人教版三年级数学复习资料有哪些

时间:2022-11-25 16:50:40 作者:小狗吃面 综合材料 收藏本文 下载本文

“小狗吃面”通过精心收集,向本站投稿了5篇人教版三年级数学复习资料有哪些,以下是小编帮大家整理后的人教版三年级数学复习资料有哪些,仅供参考,大家一起来看看吧。

篇1:三年级数学课本人教版复习资料

三年级数学课本人教版复习资料

第一单元 位置与方向

1、东与西相对,南与北相对。按顺时针方向转:东→南→西→北。

2、地图通常是按上北下南,左西右东绘制的。

3、八个方向:东、南、西、北、东南、东北、西南、西北。

第二单元 除数是一位数的除法

1、笔算除法顺序:确定商的位数,试商,检查,验算。

2、基本规律:

(1)从高位除起,除到哪一位,就把商写在那一位;

(2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(最高位不够除,就看两位上商。)

(3)哪一位有余数,就和后面一位上的数合起来再除;

(4)哪一位上不够商1,就添0占位;每一次除得的余数一定要比除数小。

3、除法用乘法来验算

没有余数的除法: 有余数的除法:

被除数÷除数=商 被除数÷除数=商……余数

商×除数=被除数 商×除数+余数=被除数

4、0除以任何数(0除外)都等于0,0乘以任何数都得0,

0加任何数都得任何数本身,任何数减0都得任何数本身。

9、巧用余数解决问题。

① ÷8=6…… ,求被除数最大是 ,最小是 。

根据除法中“余数一定要比除数小”规则,余数最大应是7,最小应是1。

再由公式:商×除数+余数=被除数,知道被除数最大应是6×8+7=55,最小应是6×8+1=49。

②加一份和减一份的余数问题。

例1:38个去划船,每条船限坐4个,一共要几条船?

38÷4=9(条)……2(人) 余下的2人也要1条船,9+1=10条。

答:一共要10条船。

例2:做一件成人衣服要3米布,现在有17米布,能做几件成人衣服?

17÷3=5(件)……2(米) 余下的2米布不能做一件成人衣服

答:能做5件成人衣服。

第三单元 统计

1、求平均数公式:总和÷份数=平均数 总数÷平均数=份数平均数×份数=总和

2、平均数能较好地反映一组数据的总体情况

3、通常条形统计图能描述一组数据中不同样本之间的差异,

4、条形统计图中,一定要看清楚一格表是多少个单位,是表示1、2、5、10或更多单位。

第四单元 年、月、日

1、重要日子:1949年10月1日,中华人民共和国成立;

1月1日元旦节; 3月12日植树节;

5月1日劳动节; 6月1日儿童节;

7月1日建党节; 8月1日建军节;

9月10日教师节; 10月1日国庆节。

2、一年有十二个月,1.3.5.7.8.10.12 这七个月是31天, 4.6.9.11这四个月是30天,

平年2月是28天,全年有365天,52个星期余1天

闰年2月是29天,全年有366天,52个星期余2天

3、一年分四季,每3个月为一季; 一、二、三月是第一季度,

四、五、六月是第二季度,

七、八、九月是第三季度,

十、十一、十二是第四季度。

4、公历年份是4的倍数一般都是闰年,但公历年份是整百数的,必须是400的倍数才是闰年。如19不是闰年而是平年,而是闰年。

5、推算星期几的方法 例:已知今天星期三,再过50天星期几?

解析:因为一个星期是七天,那么由50÷7=7(星期)……1(天),知道50天里有7个星期多一天,所以第50天是星期四。

6、24时表示法:超过下午1时的时刻用24时计时法表示就是把原来的时刻加上12。反过来要把24时计时法表示的时刻表示成普通计时法的时刻,超过13时的时刻就减12,并加上下午、晚上等字在时刻前面。比如下午3时→3+12=15时, 16时:16-12=下午4时。

5、计算经过时间,就是用结束时刻减开始时刻。比如10:00开始营业,22:00结束营业,营业时间为:22:00—10:00=12(小时)

结束时间-开始时间=经过时间

开始时间+经过时间=结束时间

结束时间-经过时间=开始时间

6、常用的时间单位有:年、月、日、时、分、秒。

7、时间单位进率:1世纪=100年,1年=12个月,1日=24小时,1小时=60分钟,1分钟=60秒钟

第五单元 两位数乘两位数

1、口算乘法:整十、整百的数相乘,只需把0前面的数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。

如:30×500=15000 可以这样想,3×5=15,两个因数一共有3个0,在所得结果15后面添上3个0就得到30×500=15000

2、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。

3、几个特殊数:25×4=100 ,125×8=1000

4、相关公式: 因数×因数= 积 积÷因数 = 另一个因数

第六单元 面积

1.物体的表面或封闭图形的大小,就是它们的面积。封闭图形一周的长度,是它的周长。

2.比较两个图形面积的大小,要用统一的面积单位来测量。

3.①边长1厘米的正方形,面积是1平方厘米;

②边长1分米的正方形,面积是1平方分米。

③边长1米的正方形,面积是1平方米。

4.长方形的面积=长×宽 正方形的面积=边长×边长

长方形的周长=(长+宽)×2 正方形的周长=边长×4

已知长方形的面积求长:长=面积÷宽 已知正方形的周长求边长:边长=面积÷4

已知长方形的周长求长:长=周长÷2-宽

5.面积单位之间的进率 长度单位之间的进率

1平方分米=100平方厘米 1分米=10厘米

1平方米 =100平方分米 1米=10分米

1公顷=10000平方米 1千米=1000米

1平方千米=100公顷

6.周长相等的两个长方形,面积不一定相等。面积相等的两个长方形,周长也不一定相等。

第七单元 小数的初步认识

1、把1平均分成10份,每份是它的十分之一,也就是0.1。

2、比较两个小数的大小,先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后最高位比起。

3、计算小数加、减法时,一定要先对齐小数点再相加、减。

第八单元 解决问题

目标:进一步经历解决问题的过程,熟练应用两步计算解决问题。感受解决问题的策略多样化。

正确分析数量关系,明确解决问题的思考过程。

1.用乘法计算的两步应用题,也就是我们常说的连乘应用题,它可以用两种思路来解答;

如课本99页例题1,可以先求3个方阵一共有多少行,也可以先求一个方阵有多少人,每一步都用乘法计算。

2.用除法计算的两步应用题,也就是我们常说的连除应用题,它也可以用两种思路来解答;

如课本100页的例题2,可以先求一个大圈的人数,再求出问题所问,这种思路的每一步都用除法计算;也可以先求一共有多少个小圈,而这一步是用乘法计算,第二步再用除法计算。

3.另外还有乘加、乘减应用题,这类应用题没有固定的模式,需要具体问题具体分析;

具体分析方法可参考数学大本34页的分析方法。

4.解答应用题不管有几种思路,都要明白每种思路的第一步求的是什么,第二步又要求什么,

只有这样才算真正明白了题意。

第九单元 数学广角

目标:1、体会【集合】的数学思想方法。集合理论是数学的基础。分类思想和方法实际上就是集合理论的基础。 两个圆是【集合圈】

2.体会【等量代换】数学的思想方法。

等量代换是指一个量用与它相等的量去代替,它是数学中一种基本的思想方法。等量代换思想用等式的性质来体现就是等式的传递性:如果a=b,b=c,那么a=c。

数学复习方法

一、制定切实可行的复习计划,并认真执行计划。

为使复习具有针对性,目的性和可行性,找准重点、难点,大纲(课程标准)是复习依据,教材是复习的蓝本。在复习时抓住学习中的难点、疑点及各知识点易出错的原因,这样做到复习有针对性,可收到事半功倍的效果。

二、分类整理、梳理,强化复习的系统性。

复习的重要特点就是在系统原理的指导下,对所学知识进行系统的整理,使之形成一个较完整的知识体体系,这样有利于知识的系统化和对其内在联系的把握,便于融合贯通。要做到梳理——训练——拓展,有序发展,真正提高复习的效果。

三、辨析比较,区分弄清易混概念。

对于易混淆的概念,首先抓住意义方面的比较,再者是对易混概念的分析。全面把握概念的本质,避免不同概念的干扰,另外对易混的方法也应进行比较,以明确解题方法。

四、一题多解,多题一解,提高解题的灵活性。

有些题目,可以从不同的角度去分析,得到不同的解题方法。一题多解可以培养分析问题的能力。灵活解题的能力。不同的解题思路,列式不同,结果相同,收到殊途同归的效果。同时也给其他同学以启迪,开阔解题思路。有些应用题,虽题目形式不同,但它们的解题方法是一样的,在复习时,从不同的角度去思考,对各类习题进行归类,使所学知识融会贯通,提高解题灵活性。

五、有的放矢,挖掘创新。

机械的重复,什么都讲,什么都练是复习大忌,复习一定要有目的,有重点,要对所学知识归纳,概括。要有开放性,创新性,使思维得到充分发展,正确评估自己,自觉补缺查漏,面对复杂多变的题目,严密审题,弄清知识结构关系和知识规律,发掘隐含条件,多思多找,得出自己的经验。

中考数学复习策略

第一梳理策略

总结梳理,提炼方法。

复习的最后阶段,对于知识点的总结梳理,应重视教材,立足基础,在准确理解基本概念,掌握公式、法则、定理的实质及其基本运用的基础上,弄清概念之间的联系与区别。对于题型的总结梳理,应摆脱盲目的题海战术,对重点习题进行归类,找出解题规律,要关注解题的思路、方法、技巧。如方案设计题型中有一类试题,不改变图形面积把一个图形剪拼成另一个指定图形。总结发现,这类题有三种类型,一类是剪切线的条数不限制进行拼接;一类是剪切线的条数有限制进行拼接;一类是给出若干小图形拼接成固定图形。梳理了题型就可以进一步探索解题规律。同时也可以换角度进行思考,如一个任意的三角形可以剪拼成平行四边形或矩形,最少需几条剪切线?联想到任意四边形可以剪拼成哪些特殊图形,任意梯形可以剪拼成哪些特殊图形等。做题时,要注重发现题与题之间的内在联系,通过比较,发现规律,做到触类旁通。

反思错题,提升能力。

在备考期间,要想降低错误率,除了进行及时修正、全面扎实复习之外,非常关键的一个环节就是反思错题,具体做法是:将已复习过的内容进行“会诊”,找到最薄弱部分,特别是对月考、模拟试卷出现的错误要进行认真分析,也可以将试卷进行重新剪贴、分类对比,从中发现自己复习中存在的共性问题。正确分析问题产生的原因,例如,是计算马虎,还是法则使用不当;是审题不仔细,还是对试题中已知条件或所求结论理解有误;是解题思路不对,还是定理应用出错等等,消除某个薄弱环节比做一百道题更重要。应把这些做错的习题和不懂不会的习题当成再次锻炼自己的机会,找到了问题产生的原因,也就找到了解题的最佳途径。事实上,如果考前及时发现问题,并且及时纠正,就会越快地提高数学能力。对其中那些反复出错的问题可以考虑再做一遍,自己平时害怕的题、容易出错的题要精做,以绝后患。并且要静下心来,通过学习、回忆,而有所思,有所悟,便会有所发现、有所提高、有所创新,便能悟出道理、悟出规律。

第二答题策略

首先,审题时注意力要集中

思维应直接指向试题,力争做到眼到、心到、手到。审题时,应弄清已知条件、所求结论,同时在短时间内汇集有关概念、公式、定理,用综合法、或分析法、或两头凑的方法,探索解题途径。特别注意已知条件所设的陷阱,仔细审题,认真分析是否该分类讨论,以免丢解。

其次,在答题顺序上,应逐题进行解答

要正确迅速地完成选择题和填空题,有效利用时间,为顺利完成中档题和压轴题奠定基础。在逐题进行解答时,遇到一时解不出的题应先放下(别忘了做记号,以免落题),把会解的题目都做完后,再回来把留下的疑难逐一解决。

第三,遇到平时没见过的题目,不要慌,稳定好情绪

题目貌似异常,其实都出自原本。要冷静回想它与平时见过的题目、书本中的知识有哪些关联。要相信自己的功底,多方寻找思路,便能豁然得释。切忌对着题发呆不敢下手,有时动笔做一做或者画一画,就图形进行相应地分析,也就做出来了。尽可能解答一步是一步,不放过多得一分的机会。

第四,解综合题时,应步步为营

稳扎稳打,否则前面错了,后面即使方法对了,也得分甚少。

最后,注意认真检查

如感觉某题答错了,不能盲目去改,要十分冷静地重新审题,仔细研究,确定此时思路正确,再动笔去改,因为此时易把正确的改错了,尽量减少失误。检查在数学考试中尤为重要,它是减少失误的最有效途径。

篇2:人教版三年级数学复习资料有哪些

测量

1、毫米、分米的认识:

(1)会用厘米估计常见物体的长度,并在实际测量中引出长度单位毫米和分米。

(2)通过测量活动,实际感受1毫米和1分米大约有多长,会用毫米和分米作为长度单位进行估计。

(3)知道米、分米、厘米、毫米之间的进率,能根据具体情境选择恰当的长度单位,会用这些长度单位进行测量。

(4)能完成有关的计算和应用,发展空间观念和动手操作能力。

2、千米的认识:

(1)了解“千米”是比“米”大很多的长度单位,知道1千米大约有多长,并初步了解千米在生活中的应用。

(2)掌握千米和米之间的进率,能正确换算和计算,并能解决相关的实际问题。

3、吨的认识:

(1)了解“吨”是比“千克”大很多的质量单位,知道1吨大约有多重,了解质量单位“吨”在生活中的应用。

(2)掌握吨、千克、克之间的进率,能正确换算和计算,并能解决相关的实际问题。

(3)能估计一些常见物品的质量,能根据具体情境选择恰当的质量单位。

篇3:人教版三年级数学复习资料有哪些

万以内的加法和减法(二)

1、加法:

(1)能结合具体情境,发展搜集信息、提出问题、解决问题的意识和能力。

(2)能在解决问题的过程中探索并掌握两位数、三位数的连续进位加法的计算方法,知道笔算的算理和注意事项。

(3)能熟练完成两位数、三位数的连续进位加法的计算,并能解决相关的实际问题。

(4)能结合具体情况进行估算,逐步掌握估算的基本方法,养成对计算结果的大致范围进行估计的习惯。

2、减法:

(1)能从实际的情境中提取有用的数学信息,能根据信息提出恰当的数学问题。

(2)在解决问题的过程中经历估算的过程,并逐步学会合理、恰当的估算,能用估算的结果判断计算结果的对错。

(3)在解决问题的过程中探索并掌握三位数的连续退位减法的计算方法,知道笔算的算理和注意事项。

(4)能熟练完成三位数的连续退位减法的计算,并能解决相关的实际问题。

3、加减法的验算:

(1)在解决实际问题的过程中理解加减法验算方法的数学依据和意义,并熟练掌握加减法的验算方法。

(2)能选择恰当的方法对加减法进行验算,并逐步养成对自己的计算进行验算的好习惯。

篇4:人教版数学三年级上册复习资料

万以内的加法和减法(一)(二)

1、最大的几位数和最小的几位数

最大的一位数是9, 最小的一位数是0.

最大的二位数是99, 最小的二位数是10

最大的三位数是999, 最小的三位数是100

最大的四位数是9999, 最小的四位数是1000

最大的五位数是99999, 最小的五位数是10000

最大的三位数比最小的四位数小1。

2、读数和写数 (读数时写汉字 写数时写阿拉伯数字)

①一个数的末尾不管有一个0或几个0,这个0都不读。

②一个数的中间有一个0或连续的两个0,都只读一个0。

3、数的大小比较:

①位数不同的数比较大小,位数多的数大。

②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。

4、求一个数的近似数:

记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。

最大的三位数是位999,最小的三位数是100,最大的四位数是9999,最小的四位数是1000。最大的三位数比最小的四位数小1。

5、被减数是三位数的连续退位减法的运算步骤:

① 列竖式时相同数位一定要对齐;

② 减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

7、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。 (两个三位数相加的和:可能是三位数,也有可能是四位数。)

特别注意:中间是0的退位减法,例如:309-189;1000-428等

8、

⑴加法公式:加数+另一个加数=和

加法的验算:

①交换两个加数的位置再算一遍。

另一个加数+加数=和

②和-另一个加数=加数

⑵减法公式:被减数-减数=差

减法的验算:

①差+减数=被减数

②减数+差=被减数

③被减数-差=减数

特别注意:验算时“验算”别忘了写!!!

篇5:三年级下册人教版数学期末复习资料

位置与方向

1、① (东与西)相对,(南与北)相对,

(东南—西北)相对,(西南—东北)相对。

② 清楚以谁为标准来判断位置。

③ 理解位置是相对的,不是绝对的。

2、地图通常是按(上北、下南、左西、右东)来绘制的。

( 做题时先标出北南西东。)

3、会看简单的路线图,会描述行走路线。

一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。(例如:学校在剧场的西面,在图书馆的东面,在书店的南面,在邮局的北面。)同一个地点有不同的行走路线。一般找比较近的路线走。

4.、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。

5.、生活中的方位知识:

① 北斗星永远在北方。

② 影子与太阳的方向相对。

③ 早上太阳在东方,中午在南方,傍晚在西方。

④ 风向与物体倾斜的方向相反。

( 刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘…… )

第二单元 除数是一位数的除法

1、口算时要注意:

(1)0除以任何数(0除外)都等于0;

(2)0乘以任何数都得0;

(3)0加任何数都得任何数本身;

(4)任何数减0都得任何数本身 。

2、没有余数的除法:

被除数÷除数=商

商×除数=被除数

被除数÷商=除数

有余数的除法:

被除数÷除数=商……余数

商×除数+余数=被除数

(被除数—余数)÷商=除数

3、笔算除法顺序:确定商的位数,试商,检查,验算。

(1)一位数除两位数(商是两位数)的笔算方法:先用一位数除十位上的数,如果有余数,要把余数和个位上的数合起来,再用除数去除。除到被除数的哪一位,就把商写在那一位上面。

(2)一位数除三位数的笔算方法:先从被除数的最高位除起,如果最高位不够商1,就看前两位,而除到被除数的哪一位,就要把商写在那一位上,假如不够商1,就在这一位商0;每次除得的余数都要比除数小,再把被除数上的数落下来和余数合起来,再继续除。

(3)除法的验算方法:

没有余数的除法的验算方法:商×除数:被除数;

有余数的除法的验算方法:商×除数+余数=被除数。

4、基本规律:

(1)从高位除起,除到哪一位,就把商写在那一位;

(2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(最高位不够除,就看两位上商。)

(3)哪一位有余数,就和后面一位上的数合起来再除;

(4)哪一位上不够商1,就添0占位;每一次除得的余数一定要比除数小。

人教版小升初数学复习资料有哪些

人教版八年级下数学期末复习资料

人教版五年级数学下册复习资料有哪些

人教版数学六年级下册总复习资料

人教版三年级数学教学计划

人教版中考复习资料

中考数学复习资料

初三数学复习资料202

六年级数学复习资料

初一数学复习资料

人教版三年级数学复习资料有哪些(共5篇)

欢迎下载DOC格式的人教版三年级数学复习资料有哪些,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档