倍多197米,公路桥比武汉长江大桥公路桥的3倍少421米。

① 武汉长江大桥铁路桥长多少米?

② 武汉长江大桥公路桥长多少米?

xx 让学生认真审题,独立思考后找出相关数量之间的相等关系说一说。师随机板书:

武汉长江大桥铁路桥的长度×5+197=南京长江大桥铁路桥的长度

武汉长江大桥公路桥的长度×3-421=南京长江大桥公路桥的长度

xx 问:在列方程时应该怎样表示题中的两个未知数量?

(2)练习与应用第3题

xx 先让学生看图后说说了解到了哪些信息。

xx 问:这棵树苗从80厘米长到104厘米,经过了几个月?你怎么知道的?

xx 问:你能说说题中数量之间的相等关系吗?

(学生如有困难,教师可以画线段图帮助学生理清数量关系)

随机板书:

小树原有的高度+6个月长的高度=小树现在的高度

(3)学校印制画册一共用去1740元,其中制版费300元,其余的是印刷费。每本画册的印刷费是3.6元,学校印制了多少本画册?

xx 学生读题后,教师先结合图书的印刷过程向学生介绍“制版费”和“每册印刷费”的含义,从而帮助学生理解:印制画册用去的总钱数是由两个部分组成的。一部分是制版费,另一部分是印刷费,也就是每本印刷费与本数的乘积。

xx 再让学生独立解答,指名板演。

xx 交流时让学生结合所列的方程说说自己的思考过程。

三、总结:

通过今天的整理与练习,你又有哪些收获?还有什么疑惑?

四、作业:

P7“练习与应用”第2、3题。

篇14:小学六年级数学上册《比》教案

教学目标

1.使学生通过自主探索,了解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数乘整数的计算方法。

2.使学生在探索分数乘整数计算方法的过程中,运用已有知识和经验主动进行探索性思考,并进行分析和归纳。

3、在探索计算方法的过程中,体验探索学习的乐趣,获得成功的体验。

教学重点

让学生理解分数乘整数的算理,掌握分数乘整数的计算方法。

教学难点

引导学生探究分数乘整数的计算方法以及算法的优化。

教(学)具

准备练习材料、课件。

教学过程

修议1

教师活动学生活动

活动一:谈话引入

师:同学们,老师学校要举行一次小手艺展示活动,老师班里有一位小强同学也想参加。看,他准备制作一个漂亮的风筝,这个风筝还带有长长的尾巴呢。可就在制作这个风筝尾巴的时候,小强遇到困难了,不知道该用多少材料,咱们都来帮帮他,好吗?

活动二:教学分数乘整数的意义

每一种列式各是怎样想的?

怎么知道求6个相加的和,也可以用乘法计算?

明确:相同整数连加可以用乘法算式表示,那么可以联想到相同分数连加也可以用乘法算式表示。联想是一种很有意义的学习方法。

活动三:探索分数乘整数的计算方法

谈话:尝试计算×6,你觉得怎样算好就怎样算,不仅要会算,还要把道理说清楚。

学生活动,教师巡视指导,了解信息,并相机让学生把几种典型做法板书在小黑板上。

①×6=0、5×6=3(米)

②×6=+++++==3(米)

③×6===3(米)

④×6==(米)

⑤×6==(米)

谈话:请同学们认真观察黑板上几种不同的做法,只看结果,判断哪些是对的?哪些是错的?

明确:第④和第⑤种做法是错误的,因为结合实际情况,所需6根布条总长度不能小于或等于一根布条的长度。

(1)请学生当小老师讲解每种算法的计算道理,鼓励学生互相质疑、答疑。老师针对一些重点问题进行提问:

×6=0、5×6=3(米)怎么会想到用这种方法解决问题的?(引导学生体会转化的数学思想与方法。)

×6和+++++这两部分相等吗?为什么?是怎样得来的?

在方法③中,为什么分母2不变,单单只把分子1和6相乘呢?

(2)课件演示方法③的计算道理。

(3)再回顾×6==和×6==两种做法,指出错误原因。

活动四:沟通优化,促进发展

(一)独立计算9×。

(二)组间交流:说说计算的道理。

(三)全班交流:

1、请1位学生说计算过程,课件板演。

为什么不用第①和第②种方法计算?(引导学生体会第①和第②种方法或有局限性,或者麻烦,所以用第③种方法较普遍,适用于任何一道分数乘整数题。)

2,、学生小结分数乘整数的计算方法。

活动五:探索计算中的简便方法。灵活运用

1、独立计算10×,之后请一位同学说计算过程。

2、独立计算×36。

①质疑:怎么这次的做题速度明显落后了,你们遇到什么问题?(使学生产生探究简便方法的心理需求)

②课件出示简便算法:先约分再计算。

3、计算×21

活动六:课堂回顾,交流收获

师:时间过得真快,一节课就要结束了,大家有什么收获?谁会用一个字母式子表示分数乘整数的计算方法?

六年级数学《比的基本性质》教案

六年级数学化简比练习题

六年级数学简短教案精选

六年级数学下册教案

六年级数学教学教案精选

六年级数学复习教案

六年级数学《比的意义》教学反思

比尾巴教案

教案:比轻重

六年级下册数学比与比例练习题浙教版

六年级数学《比》教案(精选14篇)

欢迎下载DOC格式的六年级数学《比》教案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档