正交频分复用技术及其应用

时间:2022-11-25 07:32:27 作者:emomaker 综合材料 收藏本文 下载本文

“emomaker”通过精心收集,向本站投稿了8篇正交频分复用技术及其应用,以下文章小编为您整理后的正交频分复用技术及其应用,供大家阅读。

篇1:正交频分复用技术及其应用

正交频分复用技术及其应用

摘要:简述了正交频分复用技术的发展及特点,论述了其原理及实现方法,构建了OFDM系统的实现框图,并进行了计算机仿真。最后介绍了几种典型应用。

关键词:正交频分复用(OFDM) 多载波调制

随着通信需求的不断增长,宽带化已成为当今通信技术领域的主要发展方向之一,而网络的迅速增长使人们对无线通信提出了更高的要求。为有效解决无线信道中多径衰落和加性噪声等问题,同时降低系统成本,人们采用了正交频分复用(OFDM)技术。OFDM是一种多载波并行传输系统,通过延长传输符号的周期,增强其抵抗回波的能力。与传统的均衡器比较,它最大的特点在于结构简单,可大大降低成本,且在实际应用中非常灵活,对高速数字通信量一种非常有潜力的技术。

1 正交频分复用(OFDM)技术的发展(本网网收集整理)

OFDM的概念于20世纪50~60年代提出,1970年OFDM的专利被发表[1],其基本思想通过采用允许子信道频谱重叠,但相互间又不影响的频分复用(FDM)方法来并行传送数据。OFDM早期的应用有AN/GSC_10(KATHRYN)高频可变速率数传调制解调器等[1]。

在早期的OFDM系统中,发信机和相关接收机所需的副载波阵列是由正弦信号发生器产生的,系统复杂且昂贵。1971年Weinstein和Ebert提出了使用离散傅立叶变换实现OFDM系统中的全部调制和解调功能[3]的建议,简化了振荡器阵列以及相关接收机中本地载波之间严格同步的问题,为实现OFDM的全数字化方案作了理论上的`准备。

80年代以后,OFDM的调制技术再一次成为研究热点。例如在有线信道的研究中,Hirosaki于1981年用DFT完成的OFDM调制技术,试验成功了16QAM多路并行传送19.2kbit/s的电话线MODEM[4]。

1984年,Cimini提出了一种适于无线信道传送数据的OFDM方案[5]。其特点是调制波的码型是方波,并在码元间插入了保护间隙,该方案可以避免多径传播引起的码间串扰。

进入90年代以后,OFDM的应用又涉及到了利用移动调频(FM)和单边带(SSB)信道进行高速数据通信、陆地移动通信、高速数字用户环路(HDSL)、非对称数字用户环路(ADSL)、超高速数字用户环路(VHDSL)、数字声广播(DAB)及高清晰度数字电视(HDTV)和陆地广播等各种通信系统。

2 OFDM的原理

OFDM技术是一种多载波调制技术,其特点是各副载波相互正交。

设{fm}是一组载波频率,各载波频率的关系为:

{fm}=f0+m/T m=0,1,2,…N-1   (1)

式中,T是单元码的持续时间,f0是发送频率。

作为载波的单元信号组定义为[16]:

式中l的物理意义对应于“帧”(即在第l时刻有m路并行码同时发送)。

其频谱相互交叠,如图1所示。

从图1可以看出,OFDM是由一系列在频率上等间隔的副载波构成,每个副载波数字符号调制,各载波上的信号功率形式都是相同的,都为sinf/f型,它对应于时域的方波。

Φm(t)满足正交条件

以及

其中符号“*”表示共轭。

当以一组取自有限集的复数{Xm,l}表示的数字信号对φm调制时,则:

此S(t)即为OFDM信号,其中Sl(t)表示第l帧OFDM信号,Xm,l(m=0,1,…,N-1)

为一簇信号点,分别在第l帧OFDM的第m个副载波上传输。

在接收端,可通过下式解调出Xm,l

这就是OFDM的基本原理。当传输信道中出现多径传播时,在接收副载波间的正交性将被破坏,使得每个副载波上的前后传输符号间以及各副载波之间发生相互干扰。为解决这个问题,就在每个OFDM传输信号前插入一保护间隔,它是由OFDM信号进行周期扩展而来。只要多径时延不超过保护间隔,副载波间的正交性就不会被破坏。

3 OFDM系统的实现

由上面的分析知,为了实现OFDM,需要利用一组正交的信号作为副载波。典型的正交信号是{1,cosΩt,cos2Ωt,…,cosmΩt,…,sinΩt,sin2Ωt,sinmΩt,…}。如果用这样一组正交信号作为副载波,以码元周期为T的不归零方波作为基带码型,调制后经无线信道发送出去。在接收端也是由这样一组正交信号在[0,T]内分别与发送信号进行相关运算实现解调,则中以恢复出原始信号。OFDM调制解调基本原理见图2、图3所示。

在调制端,要发送的串行二进制数据经过数据编码器(如16QAM)形成了M个复数序列,这里D(m)=A(m)-jB(m)。此复数序列经串并变换器变换后得到码元周期为T的M路并行码(一帧),码型选用不归零方波。用这M路并行码调制M个副载波来实现频分复用。所得到的波形可由下式表示:

式中:ωm=2πfm,fm=f0+mΔf,Δf=1/T为各副载波间的频率间隔;f0为1/T的整倍数。

在接收端,对d(t)用频率为fm的正弦或余弦信号在[0,T]内进行相关运算即可得到A(m)、B(m),然后经并串变抵达和数据解码后复原与发送端相同的数据序列。

这种早期的实现方法所需设备非常复杂,当M很大时,需设置大量的正弦波发生器,滤波器、调制器及相关的解调器等设备,系统非常昂贵。

为了降低OFDM系统的复杂度和成本,人们考虑利用离散傅立叶变换(DFT)及其反变换(IDFT)来实现上述功能。上面(7)式可改写成如下形式:

如对d(t)以fs=N/T=1/(Δt)(N为大于或等于M的正整数,其物理意义为信道数,在这里N=M)的抽样速率进行采样(满足fs>2fmax,fmax为d(t)的频谱的最高频率,可防止频率混叠),则在主值区间t=[0,T]内可得到N点离散序d(n),其中n=0,1,…,N-1。抽样时刻为t=nΔt,则:

可以看出,上式正好是D(m)的离散傅立叶逆变换(IDFT)的实部,即:

d(n)=Re[IDFT[D(m)]]    (10)

这说明,如果在发送端对D(m)做IDFT,将结果经信道发送至接收端,然后对接收到的信号再做DFT,取其实路,则可以不失真地恢复出原始信号D(m)。这样就可以用离散傅立变换来实现OFDM信号的调制与解调,其实现框图如图4所示。

用DFT及IDFT来实现OFDM系统,大大降低了系统的复杂度,减小了系统成本,为OFDM的广泛应用奠定了基础。

4 OFDM实现方式的计算机仿真

由上节可知,要实现OFDM,可以采用传统的多路正交副载波调制的方式,也可以采用傅立叶变换的方式,这两种方式所组成的系统复杂度和成本有很大差别。目前实用的OFDM系统均采用了傅立叶变换的实现方式,该方式与传统方式相比,大大简化了系统的构成,降低了成本。这里用计算机仿真方法对两种方式进行模拟,进一步说明两种方式具有相同的系统效果。

仿真系统用Matlab来实现,源数据采用一波形文件,采样后共有680个串行数据,将其分为34帧,每帧的20个数据分别构成10路进行码的实部和虚部。

在多路正交副载波调制方式中,用20个正交的三角波对10路码分别进行调制,将结果相加作为已调波。在接收端再用这20个三角波对接收波进行相关解调,将解调数据与源数据进行比较。程序流程图见图5。

在傅立叶变换方式中,使用快速傅立叶算法,直接对每帧数据进行IFFT,得到已调序列。在接收端对接收到的序列进行FFT,还原出原始数据。程序流程图如图6所示。

为了模拟无线通信环境,在信道中加入低幅度的高斯噪声。图7为源数据波形与通过两种方式得到的OFDM输出波形。可以看出,两种方式获得了相同的系统效果。

5 OFDM系统在宽带通信中的应用

(1)数字声广播工程(DAB)

欧洲的数字声广播工程(DAB)--DABEUREKA147计划已成功地使用了OFDM技术。为了克服多个基站可能产生的重声现象,人们在OFDM信号前增加了一定的保护时隙,有效地解决了基站间的同频干扰,实现了单频网广播,大大减少整个广播占用的频带宽度。

(2)高清晰度电视(HDTV)

由于现有的专用DSP芯片最快可以在100μs内完成1024点FFT,这正好能满足8MHz带宽以内视频传输的需要,从而为应用于视频业务提供了可能。目前,欧洲已把OFDM作为发展地面数字电视的基础;日本也将它用于发展便携电视和安装在旅游车、出租车上的车载电视。

(3)卫星通信

VSAT的卫星通信网使用了OFDM技术,由于通信卫星是处于赤道上空的静止卫星,因此OFDM无需设置保护间隔,利用DFT技术实现OFDM将极大地简化主站设备的复杂性,尤其适用于向个小站发送不同的信息。

(4)HFC网

HFC(Hybrid Fiber Cable)是一种光纤/同轴混合网。近来,OFDM被应用到有线电视网中,在干线上采用光纤传输,而用户分配网络仍然使用同轴电缆。这种光电混合传输方式,提高了图像质量,并且可以传到很远的地方,扩大了有线电视的使用范围。

(5)移动通信

在移动通信信道中,由多径传播造成的时延扩展在城市地区大致为几微秒至数十微秒,这会带来码间串扰,恶化系统性能。近年来,国外已有人研究采用多载波并传16QAM调制的移动通信系统。将OFDM技术和交织技术、信道编码技术结合,可以有效对抗码间干扰,这已成为移动通信环境中抗衰落技术的研究方向。

OFDM技术是近来年得到迅速发展的通信技术之一,由于其可以有效地克服多径传播中的衰落,消除符号间干扰,提高频谱利用率,已在宽带通信中获得了广泛的应用。在早期的OFDM系统中,采用一组正交函数作为副载波,需要使用大量的正弦波发生器及调制解调器等,系统复杂,成

本高。采用傅立叶变换方式可以有效地降低系统复杂度,减小系统成本。对这两种实现方式的计算机仿真表明,两种方式具有相同的系统效果。

图7 两种OFDM实现方式的比较

篇2:正交频分复用技术及其应用

摘要:简述了正交频分复用技术的发展及特点,论述了其原理及实现方法,构建了OFDM系统的实现框图,并进行了计算机仿真。最后介绍了几种典型应用。

关键词:正交频分复用(OFDM) 多载波调制

随着通信需求的不断增长,宽带化已成为当今通信技术领域的主要发展方向之一,而网络的迅速增长使人们对无线通信提出了更高的要求。为有效解决无线信道中多径衰落和加性噪声等问题,同时降低系统成本,人们采用了正交频分复用(OFDM)技术。OFDM是一种多载波并行传输系统,通过延长传输符号的周期,增强其抵抗回波的能力。与传统的均衡器比较,它最大的特点在于结构简单,可大大降低成本,且在实际应用中非常灵活,对高速数字通信量一种非常有潜力的技术。

篇3:正交频分复用技术及其应用

OFDM的概念于20世纪50~60年代提出,1970年OFDM的专利被发表[1],其基本思想通过采用允许子信道频谱重叠,但相互间又不影响的频分复用(FDM)方法来并行传送数据。OFDM早期的应用有AN/GSC_10(KATHRYN)高频可变速率数传调制解调器等[1]。

在早期的OFDM系统中,发信机和相关接收机所需的.副载波阵列是由正弦信号发生器产生的,系统复杂且昂贵。1971年Weinstein和Ebert提出了使用离散傅立叶变换实现OFDM系统中的全部调制和解调功能[3]的建议,简化了振荡器阵列以及相关接收机中本地载波之间严格同步的问题,为实现OFDM的全数字化方案作了理论上的准备。

80年代以后,OFDM的调制技术再一次成为研究热点。例如在有线信道的研究中,Hirosaki于1981年用DFT完成的OFDM调制技术,试验成功了16QAM多路并行传送19.2kbit/s的电话线MODEM[4]。

1984年,Cimini提出了一种适于无线信道传送数据的OFDM方案[5]。其特点是调制波的码型是方波,并在码元间插入了保护间隙,该方案可以避免多径传播引起的码间串扰。

进入90年代以后,OFDM的应用又涉及到了利用移动调频(FM)和单边带(SSB)信道进行高速数据通信、陆地移动通信、高速数字用户环路(HDSL)、非对称数字用户环路(ADSL)、超高速数字用户环路(VHDSL)、数字声广播(DAB)及高清晰度数字电视(HDTV)和陆地广播等各种通信系统。

2 OFDM的原理

OFDM技术是一种多载波调制技术,其特点是各副载波相互正交。

设{fm}是一组载波频率,各载波频率的关系为:

{fm}=f0+m/T m=0,1,2,…N-1   (1)

式中,T是单元码的持续时间,f0是发送频率。

作为载波的单元信号组定义为[16]:

[1] [2] [3] [4]

篇4:正交频分复用技术在无线局域网中的应用网络知识

作者:空军第一航空学院 冯祥 梁伟洋 摘要:以正交频分复用(0FDM)为代表的多载波传输技术可以大大提高系统容量,因而受到人们的广泛关注并得到广泛的应用,介绍了OFDM的原理及其在无线局域网中的应用情况,总结了0FDM的特点。 并针对无线信道的特点介绍了一

作者:空军第一航空学院 冯祥 梁伟洋

摘要:以正交频分复用(0FDM)为代表的多载波传输技术可以大大提高系统容量,因而受到人们的广泛关注并得到广泛的应用。介绍了OFDM的原理及其在无线局域网中的应用情况,总结了0FDM的特点。

并针对无线信道的特点介绍了一种可靠的自适应传输方案。

关键词:OFDM;无线局域网;自适应传输;通信

l 引言

近年来,正交频分复用(0FDM)技术因其可有效对抗多径干扰(IsI)和提高系统容量而受到人们的极大关注,已在数字音频广播(DAB)、数字视频广播(DVB)、无线局域网(WLAN)中得到应用,是第四代移动通信系统的有力竞争者。OFDM是多载波传输方案的实现方式之一,在许多文献中OFDM也被称为离散多音(DMT)调制。它通过串并变换将高速数据流分配到多个子载波上,使得每个子载波上的数据符号持续长度相对增加,从而可以有效地提高系统容量和对抗因无线信道的时间弥散引起的ISI。通过引入循环前缀(CP)有效地消除了因多径造成的信道间干扰(ICI),从而保持子载波间的正交性。另外,它可以利用快速傅立叶变换算法实现调制和解调,为其应用提供了可能。

2 OFDM的特点

图1示出0FDM的基带模型。OFDM技术的主要优点是:可以有效对抗多径传播造成的符号间干扰,其实现复杂度比采用均衡器的单载波系统小很多;在变化相对较慢的信道上,0FDM系统可以根据每个子载波的信噪比优化分配每个子载波上传送的信息比特,从而大大提高系统传输信息的容量:OFDM系统抗脉冲干扰的能力比单载波系统强。因为OFDM信号的解调是在1个很长的符号周期内积分,从而使脉冲噪声的影响得以分散;频谱利用率高,OFDM信号由N个信号叠加而成,每个信号的频谱均为Sinc函数,且与相邻的信号频谱有1/2的重叠,故其频谱利用率:

ηOFDM=N/(N+1)log2M

其中,M为星座点数。与MOAM调制方式(ηMQAM=0.5xlog2M)相比,频谱利用率提高近l倍。

与传统的单载波传输系统相比,OFDM的主要缺点是:对于载波频率偏移和定时误差的敏感程度比单载波系统高;OFDM系统中的信号存在较高的峰值平均功率比(PAPR)使得它对放大器的线性要求很高;为了实现相干解调,必须进行信道估计。针对这些缺点,OFDM的3项关键技术即频偏估计、降低峰平比和信道估计算法成为目前的3个研究热点。

3 OFDM在无线局域网中的应用

IEEE802.11a是0FDM应用于WLAN的标准。IEEE802.11a工作在5GHz频段,

利用OFDM作为物理层技术,可提供6Mb/s到54Mb/s的数据速率。为了恢复处于不同衰落环境的子载波上的信号,它在不同的子载波上采用不同码率的编码方式,主要有1/2、2/3、3/4三种码率。其中1/2编码器采用约束长度为7的卷积编码,生成多项式为(133,171),其他二种码率通过对1/2编码器进行凿孔获得。表1给出IEEE802.11a支持的8种模式,为了对比。表中还给出了HIPERLAN/2支持的7种模式。

可以看出,IEEE802.11a中使用4种调制映射方式(BPSK、QPSK、16QAM和64QAM)。每个OFDM符号有64个子载波,其中48个传输数据,保护间隔为800ns,有效OFDM符号长度为3.2μs,总带宽为20MHz。其定时同步、载波频偏估计和信道估计都是由2个前置训练符号完成的,训练符号由二部分组成:10个短训练符号和2个长训练符号,总的训练时间长度为161xs。在选择短训练符号和长训练符号时,考虑到系统的PAPR问题,通过合理的选择训练符号。使得PAPR可以在3dB左右。

4 自适应传输策略

为了进一步提高系统性能,针对无线信道的特点,很多文献对自适应OFDM技术进行了研究。包括自适应调制、编码和交织等。通过研究发现,在时间色散信道传输OFDM信号的误比特率决定于信道的频率响应,错误比特主要集中在衰落严重的子载波上,而对那些信道质量较好的子信道,误比特率很低。因此,可以根据每个子信道的情况,动态分配子载波的传输方式,对于信道质量好的子信道,采用阶数较高的调制方式和码率较高的编码方式,以提高系统的传输效率;对于信道质量较差的子信道,采用低阶调制和低码率的编码方式.从而保证系统传输的可靠性。这就是基于子载波的自适应传输技术SbSA(Subcarrierrier-by-SubcarrierAdapta-tion)。显然,为了实现自适应传输,必须包括以下3项关键技术:接收机根据导频信号估计信道质量;发射机根据信道情况选择合适的传输方式;采用信令传输或盲检测技术告诉接收机所采用的传输参数。为了使发射机选择正确的传输方式,必须使发射机收到正确的信道信息。上行链路传送的信道信息因无线信道的衰落或干扰而发生错误,就会造成发射机对信道的错误预测.从而导致选择不合适的传输方式,使系统性能下降。针对这一问题,本文介绍一种较为可靠的机制(见图2),可以在反向链路传输发生错误的情况下,仍能选择较合适的传输方式.从而保证系统的性能。本文仍然假定信道是慢衰落信道,接收机接收的导频位置的信道状态信息(CSI)首先被量化.然后再对量化后的CSI进行循环冗余校验编码(CRC)和BPSK调制。最后将CRC后的CSI信息传给发射机,发射机如果检测到收到的CSI没有错误.就根据当前的信道状态从备择模式中选择传输模式,如果有错误,仍使用前一时刻的调制编码方式。

5 结束语

从理论上说.OFDM与单载波传输具有相同的信道容量.但是当存在严重符号间干扰或者在多径信道中采用OFDM传输可获得较好的性能。近来受到国内外广泛关注的研究领域是OFDM在下一代蜂窝无线通信系统中的应用,OFDM与多天线技术(MIMO)及空时编码(STC)技术的结合可以大大提高蜂窝通信系统的性能。

到目前为止.OFDM技术已经在众多的高速数据传输领域得到成功的应用.如欧洲的数字音频和视频广播(DAB/DVB)、欧洲和北美的高速无线局域网系统f如HIPERLAN/2、IEEE802.11a1,以及高比特率数字用户线(xDSL)。当前,人们正在考虑在基于IEEE802.16标准的无线城域网、基于IEEE802.15标准的个人信息网(PAN)及下一代无线蜂窝移动通信系统中使用OFDM技术。可以预见.OFDM在未来的实际通信系统中将有广泛的应用.OFDM已经被公认为下一代蜂窝通信系统的核心技术。

原文转自:www.ltesting.net

篇5:风选技术在垃圾分选中的应用

风选技术在垃圾分选中的应用

随着人们生活水平的显著提高,城市垃圾中有机物的含量增加,纸类等轻组分的含量也显著增高,因此,风选技术得到越来越广泛的应用.这里主要介绍风力分选的工作原理、几个重要参数的确定以及常见的风选设备.并在参照北京市小武基垃圾中转站风选设备的基础上,设计出在满足性能的`前提下,成本低的适用于中等城市垃圾分选的风选设备.

作 者: 作者单位: 刊 名:机械设计  ISTIC PKU英文刊名:JOURNAL OF MACHINE DESIGN 年,卷(期): 22(z1) 分类号:X7 关键词:风选机   旋风分离器   风机   锁气器  

篇6:速分技术在中水处理中的应用

速分技术在中水处理中的应用

摘要:随着城市水资源短缺的日益严重,中水作为“城市第二水源”正在被大量的推广应用.鉴于中水本身的特性,中水处理应选用以生化为主的'处理工艺.介绍起源于日本的速分球技术,该技术是一种新型生物处理技术,工艺流程简单,降解效率高,出水水质稳定,无污泥排放,管理方便,非常适合用于中水回用处理.作 者:郭治东    王三反    葛敬    阴俊霞  作者单位:郭治东,王三反(兰州交通大学,兰州730070)

葛敬,阴俊霞(北京科净源环宇科技有限公司,北京100044)

期 刊:铁道标准设计  ISTICPKU  Journal:RAILWAY STANDARD DESIGN 年,卷(期):, (10) 分类号:X7 关键词:污水处理    中水    速分技术    速分球   

篇7:时频分析技术在蒙古国X区块的应用

时频分析技术在蒙古国X区块的应用

蒙古国X区块构造活动的形式主要是以断陷为特征,形成了一系列的`小型单断箕状凹陷,具有多凸、多凹、多物源、多沉积中心,粗相带、窄相带、近物源快速沉积的特点,形成了数量众多薄层,因此,在地震资料上难以识别.本文采用时频分析的方法去除厚层和噪声的影响,进行反演,得到了较好的实际应用效果.

作 者:孙山  作者单位:大庆油田勘探开发研究院塔木察格勘探评价室,黑龙江,大庆,163000 刊 名:中国西部科技 英文刊名:SCIENCE AND TECHNOLOGY OF WEST CHINA 年,卷(期): 8(17) 分类号:P5 关键词:频谱分析   调谐厚度   薄层识别  

篇8:煤矿水处理及复用技术在晋城煤业集团古书院矿的应用

煤矿水处理及复用技术在晋城煤业集团古书院矿的应用

摘要:分析了煤矿水的水质特点,以晋城煤业集团古书院矿为例,详细阐述了煤矿水的处理工艺及复用技术,并将古书院矿处理前后的水质进行了时比,对其产生的经济效益和社会效益作了介绍.作 者:吕霞    LU Xia  作者单位:晋城煤业集团古书院矿,山西晋城,048000 期 刊:科技情报开发与经济   Journal:SCI-TECH INFORMATION DEVELOPMENT & ECONOMY 年,卷(期):2009, 19(9) 分类号:X703 关键词:煤矿水处理及复用    水资源利用    晋城煤业集团古书院矿   

机电一体化技术及其应用

技术及应用专业求职信

化工技术应用求职简历

网络信息处理技术与应用

技术质量管理的应用论文

VPN技术综述及应用

机电技术与应用个人简历

信标差分RBN DGPS技术在海洋测绘中的应用

光电系统与红外系统:技术与应用

小学度现代教育技术应用工作总结

正交频分复用技术及其应用(精选8篇)

欢迎下载DOC格式的正交频分复用技术及其应用,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档