数学基本不等式知识点提纲

时间:2022-11-29 11:21:51 作者:你个大聪明 综合材料 收藏本文 下载本文

“你个大聪明”通过精心收集,向本站投稿了3篇数学基本不等式知识点提纲,以下是小编整理后的数学基本不等式知识点提纲,欢迎阅读分享,希望对大家有帮助。

篇1:数学基本不等式知识点提纲

数学基本不等式知识点提纲

1不等式的解集

(1)一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集。

(2)不等式解集的表示方法:

① 用不等式表示

② 用数轴表示:大于向右画,小于向左画,有等号的画实心圆点,无等号的画空心圆圈。

③ 求不等式解集的过程,就是解不等式。

2求不等式组的解集的方法

(1)把各个不等式的解集表示在数轴上,观察公共部分。

(2)不等式组的解集不外乎以下4种情况:

若a

当x>b时;(同大取大)

当x

当a

当xb时无解,(大大小小无处找)

3怎么在数轴上表示不等式的解集

1、确定不等式解集的起点

在表示解集时,“≥”和“≤”要用实心圆点表示;“<”和“>”要用空心圆点表示。

2、确定不等式解集的方向

若是“>”和“≥”向右画,“<”和“≤”向左画。

3、确定不等式解集的方向

若是“>”和“<”两条线相向时应该连成闭合范围,否则是开放范围。

满足所有不等式的范围就是在数轴上表示的不等式解集。

4、举例说明

(1)如不等式的解集为x>3,在数轴“3”上画一个空心圆点,从这个空心圆点开始往上画一段垂直线,并向右边画一条与数轴平行的直线,就表示 x>3。

(2)如不等式的解集为x≥3,在数轴“3”上画一个实心圆点,后续步骤依此类推。

数学映射、函数、反函数知识点

1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.

2、对于函数的概念,应注意如下几点:

(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.

(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.

3、求函数y=f(x)的反函数的一般步骤:

(1)确定原函数的值域,也就是反函数的定义域;

(2)由y=f(x)的解析式求出x=f-1(y);

(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.

注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.

②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.

数学思维方法

假设思想方法

假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

比较思想方法

比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

符号化思想方法

用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。

极限思想方法

事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。

篇2:必修五数学基本不等式知识点总结

必修五数学基本不等式知识点总结

1.用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①如果x>y,那么yy;(对称性)

②如果x>y,y>z;那么x>z;(传递性)

③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)

④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)

⑥如果x>y>0,m>n>0,那么xm>yn;

⑦如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂。或者说,不等式的基本性质有:

①对称性;

②传递性;

③加法单调性,即同向不等式可加性;

④乘法单调性;

⑤同向正值不等式可乘性;

⑥正值不等式可乘方;

⑦正值不等式可开方;

⑧倒数法则。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.不等式考点:

①解一元一次不等式(组)

②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

③用数轴表示一元一次不等式(组)的解集

注:不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号)

不等式两边相乘或相除同一个正数,不等号的方向不变。(相当系数化1,这是得正数才能使用)

不等式两边乘或除以同一个负数,不等号的方向改变。(÷或×1个负数的时候要变号)

数学思维方法

1代数思想

这是基本的数学思想之一 ,小学阶段的设未知数x,初中阶段的一系列的用字母代表数,这都是代数思想,也是代数这门学科最基础的根!

2数形结合

是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。初高中阶段有很多题都涉及到数形结合,比如说解题通过作几何图形标上数据,借助于函数图象等等都是数形给的体现。

3转化思想

在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

4对应思想方法

对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。

数学棱锥知识点

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。

棱锥的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

篇3:基本不等式

课题: §3.4

【学习目标】

1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

2.过程与方法:通过实例探究抽象基本不等式;

3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

【能力培养】

培养学生严谨、规范的学习能力,分析问题、解决问题的能力。

【教学重点】

应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程;及其在求最值时初步应用

【教学难点】

基本不等式 等号成立条件

【教学过程】

一、课题导入

基本不等式 的几何背景:如图是在北京召开的第24界国际数学家大会的会标,教师引导学生从面积的关系去找不等关系。

二、讲授新课

1.问题探究——探究图形中的不等关系。

将图中的“风车”抽象成如图,在正方形abcd中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。

当直角三角形变为等腰直角三角形,即a=b时,正方形efgh缩为一个点,这时有 。

2.总结结论:一般的,如果

(结论的得出尽量发挥学生自主能动性,让学生总结,教师适时点拨引导)

3.思考证明:(让学生尝试给出它的证明)

4.特别的,如果a>0,b>0,我们用 分别代替a、b ,可得,

通常我们把上式写作:

①从不等式的性质推导基本不等式

用分析法证明:(略)

②理解基本不等式 的几何意义

探究:对课本第98页的“探究”( 几何证明)

注:在数学中,我们称 为a、b的算术平均数,称 为a、b的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.

5、例:当时,取什么值,的值最小?最小值是多少?

6、课时小结

本节课,我们学习了重要不等式a2+b2≥2ab;两正数a、b的算术平均数( ),几何平均数( )及它们的关系( ≥ ).它们成立的条件不同,前者只要求a、b都是实数,而后者要求a、b都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将进一步学习它们的应用).

7、作业:

课本第100页习题[a]组的第1、2题

板书 设 计

课题: §3.4基本不等式

一、两个不等式

二、例题及练习

【教后小结】

必修五数学基本不等式知识点总结

基本不等式教案

初一数学一元一次不等式知识点

一年级数学基本知识点梳理

必修一数学基本初等函数提纲

七年级数学不等式教学方法

高中生物会考基本知识点

抛物线的基本知识点

高中数学基本知识点总结

数学知识点

数学基本不等式知识点提纲(共3篇)

欢迎下载DOC格式的数学基本不等式知识点提纲,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档