《长方体的体积计算》优秀说课稿

时间:2024-02-06 03:39:44 作者:sslun1125 教案 收藏本文 下载本文

【导语】“sslun1125”通过精心收集,向本站投稿了20篇《长方体的体积计算》优秀说课稿,下面是小编给大家带来关于《长方体的体积计算》优秀说课稿,一起来看看吧,希望对您有所帮助。

篇1:《长方体的体积计算》优秀说课稿

《长方体的体积计算》优秀说课稿

各位领导,各位专家,各位同行:

今天,我说课的内容是长方体的体积计算。一堂有价值的数学课,给予学生的影响应该是多元而立体的。有知识的丰厚、技能的纯熟,更有方法的领悟、思想的启迪、精神的熏陶……然而,出于对知识和技能的盲目追逐,当今数学课堂忽视了本该拥有的文化气度和从容姿态,知识化、技巧化、功利化思想的不断弥散,让数学思想、方法、精神失却了可能生长的土壤,并逐渐为数学课堂所遗忘。这不能不说是我们数学教师的一种悲哀。作为对本原课堂的一种回归,如何挖掘知识背后隐藏的思想意义?如何让那些应该为学生所吸吮的思想与意义充分地涌流?本课希望作所尝试。下面我就从教材、学情、教法、教学流程和板书设计等方面谈谈我的构思。

一、说教材

面在体上,体由面生。长方体和正方体的学习是前面平面图形学习的延续,也是后续几何学习的基础。教材虽然在第一学段已经安排了生活中的立体图形,但这种安排更多的是缘于小学生空间观念形成的认识规律:客观世界最常见的是各种形状的物体,“面”是附着于体上的,在整体感知“体”的基础上,来研究“面”,有利于建立“形”的概念。安排“体”是为了更好地研究“面”。因此,本章实质是学生第一次真正研究立体图形、立体世界。本单元前几课时安排的是长方体和正方体的特征、性质,长方体、正方体的表面积的计算,体积的概念和常用的体积单位。应该说,这些内容的安排为长方体和正方体的体积计算作了很好的铺垫与孕伏,但这种铺垫与孕伏更多地表现为知识上的准备,而对于空间度量的一些核心思想,如怎样帮助学生完善空间观念?如何体会空间度量单位的实际意义?如何促使学生从一维到三维的发展?前面渗透不多,这都有待在本节课中进一步去挖掘。

二、说学情

学生生活在一个由形体组成的现实世界里,学生每天都在和图形接触,日常生活中积累下的对图形世界的感知、表象和思考构成了学生丰富的经验背景,成为他们认识“空间与图形”的重要物质基础。同时,学生在学前期时的一些操作性活动,比如摆积木、折纸等,由此积累下的丰富活动经验以及初步形成的.空间观念也构成了他们学习本节数学内容的重要方法基础。

根据我对教材的理解和对学情的分析,我从课程标准的三个维度(知识与技能、过程与方法、情感、态度价值观)制定了如下教学目标:

(1)知识目标

1、理解、掌握长方体体积的计算方法。

2、领会长度单位、面积单位、体积单位的共同点,体会体积单位的实际意义。

(2)过程方法目标

1、猜想、验证、推导长方体体积计算公式,培养学生分析、归纳、推理以及抽象概括的能力。

2、进一步发展学生动手操作能力与空间想象能力。

(3)情感、态度、价值观目标

1、结合教学内容向学生渗透辨证唯物主义观点。

2、使学生感悟数学知识内在联系的逻辑之美。

并确定以下教学重、难点。

(1)教学重点:指导学生探究长方体的体积形成过程。

(2)教学难点:促使学生从一维到三维的发展,让学生深切感悟体积度量单位的实际意义。

三、说教法

为了高效地实现以上教学目标,分化教学重难点,提高课堂教学效率,在教学过程中,我采取了观察、操作、演示、自学讨论等方法有机融合的教学策略,引导学生在充分感知的基础上,通过拼一拼、摆一摆、想一想、量一量、比一比、看一看、说一说等活动 ,把学生的视觉、听觉、触觉、运动觉协同起来,由感知—到表象—再到本质,让学生在大量的实践活动中掌握知识、丰富表象、提升经验、形成思考。教学时,根据学生的年龄特点,也注重发挥多媒体教学媒体的优势,把静态的教学内容动态化,抽象的教学材料直观化,力图通过形象生动的教学手段吸引学生,调动每一位学生的学习兴趣,从而做到教法、学法的最优组合,促使每一位学生真正参与到探索新知的学习进程。

四.说教学过程

本节课我将分四个模块进行教学。

1.类比迁移,同化顺应

课一开始,我直接出示如下线段,并问:有几米?你是如何知道的?

显然,答案很简单:4米.因为用1米的米尺量了4次。

接着,我又出示一个长方形,问:“长方形的面积是多少?你又是如何知道的? ”

这也难不倒学生:12平方分米,因为用面积为1平方分米的正方形去度量,需要度量12次。

我出示长方体。长方体的体积是多少?要想知道长方体的体积,你有什么好建议?

由于有了前面两个内容的铺垫,相信学生会很自然地想到:用体积单位去度量。这样,不仅赋予了体积单位以实际的意义。同时,也水到渠成地引出“用正方体小方块拼摆长方体”的活动。最重要的是,上述教学将学生的视野从狭隘的知识授受中拉离出来,将长方体体积公式的学习提升到了“度量”的高度,进而,与线、面的度量统一到了一起,不仅顺利实现了学生的迁移,同时也有利于学生体会线、面、体的测量其实质是一样的,都是用相应计量单位去度量,有几个计量单位,其数量就是几。很明显,这不是一种知识,也不是一种技能,而是一种实实在在的思想方法。

这种思想方法有利于优化学生的知识结构!也有利于学生透过现象看到本质。事实上,学生对“度量”思想的高屋建瓴地理解确实对学习效果起到了提升了作用。这在下一模块的教学中体现得非常明显。

2.自主拼摆,提出猜想

怎样用体积单位去度量呢?教师让学生自主尝试。在学生尝试过程中,教师巡视,寻找典型摆法,然后组织学生交流。学生的典型摆法主要有以下三种:

第一种沿着长摆了4个,然后这样摆了2排,又接着摆了这样的3层,一共用了24个边长为1分米的小方块。这时长方体的体积很明显,用了24个边长为1的小正方体,所以长方体的体积就是24立方分米。

第二种进了一步,只“长摆了4个、摆了2排”,也就是只摆了1层,第2、第3层就没有严严实实地摆了,而是都用一个小方块代替。虽然只是一个小方块,但也可以看出摆的是3层。

至于第三种更抽象了。各位老师可以看,学生只沿着长、宽、高摆了一条。

显然,这三种摆法代表的是学生不同的思维水平:图(1)局限在直观操作水平;图(2)形象的、本质属性的成分虽然在增加——学生对高的意义已有所了解,但仍局促在形象抽象水平;而图(3)更进一步,是对长、宽、高意义的本质抽象概括的基础上的提升,已经达到了初步的本质抽象的水平。教师引导学生对这三种层次的交流过程,正是对长方体长、宽、高所代表的意义的逐渐明晰过程,是对“长方体含有多少个体积单位其体积就是几”这一知识点的孕伏铺垫过程,是对“长×宽×高”的内涵的逐次清晰过程,是学生头脑中的长方体“由直观—形象—抽象”的螺旋上升过程。而这一切,为学生直观感知、猜想长方体体积公式提供了表象支撑和智力支持。有了这个基础,学生很容易猜想出长方体的体积=长×宽×高。

3、实验验证,验证猜想

猜想的提出并不表示探究过程的结束,相反,它只意味着新一轮探究活动的开始。长方体的体积=长×宽×高,学生提出猜想后,我询问:“长方体的体积计算公式是不是就是‘长×宽×高’,同学们的猜想是否正确?怎样证明?”

学生纷纷回答:“长方体的体积是不是‘长×宽×高’,就要看它是否具有普遍意义?我们可以任意摆几个长方体,如果有并且只要有一个长方体的体积不等于‘长×宽×高’,那么就说明我们的猜想是错误的,反之,就说明我们的猜想是正确的。”

从学生的回答中,我们可以清晰地看出,这里学生感悟的不仅是知识,更是一种科学的研究方法。

在学生提出自己的实验构想后,教师顺水推舟,让学生自主摆长方体,并根据小组摆的情况,把小组内摆法不同的长方体相关数据填入下表。

长宽高小木块的数量长方体的体积

然后,组织学生交流,学生在交流中发现,虽然各组列举的长方体各不相同,但所有的长方体它的体积都满足“长×宽×高”。从而,同学们的猜想在最大范围内获得了普遍意义。

4、练习巩固、拓展延伸

由于时间关系,这里就不向各位老师展示了。下面是我这节课的板书设计。

谢谢各位老师!

板书设计

长宽高小木块

的数量长方体

的体积

2 d4d3 d2424d3

6d2d2d2424d3

3d4d1d1212d3

2d2d3d1212d3

长方体的体积=长×宽×高

V=a b h

篇2:《长方体的体积计算》优秀教学设计

教学目标:

1、让学生在观察、比较中,感知长方体的体积大小与它的长、宽、高有关。通过具体操作,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,并能运用所学知识解决一些实际问题。

2、在观察、操作、探索的过程中,提高学生动手操作及合作学习能力,培养迁移、类推能力和抽象概括能力,进一步发展学生的空间观念。

3、在个人及小组的探究活动中,培养团队协作,勇于探索的品质,体会数学的应用价值。

教学重点:引导学生探索长方体体积的计算方法。 教学难点:体验公式的推导过程。

教具学具准备:包装盒和一个不规则物体,每组12个棱长为1厘米

的小正方体、表格。

教学过程:

一、复习比较,引入课题

1、(出示两个不同的物体)这两个物体谁比较大?我们比的是他们的什么?体积指的是什么?

2、下面的图形都是由棱长为1厘米的小正方体拼成的,它们的体积各是多少?你是怎么知道的?

3、(出示包装盒)大家认识它吧?它是什么形状的? 它的体积多大呢?请你估一估,猜猜它有多大?(生猜测) 要使他说得更准确,我们用一种科学的方法来计算长方体的体积那就好了。这节课我们就来研究这个问题吧,板书课题:长方体的体积。

二、自主学习,合作探究

(一)探究长方体的体积计算

1、探究长方体的体积和那些因素有关。

师:我们都知道长方体有六个面,这6个面可能是什么形?

学生口答。

大家想一下,长方形的面积和什么有关?(学生回答)那么猜一猜,长方体的体积可能和什么有关呢?(生猜测)

老师这里有几组长方体,(课件出示)大家看,这两个长方体的长、宽、高有什么关系?

由此,我们可以得出什么结论?

2、探究长方体的体积和它的长、宽、高的关系,推导长方体体积的计算方法。

师:那么长方体的体积和它的长、宽、高到底有什么样的关系呢?(每组准备12个小正方体)

(1)老师课前叫同学们准备了一些棱长都是1厘米的小正方体,现在,小组合作,每个小组分别摆出各种长方体,记录它们的长、宽、高,并填表。(学生小组活动)

(2)(汇报交流)你们组摆的长方体的长、宽、高是多少?你能说说你们组是怎样摆的吗?体积是多少?

(3)发现总结长方体体积公式

师问:每排的个数、每层的排数、层数与长宽高有什么关系?

生一:每排的个数相当于长,每层的排数相当于宽,层数相当于高。

请同学们想一想:长方体的长、宽、高与它的体积有什么关系? 生一:因为每排的个数、每层的排数、层数相乘就是体积,所以长方体的体积=长×宽×高。

师:体积怎么求?为什么? 学生口答,教师板书。 课件演示公式的推导过程

(4)如果用V表示体积,a表示长,b表示宽,h表示高,那么这个公式用字母怎样表示?

师板书:V=abh

(5)根据这个公式,要求长方体的体积,需要知道长方体的什么? 同生们学会了总结长方体体积的计算方法,真是了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,今后在学习上同样可以利用这种方法学习。

3、长方体的体积计算公式的应用

(1)师问:在生活中,怎样计算长方体的体积?

例:一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

学生1:长方体的体积=长×宽×高。 全班动笔做一做。

(2)看立体图计算长方体的体积(只列式不计算)写在课堂作业本上。

长6分米,宽4分米,高3分米,求体积。 长6厘米,宽6厘米,高5厘米,求体积。

三、学以致用,巩固提高

1、雄伟的人民英雄纪念碑矗立在天安门广场上,石碑的高是14.7米,宽2.9米,厚1米。这块巨大的花岗岩石碑的体积是多少立方米?

2、有一本新华字典,它的长、宽、高分别是2分米、1分米、0.6

分米.这本字典重多少千克?(每立方分米重500克)

3、一块砖的长是24厘米,宽是长的一半,厚是6厘米,它的

体积是多少立方厘米?

4、有一个底面是正方形的长方体,它的棱长之和是60厘米,高

7厘米,求这个长方体的体积。

四、全课小结,布置作业

1、通过这节课你学到了哪些知识?你还有什么问题吗?值得注意的地方是什么?2、教师总结 3、布置作业

① 课堂作业:练习七② 课外实践:找一个长方体实物量一量它的长、宽、高,并计算它的体积。

5、7

篇3:《长方体的体积计算》优秀教学设计

《长方体的体积》教学设计 瓜州乡渊泉小学 张梅

教学内容:教科书六年制五年级下册第99~102页。 教学目标:

1.知识与技能目标:使学生掌握长方体体积公式的推导过程,理解长方体体积的计算公式;初步学会计算长方体的体积。

2.过程与方法目标:培养学生实际操作能力,同时发展他们的空间观念。

3.情感态度与价值观目标:在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。

教学重点:在长方体、正方体体积计算公式的探究过程中,理解长方体含体积单位的.个数等于长、宽、高的乘积,进而推导出长方体(正方体)体积计算公式。 教学难点:体积公式的推导。

教学准备:1立方厘米小正方块 多媒体课件 学具准备:1立方厘米的小正方体24个 教学过程:

一、创设情境 发现问题

1、(课件出示)字典是我们学习的工具书,必须要常备身边的,聪聪遇到了这样的问题,他每天都要带一本字典,现在有两本内容同样的字典,他要选择其中的哪一本经常带在书包里比较方便呢?为什么?(小本的字典。体积小)

其实刚才我们在比较他们的什么?(比较它们的体积。)体积指的是什么?(体积是指物体所占空间的大小)

常用的体积单位有那些?(立方厘米,立方分米,立方米) 2、小结:任何物体都占一定的空间大小,也就是说都有一定的体积 二、观察思考 提出猜想

1、课件出示三个长方体(下列各长方体分割成了体积为1立方厘米的小正方体,请你数出小正方体的个数,并求出长方体的体积。) 2、教师演示,学生独立完成后,指名回答

反馈交流,得出:含有多少个体积单位,它的体积就是多少。

理念依据:通过练习,使学生感知:体积是由体积单位组成的,要求长方体的体积可以用切一切、数一数小方块的方法。这既是对上节课体积单位的复习,也是这节课的教学起点。

3、师:是不是我们都可以用切一切、数一数小方块的方法来求一个物体的

体积呢?

4、学生讨论 讨论后使学生明确:实际上,在很多情况下,往往不能用切割的方法来求长方体的体积。如:字典、洗衣机的体积、电脑主机的体积等。 理念依据:从实际情况考虑,让学生体会到,要求一个物体的体积,必须有一个新的方法才能解决,激发学生的学习兴趣。)

4、师引题:这节课我们一起来学习长方体的体积计算(板书课题) 师引导学生动脑思考、大胆猜想。通过刚才的观察,你认为长方体的体积大小可能和什么有关呢?(学生汇报可能与长、宽、高有关) 6、利用课件,验证猜想。动态变化长方体的长、宽、高 师:下面的长方体,什么变了?什么没变?

图(4)

先利用多媒体将上环节使用的图(1)动态变成图(2)

生:长方体的宽和高都不变。长变了,表面积变了,体积也变了。 教师继续把图(2)动态变成图(3)

生:长方体的长不变,高和宽都变了,表面积和体积也变了。 教师也不做评论,再把图(3)变成图(4)

生:长方体的长、宽、高都变了,表面积和体积也变了。

师:通过刚才的观察,你认为长方体的体积大小和什么有关?(长方体的体积和长、宽、高有关)

7、再次猜想

师:通过刚才的观察,我们发现长方体的体积和长、宽、高有关系。你能猜想出它们有怎样的关系?

教师板书学生的猜想:长方体的体积=长×宽×高

[设计意图]通过演示,使学生体会到长方体的体积和长、宽、高都有关系,进而大胆的提出猜想)

三、动手实践、验证猜想 课件出示小组合作要求 1、提出小组合作要求

请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,摆的时

候思考: 1.每排摆了几个?2.每层摆了几排?3.摆了几层?4.一共摆了多少个?你是怎样很快算出总个数?5、你是怎样很快算出总个数的?然后把数字记录在表格里面。 6

、观察每个长方体的“总个数、每排个数、每层排数、层

数”分别与这个长方体的“体积、长、宽、高”有什么关系 ?然后把数字记录在表格里面。

2、小组合作学习

全班同学以小组为单位,进行分工,开始操作、计算、记录、思考、讨论 。 (出示课件:

师:请各小组同学利用你手中的1立方厘米的小正方体,摆成3种长方体,并把有关数据填到表格中,好吗? 生:好!

(小组活动开始,各小组学生分工合作,用体积是1立方厘米的正方体摆出三种长方体,并根据表格要求整理、填写数据。教师巡视指导,了解学生活动情况。) 3、小组派代表汇报

哪个小组愿意先汇报你们的研究过程和成果?

第一组:把12个正方体摆成3排,每排2个,摆2层。这个长方体的长是2厘米,宽是3厘米,高是2厘米,体积是12立方厘米。

第二组:把15个正方体摆成1排,每排5个,摆3层。这个长方体的长是6厘米,宽是1厘米,高是3厘米,体积是18立方厘米。

第三组:把24个正方体摆成3排,每排4个,摆2层。这个长方体的长是6厘米,宽是4厘米,高是1厘米,体积是24立方厘米。

师:你观察得非常仔细,解说也非常到位!真是一位小老师!谢谢你! 师:通过这几个小组的拼摆再加上刚才XXX的讲解,同学们有什么新的发现? (学生略感疑惑)

师:我们一起来讨论一下,(结合课件中出示的表格边指边说)摆每个长方体的“总个数、每排个数、每层排数、层数”分别与这个长方体的“体积、长、宽、高”有什么关系吗?同学们可以先和身边的同学讨论一下,然后把你的想法和大家交流。

4、学生进行短暂的讨论后进行了交流。

生1:长方体的体积就是摆这个长方体的小正方体的个数。

生2:我想补充一下。从我们填的表格中就可以看出,每排摆几个,长方体的长就是多少,每层摆几排,它的宽就是多少,一共摆几层,高就是多少。

生3:我发现,只要知道一排摆几个、摆几排、摆几层就能知道长方体的体积了。 师:大家说的不错!如果要想知道一个长方体的体积,我们可以怎么做?

生4:只要知道长方体的长、宽、高就能知道一排摆几个,摆几排,摆几层,就知道体积了。

生5:如果是教室的体积你怎么摆?

师:嗯,你这个问题提得很好,很及时。是呀,难道还要用小正方体去拼摆教室的体积吗? (有学生开始小声地笑,并交流。课堂气氛又一次变得活跃) 师:谁有更切合实际生活的方法?

生6:老师,我觉得根本就不用摆了!只要量出长、宽、高就行了。

师:(疑惑状)什么叫量出长、宽、高就行了?谁听明白了?能结合表中的数据说一说吗? 生7:老师,我明白了!量出长宽高就相当于是知道了一排摆几个,摆几排,摆几层。所以,用长乘宽再乘高就是教室的体积。

师:原来是这样啊!(面向生6)XXX,你同意他的解释吗?大家同意吗? 生:同意!

5、发现总结长方体体积公式

(教师在学生回答时相机将表中“总个数、每排个数、每层排数、层数”下面显示出“体积、长、宽、高及相对应的单位。”)

(1):刚才老师把同学们的实验数据汇总了这张表,我们一起来观察。 师问:每排的个数、每层的排数、层数与长、宽、高有什么关系。

汇报交流:长方体的体积就是摆这个长方体的小正方体的个数。每排摆几个,长方体的长就是多少。每层摆几排,它的宽就是多少。一共摆几层,高就是多少。 (2)教师引导学生发现:小正方体的总个数=每排的个数 ×每层的排数× 层数长方体的体积= 长 × 宽 × 高 学生动笔算一算每一组的长、宽、高相乘的积,算后汇报。

(3)引导学生把计算结果与记录表中的体积进行比较,发现长×宽×高的乘积就是长方体的体积。

(4)同学们真了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,今后在学习上同样可以利用这种方法学习。

(5)字母表示:长方体体积用V表示,长用a表示,宽用b表示,高用h 表示,长方体的体积公式用字母表示是V=a×b×h=abh 板书:V=a×b×h= abh 学生齐读公式。

6、长方体的体积计算公式的应用----解决课前猜想(算字典的体积) 7、迁移推导出正方体的体积计算公式 再次尝试:一个长方体提问怎样求它的体积。

课件出示:图形变化成正方体提问你能求出它的体积吗?

现在请同学们根据长方体的体积计算公式,在小组内讨论讨论:正方体体积的计算公式是什么?

学生小组讨论。

哪个同学愿意说说正方体体积的计算公式? 教师追问:你们是怎么想的?

学生:因为正方体是特殊的长方体,当长方体的长、宽、高都相等时,长宽高也就是正方体的棱长。所以正方体的体积=棱长×棱长×棱长。 教师板书:正方体的体积=棱长×棱长×棱长 教师说明用字母表示V=a×a×a = a3 板书:V=a×a×a = a3

教师说明:a3读作a的立方或a的三次方,表示3个a相乘。

篇4:《长方体的体积计算》优秀教学设计

《长方体体积的计算》教学设计

教学内容:人教版小学数学五年级下第三单元长方体体积的计算。 教学目标:

1.理解并掌握长方体体积的计算方法.

2.能运用长方体体积公式进行计算解决一些简单的实际问题.3.培养学生归纳推理,抽象概括的能力. 教学重点:理解和掌握长方体体积的计算方法. 教学难点:理解长方体体积公式的推导过程. 教学用具:多媒体课件、1立方厘米的小立方体.

教学过程:

一、复习旧知,导入新课. 1.什么是物体的体积? 2、常用的体积单位有哪些?

3、1立方厘米、1立方分米、1立方米分别有多大?

4、(课件出示)下面两个长方体是用1立方厘米的

小正方体拼成的,说出它们的体积各是多少。(9立方厘米、8立方米)你是怎样知道的?(数小正方体的个数)。

师:也就是说:长方体中含有多少个体积单位它的体积就是多少。

5、

(生:切割成小正方体)出示微波炉,那么求这台个微波炉的体积你还想用切割的方法吗?(不能)

6、看来并不是所有的物体都适合用切割的方法,你们想不想知道更

简单更可行的求长方体体积的方法呢,这节课我们就一起来长方体体积的计算(板书课题) 二、动手操作,归纳总结

1、老师为大家准备了一些小正方体,每个小正方体的体积是1立方厘米,谁知道它的棱长是多少?(1cm)

好,下面就请同学们小组合作,用老师准备的小正方体摆成不同的长方体,把不同长方体的相关数据填在表中,然后观察表中的数据,你们能发现什么。

2、小组合作,教师巡视。

3.学生汇报展示说发现,教师板书。

4、教师课件演示.

总结体积公式:长方体体积=长×宽×高。

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:V=abh.教师板书。

5、教学例1.学生独立解决,全班汇报。 三、巩固练习,解决问题

5m

1

5cm

4m

学生口答

2、求微波炉的体积.独立完成,集体订正。 3、口答填表。

4、动手测量求数学书的体积。同桌合作测量计算,集体订正。

5、学校操场上现有15立方米的沙子,准备填入一个长7米,宽3米,深0.8米的长方体坑内,能把坑填平吗?

6、一根长方体的钢材,长是8分米,它的横截面是一个边长为5厘米的正方形。这根钢材的体积是多少立方分米?如果每立方分米钢材重7.8千克,那么这块钢材重多少千克?

7、不规则石头的体积:我们学会了计算长方体的体积,那么你能不能利用我们所学的知识求出这块石头的体积?动脑想一想,同桌讨论。

四、谈收获:这节课你有哪些收获。 五、教师总结:

这节课我们通过动手实验学会了长方体体积的计算,希望同学们平时也能多动手动脑,把我们所学知识用到生活中去,为生活服务。板书设计

长方体的体积=长×宽×高

篇5:长方体和正方体的体积计算小学数学说课稿

各位老师:

你们好!

今天我说课的内容是九年义务教育六年制小学数学第十册《长方体和正方体的体积计算》。下面我就从教材、学情、教法、学法以及教学流程和板书设计等方面谈谈我的构思。

一、说教材

(一)教学内容

人教版九年义务教育六年制小学数学第十册第二单元第三节《长方体和正方体的体积计算》。即P33页例1和P34页的例2题及相关练习。

(二)教材分析与目标确定

长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。本单元前几课时已经基本上认识了长方体和正方体的特征和性质,学习了表面积的计算,掌握了体积的概念和常用的体积单位。这节课要学习长方体和正方体的体积计算,认识体积公式的来源,掌握公式的意义和用法.长方体和正方体的体积计算是今后继续学习几何知识的基础,根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定了如下教学目标:

①知识目标:使学生掌握长方体和正方体的体积计算公式,学会计算长方体和正方体的体积。

②能力目标:培养学生实际操作能力,推理能力及运用知识解决实际问题的能力。

③情感目标:引导学生去实验推导出长方体、正方体的体积计算公式。让学生亲身经历探索知识的过程,激发他们乐于探索的热情, 培养学生的探索性和挑战性。同时渗透理论来源于实践的思想。

(三)教学重点及难点。

根据长方体和正方体之间的关系,重、难点应定位在以下几方面:

(1)教学重点:指导学生探究长方体和正方体的体积形成过程。

(2)教学难点:理解公式的意义。

二、说学情

体积对学生来说是一个新概念,课前,学生已经初步认识了体积和体积单位,对物体的体积有一个比较模糊的认知。在教学中,教师要着眼于学生空间观念的培养,从学生的实际出发,充分利用和创造条件,使学生在轻松愉快的气氛中学习;利用互动多媒体课程,引导学生通过对物体、模型等的观察、测量、拼摆、画图、制作等活动,丰富学生对形体的感知,以培养学生的初步的空间观念和抽象概括能力。

三、说教法

第多斯惠说过:一个不好的教师是奉送真理,而一个好的教师则是教人发现真理。按照新课程标准要求,我想我要转变观念,不再是单纯的知识传授者,而要成为儿童生活的指导者、支持者、合作者,努力为他们创设适宜的活动环境与学习条件,让他们能够主动地去探究、发现问题,并自己总结出规律。本课的教学从儿童的认知特点出发,强调寓教于乐,形象直观,采取启发式、探究式的方法教学,让学生自己参与,自己动手,自己得出结论。

四、说学法

1.启发学生独立思考。

学生是学习的主体,只有引导学生独立地发现问题、思考问题、解决问题,才能收到事半功倍的教学效果。例如,在操作的基础上,让学生观察、分组讨论:每排个数、每层排数、层数是长方体的什么?长方体的长、宽、高与它的'体积有什么关系,这是总结公式、理解公式的重要途径。

2. 让学生在问题解决中学习。

问题是数学教学的核心,也是激发学生探究欲望的最佳动力。教学设计时,我力求以“长方体、正方体体积”这一数学知识为载体,通过学生主动参与、发现结论、猜测验证的探究过程,使学生的数学认知结构建立在自己的实践经验和主动建构之上,从而转变学生的学习方式,体现课程改革精神。

五、说教学流程

(一)教学准备

1.学生动手操作的小正方体积木若干套。

2.自制课件。

(二)教学过程

(1)、创设情景,导入新课。

1、课件演示如下图,让学生说出他们的体积各是多少?

2、如果较大的物体用1立方厘米去量好不好?我们能不能用学过的数学知识来计算呢?

(2)、师生互动,探究新知。

1实验探究

小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行直观操作、思考,并且具体操作、思维和语言表达紧密地结合起来。具体的过程是:

1)每五人一组做实验并记录:

取24块1立方分米的小正方体积木,任意拼摆长方体,然后把数字记录在表格里面。

2)通过课件演示,根据学生的记录表,操作验证。小组讨论:通过填表,你发现了什么?

2归纳概括

1)研究数字间关系。

分组讨论:从这些数字中你发现了什么?

①体积与每排个数、排数、层数的关系。

长方体体积=每排个数×排数×层数

②长方体所含体积单位的个数与它的长、宽、高的关系。

(长方体体积等于长方体所含体积单位的个数,所含体积单位的个数正好等于长方体长、宽、高的乘积)

2)概括体积公式。

①引导学生观看课件,由学生自己总结出长方体的体积公式。

长方体体积=长×宽×高 V=a×b×h V=abh

[例1.的讲解]进一步让学生默记公式,指名说一说求长方体的体积,必须要知道什么条件?让学生计算例1。

②根据长方体与正方体之间的关系,我们可以推出正方体的体积计算公式吗?

正方体体积=棱长×棱长×棱长 V=a·a·a V=a3 [V=a·a·a,也可以写成a3 读作a的立方,表示三个a相乘,不要误认为а与3相乘。写“а3”时,3写在a的右上角。]

[例2.的讲解]要使学生树立学习新知识,解决新问题的信心,所以让学生独立完成例2,教师巡视。

(3)、反馈练习,实践运用。

练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:

(1)、堆积木,算体积。

(2)、通过让学生完成教科书第34页的“做一做”的第一题,先让学生动作操作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,记住长方体的体积计算公式。

(3)、做第34页“做一做”的第二题,先学生独立完成,这道题是巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。

(三)、全课总结。

(1)让学生说说这节课学习了什么?

(2)教师总结。

这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力。

六、附板书设计:

篇6:长方体与正方体体积计算优秀教学设计

长方体与正方体体积计算优秀教学设计

教学要求

使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。

教学重点

长方体、正方体体积公式的推导。

教学用具

教师准备: 1立方厘米的正方体木块24块;课件。

学生准备:1 立方厘米的正方体12个

教学过程

一、创设情境

填空:

1、___叫做物体的体积。

2、常用的体积单位有:__、__、__。

3、计量一个物体的体积,要看这个物体含有多少个____。

师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)

二、实践探索

1.小组学习------长方体体积的计算。

课件演示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。

提问:通过观察,你能说出它的体积是多少?

实验:都拿出准备好的12个1立方厘米的小正方块,先说一说它们的体积是多少?师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。

观察结果:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

板书:长方体:长、宽、高(单位:厘米) 体积(单位:立方厘米)

师:这些长方体有什么共同点?不同点?

问:为什么这些长方体的长、宽、高不同,即形状不相同而体积相同呢?

体积怎么计算出来的呢?

含体积单位数:4×3×1=12(个)

体积:4×3×1=12(立方厘米)

(3)它含有多少个1 立方厘米?

(4)它的体积是多少?

通过上面的实验,你发现了什么?(可让学生分小组讨论)

有许多物体不能切开,怎样计算它的体积?

结论:长方体的体积=长×宽×高。

用字母表示:V = a×b×h=abh

应用:出示例1,让学生独立解答。

2.小组学习——正方体体积的计算。

思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?

结论:正方体的体积=棱长×棱长×棱长

用字母表示为:V=a3

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生独立做后订正。

三、课堂实践

1.做第34页的“做一做”的第1题。

(1)先让学生标出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做第34页的“做一做”的第2题。

3、判断正误并说明理由。

①0.2 = 0.2×0.2×0.2; ( )

②5X×2=10X; ( )

③一个正方体棱长4分米,它的体积是:4 =12(分米 ); ( )

④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米 。( )

4、做练习七的第4、6题。

四、课堂小结

五、课后实践

做练习七的第5、7题。

课堂教学设计说明

数学课程标准对“空间与图形”的内容,以“图形的认识、图形与变换、图形与位置、图形与证明”等四条线索展开,并且都以图形为载体,以培养学生空间观念、推理能力,以及更好地认识与把握我们生存的现实空间为目标,不仅着眼于学生理解和掌握一些必要的几何事实,而且强调学生经历自主探索和合作交流的过程,形成积极的学习态度和情感。提倡以“问题情境——建立模型——解释、应用与拓展、反思”的基本模式展现内容,让学生经历“数学化”和“再创造”的过程。

鉴于新课标的要求,本节内容是在学生已掌握了体积的概念和体积单位的基础上进行的。教学过程中主要通过学生操作的'方式,调动学生积极参与长方体体积公式的推导,推理和最后的结论,都由学生得出,老师只起“导”的作用。正方体体积公式,采用小组合作的方式引导学生把它归为长方体的特殊情况来学习,这样既加深了对长、正方体之间包含关系的理解,同时也加深了对其体积计算公式的理解。总之,新课力求体现两个特点:1、给学生更多的动手操作实验与实践的空间。2、课堂教学的组织,将突出探究性活动,使学生亲历“做数学”的过程,并在这一过程中,通过自主探索,认识和掌握图形性质,积累数学活动的经验,发展空间观念和推理能力,其间特别注意给学生提供充分的数学活动交流的机会。

篇7:六年制小学数学说课稿:长方体和正方体的体积计算

六年制小学数学说课稿:长方体和正方体的体积计算

各位老师:

你们好!

今天我说课的内容是九年义务教育六年制小学数学第十册《长方体和正方体的体积计算》,下面我就从教材、学情、教法、学法以及教学流程和板书设计等方面谈谈我的构思。

一、说教材

(一)教学内容

人教版九年义务教育六年制小学数学第十册第二单元第三节《长方体和正方体的体积计算》。即P33页例1和P34页的例2题及相关练习。

(二)教材分析与目标确定

长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。本单元前几课时已经基本上认识了长方体和正方体的特征和性质,学习了表面积的计算,掌握了体积的概念和常用的体积单位。这节课要学习长方体和正方体的体积计算,认识体积公式的来源,掌握公式的意义和用法.长方体和正方体的体积计算是今后继续学习几何知识的基础,根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定了如下教学目标:

①知识目标:使学生掌握长方体和正方体的体积计算公式,学会计算长方体和正方体的体积。

②能力目标:培养学生实际操作能力,推理能力及运用知识解决实际问题的能力。

③情感目标:引导学生去实验推导出长方体、正方体的体积计算公式。让学生亲身经历探索知识的过程,激发他们乐于探索的热情, 培养学生的探索性和挑战性。同时渗透理论来源于实践的思想。

(三)教学重点及难点。

根据长方体和正方体之间的关系,重、难点应定位在以下几方面:

(1)教学重点:指导学生探究长方体和正方体的体积形成过程。

(2)教学难点:理解公式的意义。

二、说学情

体积对学生来说是一个新概念,课前,学生已经初步认识了体积和体积单位,对物体的体积有一个比较模糊的认知。在教学中,教师要着眼于学生空间观念的培养,从学生的实际出发,充分利用和创造条件,使学生在轻松愉快的气氛中学习;利用互动多媒体课程,引导学生通过对物体、模型等的观察、测量、拼摆、画图、制作等活动,丰富学生对形体的感知,以培养学生的初步的空间观念和抽象概括能力。

三、说教法

第多斯惠说过:一个不好的教师是奉送真理,而一个好的教师则是教人发现真理。按照新课程标准要求,我想我要转变观念,不再是单纯的知识传授者,而要成为儿童生活的指导者、支持者、合作者,努力为他们创设适宜的活动环境与学习条件,让他们能够主动地去探究、发现问题,并自己总结出规律。本课的.教学从儿童的认知特点出发,强调寓教于乐,形象直观,采取启发式、探究式的方法教学,让学生自己参与,自己动手,自己得出结论。

四、说学法

1.启发学生独立思考,

学生是学习的主体,只有引导学生独立地发现问题、思考问题、解决问题,才能收到事半功倍的教学效果。例如,在操作的基础上,让学生观察、分组讨论:每排个数、每层排数、层数是长方体的什么?长方体的长、宽、高与它的体积有什么关系,这是总结公式、理解公式的重要途径。

2. 让学生在问题解决中学习。

问题是数学教学的核心,也是激发学生探究欲望的最佳动力。教学设计时,我力求以“长方体、正方体体积”这一数学知识为载体,通过学生主动参与、发现结论、猜测验证的探究过程,使学生的数学认知结构建立在自己的实践经验和主动建构之上,从而转变学生的学习方式,体现课程改革精神。

五、说教学流程

(一)教学准备

1.学生动手操作的小正方体积木若干套。

2.自制课件。

(二)教学过程

(1)、创设情景,导入新课。

1、课件演示如下图,让学生说出他们的体积各是多少?

2、如果较大的物体用1立方厘米去量好不好?我们能不能用学过的数学知识来计算呢?

(2)、师生互动,探究新知。

1实验探究

小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行直观操作、思考,并且具体操作、思维和语言表达紧密地结合起来。具体的过程是:

1)每五人一组做实验并记录:

取24块1立方分米的小正方体积木,任意拼摆长方体,然后把数字记录在表格里面。

2)通过课件演示,根据学生的记录表,操作验证。小组讨论:通过填表,你发现了什么?

2归纳概括

1)研究数字间关系。

分组讨论:从这些数字中你发现了什么?

①体积与每排个数、排数、层数的关系。

长方体体积=每排个数×排数×层数

②长方体所含体积单位的个数与它的长、宽、高的关系。

(长方体体积等于长方体所含体积单位的个数,所含体积单位的个数正好等于长方体长、宽、高的乘积)

2)概括体积公式。

①引导学生观看课件,由学生自己总结出长方体的体积公式。

长方体体积=长×宽×高 V=a×b×h V=abh

[例1.的讲解]进一步让学生默记公式,指名说一说求长方体的体积,必须要知道什么条件?让学生计算例1。

②根据长方体与正方体之间的关系,我们可以推出正方体的体积计算公式吗?

正方体体积=棱长×棱长×棱长 V=a·a·a V=a3 [V=a·a·a,也可以写成a3 读作a的立方,表示三个a相乘,不要误认为а与3相乘。写“а3”时,3写在a的右上角。]

[例2.的讲解]要使学生树立学习新知识,解决新问题的信心,所以让学生独立完成例2,教师巡视。

(3)、反馈练习,实践运用。

练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:

篇8:《圆锥的认识和体积计算》优秀说课稿

一.说教材。

圆锥的认识和体积计算是《人教版》内容第十二册4143页的内容。本节

课是在认识了圆柱体的基础上继续学习的内容。学习圆锥可以进一步加强学生对立体图形的认识。为了帮助学生认识圆锥体,理解和掌握圆锥体的体积计算公式,教材是从观察入手,到实践操作,让学生通过操作把抽象的概念具体化、形象化。让圆锥体的有关概念,体积计算公式从实践中认识,然后运用到实际生活中去。

根据教材内容,确定教学目标:

1.通过观察和演示,使学生认识圆锥体,掌握它的特征和体积计算公式,并能根据具体问题灵活应用计算方法。

2.让学生理解圆锥体积公式的推导过程,认识圆柱体和圆锥体之间的关系,渗透辨证思维的方法。

3.通过实际操作,培养学生动脑、动手的能力,让学生养成严谨、仔细的良好习惯。

4.培养学生观察、比较、分析、判断推理的能力,发展学生空间观念,提高学生想象能力和逻辑思维能力。

教学重点难点和关键:

1.重点:(1)认识直圆锥并掌握它的一些特征。(2)圆锥体的体积计算。

2.难点:(1)圆锥体体积计算公式的推导。(2)解答有关直圆锥体实物体

积。

3.关键:要充分应用直观教具和电脑,进行演示和实验,有目的、有步骤地引导学生观察、思考,从而推导出计算公式和有关概念。

二.说教法和学法。

根据教材的内容和学生的年龄特征,我采用以下教法和学法:

1.直观操作,突破难点。

在这节课中,充分运用实物让学生认识直圆锥,通过圆锥体的点,线,面,

认识圆锥体的底和高。发挥学生四人小组的作用,大胆放手让学生动手操作,推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。通过动手操作,让学生用多种感官去感知事物,获取感性知识,使操作与思维紧密结合,加深对直圆锥及体积的认识。

2.运用电脑课件的动感突出重点。

圆锥体的认识是本节课的重点,为了让学生充分地认识圆锥体,把生活中

的锥形物体放在屏幕上(如小麦堆,漏斗等),运用电脑闪动形式认识圆锥体的底面,侧面,顶点,高。认识圆锥体积的大小也是本节的重点和难点内容,为了突出重点,突破难点,着重引导学生去探索等底等高的圆锥体与圆柱体体积之间的关系,充分运用电脑屏幕显示操作推导过程,把静态转化为动态,加深学生对所学知识的直观印象,生动、形象、具体的教学使学生能够由具体到抽象,由感觉到知觉进行顺利的过渡。

3.注意培养学生的发散性思维和创新意识。

创新教育是素质教育的核心,因此在课堂教学中注意培养学生的发散性思

维和创新意识。

在认识圆锥体的过程中,引导学生思考,发现,认识圆锥体的特征。在认识圆锥体的体积的过程中,引导学生积极地去和等底等高的圆柱体的体积进行比较,通过对比、分析、综合、归纳出圆锥体的体积计算公式。学生在充分认识了圆锥体和圆柱体之间的关系的基础上,从不同方面对学生进行练习,启发学生做一些有创新能力的题目,让学生充分发挥自己创造力的空间,培养学生发散性思维能力。

三. 说教学程序设计。

悬念引入。

首先让学生回忆近来学习了什么立体图形(圆柱体),在电脑屏幕上展示圆

柱体和圆锥体的实物,让学生认识圆柱体,说出圆柱体的体积公式,然后提问:屏幕上还有一些什么图形呢?(这样做一方面可以让学生初步感知圆锥体,另一方面既能激发学生的学习兴趣,又能培养学生独立思考的能力。)

探究新知。

1.圆锥的认识。

(1)圆锥的组成。

①面。圆锥有几个面?哪两个面?[教师板书:圆锥有两个面(一个侧

面,一个底面)。]

②棱。提问:圆锥有几条棱?是什么样的'一条棱?[教师板书:圆锥

有一条棱(一条封闭的曲线)。]

③顶点。提问:圆锥有没有顶点?有几个顶点?[教师板书:圆锥一

个顶点。]

④高。提问:圆锥的高在哪里?教师出示圆锥教具(电脑显示),把它一分为二,让学生观察,得出高的概念。[教师板书:从圆锥的顶点到底面圆心的距离是圆锥的高。]

提问:圆锥旁边(手示圆锥侧面)这个长度是不是圆锥的高?圆锥有几条高?(一条高)

(2)圆锥的特征。

①一个底面是圆形。

②一个侧面展开图是扇形。(通过电脑演示得到。)

(3)指导学生看圆锥立体图。

2.圆锥体积公式推导。

您现在正在阅读的六年级下册《圆锥的认识和体积计算》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!六年级下册《圆锥的认识和体积计算》说课稿(1)电脑出示木制圆柱体铅笔,用卷笔刀将前段削成圆锥后提问:削后

的这一段是什么物体?这个圆锥是由什么物体削成的?这个圆锥体和原来这段圆柱体底面积和高有什么联系?两个体积有什么关系呢?(让学生发表意见)

(2)出示等底等高的圆柱体玻璃容器和圆锥体玻璃容器。

①教师演示圆柱和圆锥等底等高,并板书:等底等高。

教师演示,学生观察:将圆锥体容器里面装满黄沙后,往圆柱容器里面倒,

连续倒三次,圆柱体容器刚好倒满。

②指导学生四人小组做倒沙子实验。

四人小组组长演示,其余同学观察,发现圆柱体积和圆锥体积之间有什

么关系。

(3)提问:把圆锥里装满的黄沙倒入圆柱里后,沙占圆柱容积的多少?这样倒了几次后,才装满圆柱容器?这实验说明等底等高的圆锥和圆柱体积有什么关系?

(教师板书;圆锥的体积等于和它等底等高的圆柱体积的三分之一。)

教师出示不等底不等高的圆柱和圆锥容器,让学生观察教师的演示,提问:圆锥体积是这个圆柱体积的三分之一吗?为什么?学生讨论。

(4)提问:我们已经知道圆柱体积公式:V=Sh,那么与它等底等高的圆锥体积公式应是什么?

(教师板书:V=1/3 Sh。)

提问:这个公式里,Sh是求什么?为什么要乘以1/3?要求圆锥的体积应该知道什么条件?

3、公式应用。

(1)出示例1 一个圆锥体零件,底面积是19平方厘米,高是12厘米。这个圆锥体的体积是多少?

学生口答,教师板书。

V=1/3Sh 板书后提问:1912是求什么?

=1/31912 如果不乘以1/3是求什么?

=76(立方厘米)

答 :(略)

(2)如果题目不告诉底面积,而是告诉底面半径是3厘米,怎样求圆锥体积。

学生练习,教师讲评(略)。

目的是培养学生的发散性思维和创新意识。

巩固练习。

1、求下列各圆锥的体积。

(1)底面积30平方厘米,高5厘米。

(2)底面半径4分米,高是3分米。

(3)底面直径12厘米,高是10厘米。

(4)底面周长31.4厘米,高6厘米。

2、

4

求下面各物体的体积。(单位:厘米)

12

9

5

目的是让学生运用所学的知识解决实际问题。

3.讨论题:把一个体积是60立方厘米的圆柱体木块,削成一个最大的圆锥体,圆锥体的体积是多少?削去的体积是多少?

通过讨论,让学生把所学的知识,形成技能技巧,培养学生的创新能力。

归纳小结。

通过这节课的学习,学生认识了圆锥体,掌握了圆锥体的体积计算方法,能解答有关实际问题,进一步发展了学生的空间概念和抽象思维能力。

四. 说板书设计。

篇9:《圆锥的认识和体积计算》优秀说课稿

圆锥的组成: 计算方法:

面:(两个面) 棱:(一条棱) 圆柱体积公式:v=sh

顶点:(一个顶点) 高:(一条) 圆锥体积公式:v=1/3sh

例1 一个圆锥体零件,底面积是19平方厘米,高是12厘米,

求这圆椎的体积是多少?

学生口答,教师板书:(略)

这板书简明扼要符合大纲要求,体现了这节课的主要内容,突出了本节课重点和难点,便于学生学习和掌握,展现出承上启下、循序渐近的过程,围绕着圆锥体的认识和体积计算,概括出了明确的中心。

五. 几点说明。

根据直观性原则,引导学生观察、操作、实验、归纳、小结,认识圆锥体和体积计算公式。根据理论与实践相结合的原理,运用所学的圆锥体的体积计算公式解决实际问题。根据学生的认知过程循序渐近地布置一些练习,培养学生的空间思维,发散性思维和创新思维能力。

篇10:长方体的体积和体积计算教学设计

长方体的体积和体积计算教学设计

学习过程:

一、板书课题

师:同学们,今天我们一起来学习“长方体和正方体的体积计算。

(板书课题)

二、出示目标

师:这节课我们的目标是(齐读):

1、探索并掌握长方体和正方体的体积公式。

2、应用公式正确计算长方体和正方体的体积,并能解决生活中有关的实际问题。

三、自学指导(一)

认真看投影出示形体,完成书本第29页的表格。

猜一猜:长方体的体积与长方体的长、宽、高之间有什么关系?

3分钟后比一比谁填写正确。

四、第一次先学后教

(一)先学

师:看书时,比谁看的最认真,坐姿最端正。下面,自学竞赛开始。

生认真自学,教师巡视,督促人人认真地看书。

(二)后教

(1)指名填空

问:有不同的答案吗?同意黑板上同学的举手?

(2)议一议

师:分组交流一下长方体的体积与它的.长、宽、高之间有什么关系?

个别回答。让多名学生发言。

五、自学指导(二)

认真看书第29、30页

1、分别在表格内写出小正方体的个数和长方体的体积。

2、再次猜一猜:长方体的体积与它的长、宽、高之间有什么关系?

3、长方体的体积计算公式是什么?如何用字母表示?

4、正方体的体积计算公式是什么?如何用字母表示?

4分钟后比一比谁填写正确。

六、第二次先学后教

(一)先学

师:下面,自学竞赛开始。

生认真自学,教师巡视,督促人人认真地看书?

指名板书

(二)后教

(1)更正

师:观察黑板上的答案,发现错误的同学请举手。(用黄色粉笔更正)

(2)指名回答

师:再次猜一猜:长方体的体积与它的长、宽、高之间有什么关系?

长方体的体积计算公式是什么?如何用字母表示?

正方体的长、宽、高之间有什么关系?

正方体的体积计算公式是什么?如何用字母表示?

(3)小结

出示公式? 生齐读?

七、检测

1、课本第30页试着做一做。(只列式不计算)

要求:认真做题,并把字写端正,写大点。

(1)找3名同学上台板演,其余同学写在练习本上。

生独立完成,师巡视,发现错题板书于黑板上对应位置。

(2)更正。

师:观察黑板上的题,发现错误的同学请举手。(用黄色粉笔更正)

2、课本第31页第一题(只列式不计算)

要求:认真做题,并把字写端正,写大点。

(1)找3名同学上台板演,其余同学写在练习本上。

生独立完成,师巡视,发现错题板书于黑板上对应位置。

(2)更正。

师:观察黑板上的题,发现错误的同学请举手。(用黄色粉笔更正)

八、课堂小结

同学们,今天我们学习了长方体和正方体体积计算公式及字母表示法。

九、当堂训练

作业:练习七第8、9题。

篇11:长方体和正方体的体积计算教案

教学要求

使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。

教学重点

篇12:《长方体和正方体的体积》说课稿

一、说教材

本篇教学内容是在学生学习了体积及体积单位后进行教学的,长方体体积计算公式,教材让学生用体积为1cm的小正方体摆成不同的长方体,通过对摆法不同的长方体相关数据的分析,引导学生找出长方体中所含体积单位的数量与它的长、宽、高的关系,从而总结出长方体体积的计算公式,并用字母表示出来。接着,教材安排了例1,计算长方体的体积,以巩固长方体的体积计算公式。正方体的体积公式,教材是通过启发学生根;据长方体和正方体的关系,推导出来的。在用字母表示正方体的公式时,教材介绍了“立方”的含意,说明三个相同的数连乘就是这个数的立方,之后安排例2,计算正方体的体积。

二、说教学重难点

根据教学明白的要求,本教材的教学重难点主要体现为两点;

1,能正确运用体积公式计算长方体和正方体的体积。

2,能正确理解长方体和正方体体积公式的推导过程。

三、说教法学法

根据新课标的要求,在教法与学法上主要体现为以下两点;

1、给学生更多的动手操作实验与实践的空间。

2、课堂教学的组织,将突出探究性活动,使学生辛历;做数学’的过程。并在这一过程中,通过自主探索,认识和掌握图形性质,积累数学活动的经验,发现空间观念和推理能力,其间特别注意给学生提供充分的数学活动交流的机会。

四、说教学设计

鉴于新课标的要求,本节内容是在学生于掌握了体积的概念和体积单位的基础上进行的。教学过程中主要通过学生操作的方式,调动学生积极参与长方体体积公式的推导、推理和最后的结论,都由学生得出,老师只起‘导’的作用。正方体体积公式,小组合作的方式引导学生把它归为长方体的特殊情况来学习,这样既加深了对长方体、正方体之间包含关系的理解,同时也加深了对其它体积计算公式的理解。

篇13:长方体和正方体的体积计算教学设计

《长方体的体积》教学设计

辽宁省大石桥市周家镇中心小学

李丽娟

【教学目标】

1、结合具体情景和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。

2、学生在动手操作,主动参与学习活动过程中发现知识的规律,掌握数学知识、思维能力培养,学生的学习能力得到训练。

3、在观察、操作、探索的过程中,学生的动手操作能力得到提高,空间观念得到进一步的发展。

【教学重点】长方体和正方体体积的计算方法. 【教学难点】长方体体积公式的推导

【教具准备】课件 大小不一的两个物体 大小相近的长方体与正方体 【学具准备】正方体小方块

教学实施具体过程:

一、创设情境 发现问题

1、大家都爱吃水果,那么西瓜和苹果哪个大?哪个小?(西瓜大苹果小)

其实刚才我们在比它们的什么?(比较它们的体积)体积指的是什么?(体积是指物体所占空间的大小)

2、那么常见的体积单位有哪些呢?

3、出示长方体、正方体学具:那你能猜猜这个长方体学具的体积是多少吗?那这个正方体的体积和长方体比较,哪个会大一些呢?

4、看来同学们的意见出现了分歧,那么怎样才能准确的比较出它们的大小呢?谁说说看?(看看它们哪个体积大哪个就大?)

5、同学们说的都有道理,今天这节课我们就一起来研究长方体(正方体)体积的计算方法。

二、观察思考 提出猜想

1、猜想:我们学过长方形面积计算公式,谁来说说长方形面积与什么有关?(长方形面积与长和宽有关),长方体的体积可能与什么有关?下面请看课件。

出示三组长方体进行比较引导学生使学生初步认识到长方体的体积与它的长、宽、高都有关。

三、观擦实验,验证猜想

1、那么长方体的体积与它的长、宽、高到底有怎样的关系呢?凭空想象是不行的,数学是要讲究依据的,要通过反复的实践证明才行 课件演示

(1)看一看下面的长方体的体积是多少?为什么?

体积是4立方厘米。为什么?因为他它含有4个1立方厘米的体积单位。

我们已经知道,长方体的体积就是指长方体所含有的体积单位数。所以求长方体的体积就是求长方体所含有多少个这样的体积单位。下面我们运用1立方厘米的体积单位来研究长方体的体积计算方法。

(2)再加上这样的两排,这个长方体的体积是多少?你是怎么想的?

学生1:12立方厘米。追问怎么得到的?

学生2:一排是4立方厘米, 3排就是4×3=12立方厘米。??

(3)再加上这样的一层,这个长方体的体积是多少? 学生1:24立方厘米。 追问:能说说你是怎么计算的?

学生2:一层是12立方厘米,2层就是

12×2=24立方厘米 再追问:这个长方体的长宽高分别是多少? 学生3:长是4厘米,宽是3厘米,高是2厘米。

2、启发:生活中计量物体的体积,都用“切成若干个体积单位”来计算,是不行的,同学们通过观察刚才老师在课件上的演示你发现了没有长方体的体积与它的长、宽、高到底有怎样的关系?谁能把你的发现大胆的说给大家?

学生1:长方体的体积就等于长、宽、高的乘积。 学生2:长方体的体积=长×宽×高??

3、用字母表示长方体的体积公式

4、长方体的体积计算公式的应用

(1)师问:在生活中,怎样计算长方体的体积? 课件出示习题

(3)迁移推导,再次尝试 推导正方体的体积计算公式 正方体的体积=棱长×棱长×棱长, 用字母表示:V=a×a×a = a3 应用公式计算

(4)继续观察

使学生明确阴影部分的面积是上面各个图形底面的面积,称为底面积。然后导出

长方体(正方体)的体积=底面积×高

V=S×h 四.学以致用

巩固提高

1、填一填

2.判断(判断对错,说明理由)

(1)一个正方体的棱长是2米,它的体积是8立方米。(

) (2)一个长方体的长30厘米,宽2分米,高5厘米,它的体积是30×2×5=500(立方厘米)。

(

)

(3)一个棱长为6分米的正方体,它的表面积和体积相等。(

) 3.提高题

(1)一块砖的长是24厘米,宽是长的一半,厚是6厘米,它的体积是多少立方厘米?(只列式)

(2)一个正方体的棱长总和是36厘米,它的体积是多少? 4.实际应用

(1)雄伟的人民英雄纪念碑矗立在__广场上,石碑的高是14.7米,宽2.9米,厚1米。这块巨大的花岗岩石碑的体积是多少立方米?

解:V=abh =2.9×1×14.7

=42.63(m3)

答:这块巨大的花岗岩石碑的体积是42.63立方米。 (2)有一种正方体形状的魔方,棱长是6厘米,体积是多少立方厘米?

V= a =6×6×6

=216(cm3)

答:这种魔方的体积是216立方厘米。

五、谈谈你今天的收获 板书设计:

长方体的体积

长方体的体积=长×宽×高

V=a×b×h

= abh

正方体的体积=棱长×棱长×棱长

V=a×a×a

a

= 3

长、正方体的体积=底面积×高

V=S×h

篇14:长方体和正方体的体积计算教学设计

教材解读 体积对学生来说是一个新概念。由认识平面图形到认识立体图形,是学生空间观念的一次发展。教材加强了对体积概念的认识。教材通过学生更熟悉、更直观的“乌鸦喝水”的故事、石头放入盛水的杯子里的实验等,以生动形象的方式,为学生体会物体占有空间,理解体积概念提供丰富的感性经验。然后,引导学生观察比较电视机、影碟机和手机的大小,说明不同的物体所占空间的大小不同,从而引入体积概念。

学习目标 1、理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米。

2、理解并掌握长方体和正方体体积的计算方法。

3、正方体的体积计算解决一些简单的实际问题。培养学生归纳推理,抽象概括的能力

教学重、难点 体积的含义和常用的体积单位。

教、学具准备 前置作业、多媒体设备、红笔、12个体积1厘米的小正方体

预习提 纲

1、什么叫做体积?

2、常用的体积单位有哪些?

3、长方体(或正方体)的体积该怎样计算?

教 学 流 程

学生学习活动 教学板块或教师活动

一、独立自学

结合预习提纲自学课本27至31页。 1、1米、1分米、1厘米是( )单位。

1平方米、1平方分米、1平方厘米是( )单位。

2、乌鸦是怎样喝到水的?说明了什么?

3、电视机 影碟机 手机哪个所占的空间大?哪个体积?哪个最小?

4、物体所占空间的大小叫做( )

二、互动交流

学生分小组进行讨论交流 1.实验观察

观察(1):把一块石头放入有红色水的玻璃杯中,水位有什么变化?这是为什么?

图片观察:投影出示课本上的洗衣机、影碟机、手机,哪一个物体所占的空间大?

2.教学体积单位。

(1)介绍体积单位。

常用的体积单位有:立方米、立方分米、立方厘米。

(2)1立方米、1立方分数、1 立方厘米的体积各有多大。

1立方厘米:一个指尖的大小

1立方分米:一个粉笔盒的体积

3、推导体积公式

(1)分别用8个、12个小正方体摆成不同的长方体,,观察发现,每排小正方体的个数相当于长方体的长,排数相当于长方体的宽,层数相当于长方体的高

(2)发现规律得出长方体的体积公式

(3)根据长方体和正方体的关系推导正方体的体积公式

学生学习活动 教学板块或教师活动

三、总结评价

总结这一节课的收获,并提出自己的问题 1、物体所占空间的大小叫物体的

体积。

2、常用的体积单位有立方厘米、立方分米、立方米。

3、长方体的体积=长×宽×高

4、正方体的体积=棱长×棱长×棱长

四、巩固或提高

完成同步指导上的相关作业。 独立完成,核对时说一说自己是怎样想的?怎样做的?

教 学 反 思

长方体和正方体的体积计算教学设计

篇15:《长方体和正方体体积的计算》教学设计

《长方体和正方体体积的计算》精品教学设计

[教学内容]

教科书第27页的内容,练习六第4-8题

[教材简析]

这部分教材是学生已经掌握长方体和正方体的特征,了解体积的意义,初步掌握长方体和正方体体积公式的基础上,引导学生进一步探索长方体和正方体的体积公式,在探索中通过分析、比较、归纳,掌握“长方体(正方体)的体积=底面积×高”这一直棱柱体积的通用公式。

“练一练”和练习六第4—8题,先直观看图计算,再比较长方体(正方体)的体积=底面积×高与前面所学长方体、正方体体积计算方法的不同和联系,在比较中巩固上述公式的推理过程,然后在练习中解决一些实际问题。这样由浅入深,既巩固了长方体(正方体)的体积=底面积×高的体积公式,又使学生学会解决实际问题,体会到数学在日常生活中的应用,感受数学的价值,还发展学生的空间观念。

探索并掌握长方体(正方体)的体积=底面积×高的计算是本节课的重点。

[教学目标]

1、使学生在具体的情境中,经历比较、讨论、验证、归纳等数学活动过程,探索并掌握长方体(正方体)的.体积=底面积×高的计算方法,能解决与体积计算有关的一些简单实际问题。

2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。

3、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好书学得的自信心。

[教学过程]

一、观察直观图形,认识并计算长方体、正方体的底面积

(出示长方体、正方体)谈话:同学们,我们学过了长方体、正方体的特征和表面积。请同学们在小组中找出这两个图形的底面分别是哪两个面?

根据学生的回答,教师在图中涂色呈现出底面。

提问:这两个图形的底面积是哪两个面的面积?

根据学生的回答,教师板书“底面积”定义。

再提问:怎样计算长方体和正方体的底面积?

根据学生的回答,明确长方体、正方体底面积的计算方法,教师板书计算公式。

[评:《数学课程标准》要求:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,在学生理解和掌握长方体、正方体特征和表面积基础上,让学生自己归纳、探索底面积的定义和计算公式,体现数学学习是一个再创造过程。]

二、探索长方体(正方体)的体积=底面积×高的计算方法

1、提问:我们前面学习的长方体、正方体体积是如何计算的?

根据学生的回答,教师板书体积公式

2、谈话:长方体和正方体的体积也可以这样来计算:长方体(正方体)的体积=底面积×高

3、提问:在小组中讨论为什么可以这样来计算长方体、正方体的体积?

学生在小组中讨论得出结论,教师帮助学生进行相应整理

4、请同学们尝试用字母表示这个公式

根据学生的回答,教师板书字母公式

[评:观察、思考、讨论、交流等都是《数学课程标准》所提倡的数学活动。在这里,先把公式直接告诉学生,让学生在借助已有知识的基础上,凭借他们自己的经验,在小组中充分交流、合作,在探索、比较中充分理解长方体(正方体)的体积=底面积×高的推理过程。]

三、分析、比较加深长方体(正方体)的体积=底面积×高的理解

1、出示“练一练”第1题

⑴、学生独立思考完成

⑵、讨论:这样计算长方体和正方体的体积与原来的计算方法有什么不同?有什么联系?

2、出示“练一练”第2题

独立做题,在班内共同订正

[评:在学生独立解决问题中,关注这种计算公式与原来计算公式的不同与联系,进一步巩固长方体(正方体)的体积=底面积×高的计算方法,感受数学的魅力。]

四、巩固练习、拓展应用

1、做练习六第4题

⑴、借助实物帮助学生理解占地面积的实际含义

⑵、使学生明确“所占空间”就是储物柜的体积

⑶、独立做题,在班内共同订正

[评:让学生在实际应用中,巩固用“底面积×高”计算长方体体积的方法,感受这种方法在解决实际问题过程中的作用。]

2、做练习六第5题

⑴、结合图让学生指一指这根横截面的位置

⑵、引导学生想象:如果将这根木料竖起来,木料的横截面就是这个长方体的哪个面?木料的长与竖起来的长方体的高有什么关系?可以怎样计算它的体积?

[评:引导学生联系“长方体体积=底面积×高”这一方法,理解用“横截面面积×长”计算长方体体积的方法,有利于学生从不同角度加深对体积计算方法的理解。]

3、做练习六第6题

⑴、使学生明确黄沙铺成的形状是长方体,铺的厚度是长方体的高

⑵、明确要求“用方程解”

[评:这是一个在长方体沙坑铺黄沙的实际问题,让学生根据长方体的体积以及长和宽(或底面积),求它的高,既体现了知识的综合应用,又有利于提高学生应用公式解决实际问题的能力。]

4、做练习六第7题

⑴、弄清题中两个问题的联系与区别

⑵、引导学生寻找计算花坛所占空间大小以及花坛内泥土体积所需要的条件

⑶、提示:从里面量,花坛的高没有变,但底面正方形的边长只有1.3-0.3×2=0.7(米)

[评:通过让学生计算花坛所占的空间和花坛里有多少泥土这两个问题,让学生在比较中进一步明确体积和容积的不同意义。]

5、做练习六第8题

⑴、合理选择相应的信息解决实际问题

⑵、独立思考,在班内共同订正

[评:通过跑道上铺三合土和塑胶的实际问题,培养学生合理选择信息解决有关体积计算的实际问题的能力。]

五、激励评价,问题延伸

谈话:请同学们说说这节课你有什么收获?你是怎样知道的?回家后选择你身边的长方体或正方体,测量并用今天学习的知识计算它的体积。

[评:课堂总结不但关注学生知识与技能的掌握,而且关注了学生的学习过程,还把课堂中学到的知识延伸到生活中,体现了生活中处处有数学的理念。]

篇16:《长方体和正方体的体积计算》教学设计

教学目标:

1、理解并掌握长方体和正方体体积的计算方法。

2、能运用长、正方体的体积计算解决一些简单的实际问题。

3、培养学生归纳推理,抽象概括的能力。

教学重点和难点

长方体和正方体体积的计算方法,以及其体积公式的推导。

教学用具

1立方厘米的正方体若干块,正方体和长方体教具

教学过程设计

(一)复习准备

1.提问:什么是体积?常用的体积单位有哪些?

2.请每位同学拿出4个1厘米3的正方体,摆成一个长方体。

教师:这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由 4个 1厘米3的正方体拼成,所以它的体积是 4厘米3。)

教师:如果再拼上一个1厘米3的正方体呢?

教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。如果想知道我们这间教室的体积应该怎么办呢?(引导学生理解有的物体是不能切开的,能不能运用学过的知识来解决。)能不能通过测量、计算来求出教室的体积呢?今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。

(二)引导探索

1.长方体的`体积。

师:“要想求长方体的体积,你们猜想可能与什么有关呢?”

(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?

教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。

同学分小组活动,教师巡视。教师:观察上表,你发现了什么?看一看这些数据与长方体的体积有什么关系?

学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。

进一步验证:同桌合作,用小正方体摆出自己喜欢的长方体,看看长方体的体积是否等于长、宽、高的乘积。

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书:V=abh。

(2)练习:(学生口答。)出示老师的长方体教具,给出长、宽、高,求体积。

师:现在老师测量了教室的长是7、5米,宽是6米,高是3米,教室的体积是多少,你们知道吗?学生快速计算。

2.正方体体积。

根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?

学生口答,老师板书: 正方体体积=棱长×棱长×棱长。

用字母表示公式:用V表体积,a表示棱长,公式可写成:V=a·a·a或者V=a3。

(2)教学例2

学生试做,指名板演。

做一做:出示老师的正方体的教具,求体积。(学生口答)

(三)巩固反馈

练习七5、6题。

(四)课堂总结

篇17:《长方体和正方体的体积计算》的教学反思

《长方体和正方体的体积计算》的教学反思

一、利用实际生活中的实物,引导学生解决实际问题。

长方体和正方体体积的实际应用,学生是在掌握了体积的概念和单位等内容的基础上进行学习的。教师在教学过程中,可以运用日常生活中常见几何体来进行教学,如粉笔盒、课本和长方体的橡皮擦等实物,教学前教师可以先准备一立方厘米的正方体若干个,运用这些小正方体按小组分给学生,然后让学生分小组进行摆成不同长宽高的长方体,再数出这些长方体各含有多少个1立方厘米的体积单位,接着引导学生找出自己摆成的长方体的长宽高各是多少,再观察这个长方体的长宽高三个条件的积与数出来的小正方体的个数有什么关系,然后让学生进行小组讨论,找出长方体的体积的的计算方法。这时教师可以在每个小组中提问学生,你们找出的长方体的计算方法是怎样的?你们是怎样找出来的?在这提问中学生答对的教师要给予肯定,答错的也要给予鼓励,然后师生共同把长方体的体积公式归纳出来:长方体的体积=长×宽×高,用字母表示:V=abh。这样教学,教师就把学生带到了从实践知识上升到理论知识,并找到解决问题的`一般规律。另外,教师也可以用如此类推的方法引导学生归纳出正方体的体积公式。

二、运用找到的规律,进行实际操作。

体积对学生来说是一个新概念,他们是由认识平面图形上升到认识立体图形,是空间观念的一次质的飞跃。然而此时,学生对立体的空间观念还比较模糊,教师应特别注意到加强实物或教具的演示和学生的动手操作,以发展学生的空间观念,加深对长方体和正方体计算公式的理解。在教学时,教师结合实际的教具,引导学生进一步对长方体和正方体体积公式的强化记忆,如粉笔盒的体积是多少?怎样求它的体积?要求它的体积必须有哪些条件?(教师可以请几个学生到讲台上实际量出粉笔盒的长宽高,并把这些条件板书在黑板上,让全体学生进行计算粉笔盒的体积),当学生准确算出粉笔盒的体积后,教师话峰一转,你们知道自己的数学课本的体积有多少吗?你能求出数学课本的体积吗?要求出数学课本的体积是多少?必须有哪些条件?你能找出这些条件吗?下面请同学们求出自己数学课本的体积是多少?看谁做得又对又快。通过实际观察、操作等活动,学生清楚地理解长方体和正方体的体积计算公式,并能够根据所给的已知条件正确地计算有关图形的体积,动手能力也得到了相应的提高。

篇18:《长方体体积计算》远程资源教学反思

《长方体体积计算》这节课,使用的是课标版的教材,我发现教材中安排的这个环节,都是让学生自己拼组长方体,记录体积与长、宽、高,然后推导公式。不甘重复的我总想有点创新,于是,我再次斟酌,提出了以下几个问题:

第一、学具找不够数了,即使勉强凑够学具了,让学生进行长方体的拼组,是不是会浪费时间,而且让学生的注意力易放难收?

第二、多媒体已经普及到每个教室,可不可以直接出示一些用小正方体拼组成的长方体,让学生通过观察、记录,然后进行深入地思考,省去让学生动手动手拼组的环节?

第三、让学生分组讨论用60厘米长的铁丝制作长方体框架,难度是不是大了点,放在同一节课上,并且还要引出正方体体积的计算公式是不是有点仓促,应不应该省去?第四、如果把讨论制作长方体框架的环节去掉,改用什么方式把课上的有点新意,把课堂活动推向高潮?

经过反复思考,我决定,还是先试一试再说。于是,我按照上面的思路,组织实施了本节课的教学。

事实告诉我,改用本次方案之后,教学效果非常好。首先,课堂上避免了动手操作的繁琐,给学生留足了思考的空间,目标指向性更强,学生更容易推导出长方体休积计算公式,在巩固练习环节,把整理与复习中的一道思考题(小立方体拼成的长方体,长宽高被遮挡),放在首位,让学生明确了“求长方体体积只要找长、宽、高”的道理,也突出了本节课的'教学的重点。

把“体积相同的长方体,表面积不一定相等”这一结论的验证放在课下研究,并与物体的包装联系起来,让学生的思考从课内延伸到课外,把数学与生活联系起来,也让学生感受到了数学的魅力和思考的力量。

篇19:“长方体和正方体的体积计算(二)”教学反思

“长方体和正方体的体积计算(二)”教学反思

第二单元 ( 长方体和正方体) 第八课时(长方体和正方体的体积计算(二))

今天教学的是长方体和正方体的通用公式(以前教学时都这样叫)。

长方体(或正方体)的体积=底面积×高

这节课的内容都是在学生已的知识基础进行的,学生心中有体积公式,底面积的认识,学生学习这一部分的内容很是容易,只要适当点引,学生都能掌握好这一知识。

内容是很简单,但是还是有些地方值得在教学中注意,我想谈下面三点:

第一:“底面积”前后好像重复

今天教材27页第一行就是“底面积”的定义。接下来,追问:怎样计算长方体和正方体的底面积?

再打开书到前面的练习三,其中的第5题:分别计算出下图中长方体、正方体的底面的面积。在这题里,既有形象的直观图,又有“底面”一词,当时学生就能熟练计算底面积了,为什么一直到今天才好像又像从未算过似的那样,又来一遍呢?记得那一条,当时还是花了一些时间的,对于这两处,不知编者是什么意图,难道说前面的练习是为了今天的准备吗?总觉得,今天的教学有故弄玄虚,当然由于有了前面的基础,也没有花多大的时间。

想下来,不当之处在练习三,第5题可以去掉,因为其中的第2题已经求了底面的`面积了(只不过用的是下面――此处用“下面”比用“底面”好)。

第二:底面积、横截面积

练习六第5题――木料的横截面面积,依照教参上的说明,是引导学生想像:如果将这根木料竖起来,看木料的横截面就是这个长方体的哪个面?木料的长与竖起来的长方体的高有什么关系?……

但是从课堂上学生的反馈来看:

生:(学生自己理解题意后)

师:这道题自己会算吗?

生:会(自己独立解答)

师:你是怎样算的?

生:长×宽×高

师:不错,这儿宽和高都是0。3米,长3米。

师:有没有其它的方法?

生:(好多位学生齐说)有,用“横截面面积×长”

师:谁能说说这样算的理由?

生:“横截面面积”相当于“宽×高”,用“横截面面积”替换体积公式中的“宽×高”。

师:(指黑板上的画好的同书面27页上的长方体直观图)――这一题与这个直观图有联系吗?

生:有联系,可以把……

(接下来,就是转动这两个长方体,合二为一的思考过程。)

反思:有了上面的铺垫过程,再引导想象,我觉得能让学生对长方体的体积计算又有更深层的认识,使体积计算得以贯通。

第三:厚度的问题

还是练习六中的问题,其中的第6、7、8题中都提到“厚度”的问题

――第6题“可以铺多厚?”――第7题“厚度0。3米“――第8题“再铺上0。03米厚的塑胶”。

部分学生在练习中一不注意也把第8题中的“厚”理解成高了。因而在三题练习结束后――

师追问:这三题中都有“厚度”它们的意思一样吗?

生:……

篇20:五年级数学《长方体与立方体体积计算》教案

五年级数学《长方体与立方体体积计算》教案

教学目标

1、掌握长方体和正方体体积公式的推导,理解长方体和正方体体积都能用底面积乘以高来计算,能应用公式进行计算,并初步解决一些简单的实际问题。

2、在公式的推导过程中培养学生动手操作、抽象概括、归纳推理的能力,并进一步发展空间观念。

3、在教学中渗透知识来源于实践的思想,培养学生学习数学,发现数学的兴趣。

教学重点、难点

重点:

长方体、正方体体积公式的推导。

难点:

1、引导学生积极地去实验、发现长方体的体积公式。

2、理解长方体、正方体的体积为何都能用底面积乘以高来计算。

教具、学具准备

教学过程

一、创设情境

填空:

1、叫做物体的体积。

2、常用的体积单位有:、、。

3、计量一个物体的体积,要看这个物体含有多少个。

师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)

二、实践探索

1.小组学习——————长方体体积的计算。

出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。

提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?

实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。

观察结果:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

板书:长方体:长、宽、高(单位:厘米)

431

含体积单位数:4×3×1=12(个)

体积:4×3×1=12(立方厘米)

(3)它含有多少个1立方厘米?

(4)它的体积是多少?

同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:

(1)摆成了一个什么?

这节课在公式的推导过程中培养学生动手操作、抽象概括、归纳推理的能力,并进一步发展空间观念。在教学中渗透了知识来源于实践的思想,培养学生学习数学,发现数学的兴趣,所以学生的学习积极性很高。

(2)它的长、宽、高各是多少?

(3)它含有多少个1立方厘米?

(4)它的体积是多少?(同上板书)

通过上面的实验,你发现了什么?(可让学生分小组讨论)

结论:长方体的体积=长×宽×高。

用字母表示:V=a×b×h=abh

应用:出示例1,让学生独立解答。

2.小组学习——立方体体积的计算。

思考并回答:长方体和立方体有什么关系?立方体的体积该怎样计算呢?

结论:立方体的体积=棱长×棱长×棱长

用字母表示为:V=a3

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生独立做后订正。

3、探索长方体与立方体的.通用体积公式

观察:

(1)长方体体积公式中的”长×宽“和正方体体积公式中的”棱长×棱长“各表示什么?

结论:长方体的体积=底面积×高

正方体的体积=底面积×棱长

思考:

(1)这条棱长实际上是特殊的什么?

(2)正方体的体积公式又可以写成什么?

结论:长方体(或正方体)的体积=底面积×高,用字母表示:

V=sh

三、课堂实践

1.做”做一做“的第1题。

(1)先让学生说出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做”做一做“的第2、3、4题。

四、课堂小结

五、作业《作业本》

本节内容是在学生已掌握了体积的概念和体积单位的基础上进行的。教学过程中通过学生操作、探究、合作、讨论等多种方式,调动学生积极参与长方体体积公式的推导,最后的结论,都由学生得出,老师只起”导“的作用。

长方体的体积教学设计

长方体正方体体积的教学反思

五年级数学《长方体的体积》的教学反思

圆锥体积公式说课稿

圆柱的体积说课稿

长方体和正方体的表面积的说课稿

圆柱的体积说课稿一等奖

数学《长方体和立方体的认识》说课稿

圆锥的体积教学设计优秀

数学三年级《长方形正方形面积计算》说课稿

《长方体的体积计算》优秀说课稿(共20篇)

欢迎下载DOC格式的《长方体的体积计算》优秀说课稿,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档