“t1ng1016”通过精心收集,向本站投稿了9篇数学五大常数,下面小编给大家整理后的数学五大常数,供大家阅读参考。
- 目录
篇1:数学五大常数
圆周率π≈3.141592653589793
不管圆有多大,它的周长与直径的比值总是一个固定的数。我们就把这个数叫做圆周率,用希腊字母π来表示。
π是数学中最基本、最重要、最神奇的常数之一,它常常出现在一些与几何毫无关系的场合中。例如,任意取出两个正整数,则它们互质(最大公约数为1)的概率为6/π^2。
自然底数
e≈2.718281828459
在17世纪末,瑞士数学家Bernoulli注意到了一个有趣的现象:当x越大时,(1+1/x)^x将会越接近某个固定的数。18世纪的大数学家Euler仔细研究了这个问题,并第一次用字母e来表示当x无穷大时(1+1/x)^的值。他不但求出了e≈2.718,还证明了e是一个无理数。
e的用途也十分广泛,很多公式里都有e的身影。在微积分中,无理数e更是大显神通,这使得它也成为了高等数学中最重要的无理数之一。
虚数单位i
在计算中常用到的是:i^2=-1,即虚数单位的平方为负一。在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的'实部a如果等于零,且虚部b不等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。
数字0
0是-1与1之间的整数。0既不是正数,也不是负数;0不是质数。0是偶数。在数论中,0属于自然数,0没有倒数;在集合论和计算机科学中,0属于自然数。0在整数、实数和其他的代数结构中都有着单位元这个很重要的性质。
数字1
是0与2之间的自然数和正整数。唯一一个既不是质数,又不是合数的正整数。最小的正整数(因为“0”既不是正数也不是负数)。
第二个自然数。既不是质数(素数),也不是合数。任何数除以1都等于原数。任何数乘1都等于原数。任何数的一次方都等于原数。任何数的一次方根都等于原数。两个互质数的最大公因数是1。
篇2:高中数学数学五大常数
高中数学:数学五大常数
圆周率π≈3.141592653589793
不管圆有多大,它的周长与直径的比值总是一个固定的数。我们就把这个数叫做圆周率,用希腊字母π来表示。
π是数学中最基本、最重要、最神奇的常数之一,它常常出现在一些与几何毫无关系的场合中。例如,任意取出两个正整数,则它们互质(最大公约数为1)的概率为6/π^2。
自然底数
e≈2.718281828459
在17世纪末,瑞士数学家Bernoulli注意到了一个有趣的现象:当x越大时,(1+1/x)^x将会越接近某个固定的数。18世纪的大数学家Euler仔细研究了这个问题,并第一次用字母e来表示当x无穷大时(1+1/x)^的值。他不但求出了e≈2.718,还证明了e是一个无理数。
e的用途也十分广泛,很多公式里都有e的身影。在微积分中,无理数e更是大显神通,这使得它也成为了高等数学中最重要的无理数之一。
虚数单位i
在计算中常用到的是:i^2=-1,即虚数单位的平方为负一。在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部a如果等于零,且虚部b不等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。
数字0
0是-1与1之间的整数。0既不是正数,也不是负数;0不是质数。0是偶数。在数论中,0属于自然数,0没有倒数;在集合论和计算机科学中,0属于自然数。0在整数、实数和其他的代数结构中都有着单位元这个很重要的性质。
数字1
是0与2之间的自然数和正整数。唯一一个既不是质数,又不是合数的正整数。最小的正整数(因为“0”既不是正数也不是负数)。
第二个自然数。既不是质数(素数),也不是合数。任何数除以1都等于原数。任何数乘1都等于原数。任何数的一次方都等于原数。任何数的一次方根都等于原数。两个互质数的最大公因数是1。
高中数学:学习技巧
1.学好数学要抓住三个“基本”:基本的概念要清楚,基本的规律要熟悉,基本的方法要熟练。
2.做完题目后一定要认真总结,做到举一反三,这样,以后遇到同一类的问题是就不会花费太多的时间和精力了。
3.学习概念的最终目的是能运用概念来解决具体问题,因此,要主动运用所学的数学概念来分析,解决有关的数学问题。
4.要掌握各种题型的解题方法,在练习中有意识的地去总结,慢慢地培养适合自己的分析习惯。
5.要主动提高综合分析问题的能力,借助文字阅读去分析理解。
6.将各章节中的内容互相联系,不同章节之间互相类比,真正将前后知识融会贯通,连为一体,这样能帮助我们系统深刻地理解知识体系和内容。
7.弄清数学知识间的相互联系,透彻理解概念,知道其推导过程,使知识条理化,系统化。
8.对于数学学科中的某些原理,定理,公式,不仅要记住它的结论,而且要了解这个结论是如何得出的。
篇3:初中数学常数是什么
常数的多重含义
1.规定的数量与数字。
2.一定的重复规律。
3.一定之数或通常之数。
4.一定的次序。
5.数学名词。固定不变的数值。如圆的周长和直径的比值(π)约为3.14159﹑铁的膨胀系数为0.000012等。常数是具有一定含义的名称,用于代替数字或字符串,其值从不改变。一个数学常数是指一个数值不变的常量,与之相反的是变量。跟大多数物理常数不一样的地方是,数学常数的定义是独立于所有物理测量的。数学常数通常是实数或复数域的元素。数学常数可以被称为是可定义的`数字(通常都是可计算的)。
其它可选的表示方法可以在数学常数(以连分数表示排列)中找到。常数又称定数,是指一个数值不变的常量,与之相反的是变量。(常数多指大于零的数)
6.物理名词。在物理学上,很多经测量得出的数值都被称为常数。例如万有引力系数和地表重力加速度等。但有研究表明,部分这类常数并不是恒定不变的,因此就被称作“不定常数”和“不恒定的常数”。
篇4:常数是什么范围
什么是常数
常数,数学名词,指规定的数量与数字,如圆的`周长和直径的比π﹑铁的膨胀系数为0.000012等。常数是具有一定含义的名称,用于代替数字或字符串,其值从不改变。数学上常用大写的“C”来表示某一个常数。而且,它一般都分类于超越数(比如π、Σ10^-j!)、无理数(比如e、φ)、不可计算数(比如√2、ΩU)、可计算数(比如δ、γ)这四种分类。
篇5:太阳常数
太阳常数
Pouillet认为达到地球大气上界的太阳辐射是一个常定的量,因此,1838年命名为太阳常数.但是随即有不少学者提出反对,认为太阳常数不是一个真正的常数.其中有代表性的`是Abbot,他利用大黑子群过日中时太阳常数下降的事实,证明太阳常数是变化的.但是,由于计算大气对太阳辐射削弱的不确定性,以及太阳辐射观测精度不高,计算出来的太阳常数的误差约1%,而不同时间、地点得到的太阳常数的变化也在1%以内.所以长期以来无法通过直接观测回答太阳常数是否是一个真正常数的问题.
作 者:王绍武 Wang Shaowu 作者单位:北京大学物理学院大气科学系,北京,100871;中国气象局气候研完开放实验室,北京,100081 刊 名:气候变化研究进展 ISTIC英文刊名:ADVANCES IN CLIMATE CHANGE RESEARCH 年,卷(期):2009 5(1) 分类号: 关键词:篇6:常数是周期函数吗
周期函数的性质共分以下几个类型:
(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的.周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(6)周期函数f(x)的定义域M必定是至少一方无界的集合。
篇7:初中数学五大学习方法
初中数学五大学习方法
1、上好课。
学生获取知识的主要途径是课堂,要想上好每一节课,必须做到课前先预习。预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。带着预习中不明白的问题去听老师讲课,来解答这类的问题。预习还可以使听课的整体效率提高。具体的预习方法:将书上的内容预习完,画出知识点,及自己不理解的.部分内容,整个过程大约持续10-20分钟。在时间允许的情况下,还可以将练习题做完。
2、做好题。
让数学课学与练相结合。在数学课上,光听是没用的。当老师让同学去黑板上演算时,自己也要在草稿纸上练。因为时间的限制,一般做好与知识点有关的两道练习题即可,如果遇到不懂的难题,一定要提出来,正式作业也没有必要完成大量的习题,只需要完成与课本知识点有关的两道题训练即可。
3、勤思考。
数学学习的发展归根结底是思维的发展,通过“思考”可以让学生养成“动脑”的习惯,当然不一定是思考三分钟,也可能看到题目后马上得出做题方法,也可能是半个小时也想不出解题的方法和思路,这就需要经常思考,养成良好的做题习惯,勤于动脑,提高自己的思维能力。
4、勤复习。
写完作业后对当天老师讲的内容进行梳理复习,也可以在单元结束后进行复习和检测。随时了解近期的学习情况。其实分数代表的是你的过去,关键是通过每次考试总结经验、吸取教训,也是为了让你在期中、期末考得更好。老师通常会在没通知的情况下进行考试,所以要及时做到“课后勤复习”。
5、会作业。
从思想上要认真对待,如果养成懒散的习惯了,以后问题就会更多,今日不努力,明日就会失去更多,再要改善起来,就更难了。
因为一个好习惯的养成是要下决心去坚持的,虽然由于以前的习惯不好或者遗留问题太多导致在坚持的过程中会容易产生抵触的情绪,甚至有时还容易放弃,但是要知道,一旦好习惯养成之后,原来所经常遇到的问题就会越来越少,成绩也自然提高了起来。
期中期末数学复习:
可以把平时的单元检测卷订成册,并且将错题再做一遍。还可以将作业上的错题、难题、易错题重新复习一遍。这样可以节省复习时间,另外,自己还可以做2-3张期末模拟卷。发现问题,及时解决。
数学考试技巧:
如果想得高分,在选择、填空、计算题上是不能丢分的。在考数学的时候思想不能开小差,而且遇到难题时不能想“没考好怎么办啊”等内容。在通常情况下,期末考试的难题都是不知道怎么做,但有可能突然明白的那种。遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析。
温馨提示:多做题有一定作用,但上课听讲、认真答题及提高准确率、总结经验才是最重要的。还要将所学的知识用到生活中去,做到学以致用。以上数学学习的“123”法则,希望对你有所帮助。
篇8:高三数学五大复习方法总结
更多高三相关内容推荐
高三数学五种复习方法总结
一、课后及时回忆
如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。
二、定期重复巩固
即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。
三、科学合理安排
复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。
四、重点难点突破
对所学的素材要进行分析、归类,找出重、难点,分清主次。在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。
五、复习效果检测
随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。检测时必须独立,限时完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。目前市场上练习册多如牛毛,请在老师的指导下选用。
高三数学采取针对性措施提升成绩
(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
(2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。
(4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
(5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
(6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。
(7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
(8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
(9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。
高三数学立体几何大题的八大解题技巧
1平行、垂直位置关系的论证的策略
(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2空间角的计算方法与技巧
主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角①平移法:②补形法:③向量法:
(2)直线和平面所成的角
①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算。
(3)二面角
①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:
(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。
3空间距离的计算方法与技巧
(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体 积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距 离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
4熟记一些常用的小结论
诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。
5平面图形的翻折、立体图形的展开等一类问题
要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。
6与球有关的题型
只能应用“老方法”,求出球的半径即可。
7立体几何读题
(1)弄清楚图形是什么几何体,规则的、不规则的、组合体等。
(2)弄清楚几何体结构特征。面面、线面、线线之间有哪些关系(平行、垂直、相等)。
(3)重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。
8解题程序划分为四个过程
①弄清问题。也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。
②拟定计划。找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。
③执行计划。以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。
④回顾。对所得的结论进行验证,对解题方法进行总结。
篇9:高考数学复习五大建议
考生在数学首轮复习中,往往存在两个误区,一是只顾埋头做题而不注重反思,只要结果对了就不再深思做题中使用的解题方法和题目所体现出来的数学思想;二是只注重课堂听课效率,而不注重课后练习,这会导致考生看到考题觉得自己会,可一做就错。针对这样的问题,在此向进入数学第一轮复习的同学提五点建议:
一、夯实基础,知识与能力并重
没有基础谈不上能力;复习要真正地回到重视基础的轨道上来,要扎扎实实,不要盲目攀高,以防眼高手低。要把书本中的的常规题型做好,所谓做好就是要用最少的时间把题目做对。部分同学在第一轮复习时对基础题不予以足够的重视,认为题目看上去会做就可以不加训练,结果常在一些“不该错的地方错了”,最终把原因简单的归结为粗心,从而忽略了基本计算的训练和常规方法的积累,造成了实际成绩与心理感觉的偏差。夯实基础还指要搞清基本原理、基本方法,体验知识形成过程以及对知识本质意义的理解与感悟,同时,对基础知识进行全面回顾,并形成自己的知识体系。
二、讲究复习策略
在第一轮复习中,要注意构建完整的知识网络,复习要以中档题为主,选题要典型,要深刻理解概念,抓住问题的本质,抓住知识间的相互联系。应在老师的指导下,精做题。数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁。这个过程反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。
三、养成良好的解题习惯
如仔细阅读题目,看清数字,规范解题格式,部分同学自我感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范,在正规考试中即使答案对了,由于过程不完整也被扣分。也有部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性地加以解决。必要时作些记录,也就是错题本,每位学生必备的,以便以后查询。
四、加强做题后的反思
做题时,一定要全神贯注,保持最佳状态,注意解题格式规范,养成良好的学习习惯。做题后,一定要认真反思,仔细分析,从中总结出一些解题技巧和解题的思维方式,并总结出对问题的规律性认识和找出自己存在的问题。对做题中出现的问题,注意总结,及时纠错。
解题后的总结至关重要,这正是我们提高的大好机会,对于一道完成的题目,有以下几个方面需要总结:
1.在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
2.在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
3.能不能把解题过程概括、归纳成几个步骤,以便于形成完整的解题思路。
4.自己错因在哪里?要重视对错因的剖析和对错误的订正。可以参考《状元纠错笔记》的订正方式。
五、加强典型习题本的复习
典型习题本是老师曾经讲解的典型题目、自己曾经出错题目的汇集,因此复习典型习题本能起到事半功倍的效果。可能同学们觉得题量太大,无法复习。这里告诉同学们一个非常成功的办法:筛。将平时总结的题目利用课余时间去复习,经过复习,一本子的题目,一般大部分都能掌握起来,可能只剩下几个或几十个,将这些题目标出来,然后再次复习时则只需复习这些题目。这样,到高考的时候,经过你几次的筛,一般也就剩下几十个题需要考前再复习一下。反之,如果不这样复习,到高考前你会觉得典型习题本上的很多题目都不会,但又没时间去复习,到那时你就真正成了热锅上的蚂蚁了。
[2017高考数学复习五大建议]
★ 五大经典民间故事
★ 英语五大经典体裁
★ 简历五大雷区
★ 英文简历五大注意
★ 新闻稿五大要素
数学五大常数(精选9篇)




