七年级数学不等式教学方法

时间:2025-01-10 03:33:22 作者:gua嘎 综合材料 收藏本文 下载本文

【导语】“gua嘎”通过精心收集,向本站投稿了16篇七年级数学不等式教学方法,下面是小编收集整理后的七年级数学不等式教学方法,供大家参考借鉴,欢迎大家分享。

篇1:七年级数学不等式教学方法

1七年级数学不等式该如何教学

注重基础知识的教学

初中的数学内容较小学教学内容更系统和深入,涉及面更广。因此,教师在教学中应该注重基础知识的教学,帮助学生打下厚实的基础,以利于学生以后的数学学习。首先应该摆正师生关系,在中国的教育当中一直强调着“师道尊严”。教师在课堂上一般都是居高而上,普遍都是教师在讲台上讲,学生在下面埋头“消化”教师讲的知识点。教师掌握着上课的节奏,这样学生显得很被动。在初中不等式教学当中涉及很多的知识点,学生仅仅知道一些公式而不会运用是教学的一种失败。基础知识在教学当中就显得尤为重要。

不等式的解题方式多样,内容丰富,技巧性较强并且要依据题设、题的结构特点、内在联系、选择适当的解题方法,就要熟悉解题中的推理思维,需要掌握相应的步骤、技巧和语言特点。而这一切都是建立在学生有夯实的基础之上的。学生的基础知识不扎实的话,在解不等式题时就步履维艰。 夯实的基础来源于学生对不等式概念知识的掌握和运用,而概念的形成有一个从具体到表象再到抽象的过程。对不等式抽象概念的教学,更要关注概念的实际背景和学生对概念的掌握程度。数学的概念也是数学命题、数学推理的基础,学生学习不等式知识点也是从概念的学习开始的。所以在不等式教学探究中教师应注重学生的基础。

注重学生对知识的归纳和整理

提高初中数学不等式教学效果,首先要培养学生主动探索数学知识的精神,通过寻求不同思维达到解题效果来激发学生对数学学习的兴趣。引导学生主动去对数学不等式知识进行探究,通过结合所学的数学知识来形成一个完整的知识网络,以帮助学生完成更深入地数学知识探究。

同时初中数学不等式知识点的学习对学生归纳能力提出了较高的要求。灵活使用概念能够帮助学生熟练地运用数学知识,对不等式这一章节知识点的掌握归纳和整理进行综合的运用从而能够成功地解题。例如,在含有绝对值的不等式当中:解关于x的不等式2+a0时,解集是;(2)当-2≤a<0时,解集为空集;(3)当a<-2时,解集为。当学生对知识点进行归纳和整理后,学生也就不会马失前“题”。

2提高数学课堂教学质量

创设自主学习与合作学习的情境

要把数学学习设置到复杂的、有意义的问题情境中,通过让学生合作解决真正的问题,掌握解决问题的技能,并形成自主学习的能力。创设促进自主学习的问题情境,首先教师要精心设计问题,鼓励学生质疑,培养学生善于观察、认真分析、发现问题的能力。其次,要积极开展合作探讨,交流得出很多结论。当学生所得的结论不够全面时,可以给学生留下课后再思考、讨论的余地,这样就有利于激发学生探索的动机,培养他们自主动脑、力求创新的能力。如在讲解等比数列的通项公式时,采取实例设疑导入法。通过创设一个问题情境,就把复杂、抽象而又枯燥的问题简单化、具体化、通俗化,同时也趣味化,提高了学生学习数学的兴趣。合作学习为学生的全面发展,特别是学生个体的社会化发展创造了适宜的环境和条件。

教学实践中,我们注意到:在很多情况下,正是由于问题或困难的存在才使得合作学习显得更为必要,每节新课前教师应要求学生依据导学提纲预习本节内容,要求将学生在预习中遇到的问题记录在笔记本的主要区域,课前预习中不能解决的问题课堂中解决,课堂中未弄明白的问题课后解决,个人无法解决的问题小组解决,小组无法解决的问题请教老师,实现真正的“兵教兵,兵练兵,兵强兵”,没有问题就寻找问题,鼓励引导学生在同桌、临桌之间相互探讨,让学生在课堂上有足够的时间体验问题的解决过程,更多地鼓励学生独立审题、合作探讨,把问题分析留给自己。这种做法的出发点就是避免学生对教师的过分依赖,当然,他们归纳基本步骤和要点遇到困难时,教师应施以援手。

构筑新型师生关系,加大感情投入

学校最重要、最基本的人际关系是教学过程中教师和学生的关系,教师要善待每一名学生,做他们关怀体贴、博学多才的朋友,做他们心灵智慧的双重引路人。“亲其师而信其道”“厌其师而弃其道”,平等、尊重、倾听、感染、善待理解每一名学生,这是为师的底线和基本原则,而高素质、时代感强,具有创新精神的教师,正逐渐成为学生欣赏崇拜的对象。

现在,学生正从“学会”变为“会学”,教师正从“讲”师变为“导师”,课堂中新型的师生关系正逐步形成。总而言之,为了在课堂上达到师生互动的效果,我们在课外就应该花更多的时间和学生交流,放下架子和学生真正成为朋友。学术功底是根基,必须扎实牢靠并不断更新;教学技巧是手段,必须生动活泼、直观形象,师生互动是平台,必须师生双方融洽和谐、平等对话。

3培养学生数学学习兴趣

1.热爱学生,增加情感投入

在农村中学,很多学生都是留守儿童,父母常年在外打工,很多学生缺少关爱,特别是情感方面的.这时,作为教师,就应该拿出我们的爱心,去关心和帮助这些学生,这时学生和你亲近了,对你所教的科目也就产生了兴趣,成绩自然而然就上去了.如果你对学生不闻不问的,甚至还去打击,那么这些学生肯定就会对你抱有成见,久而久之,学习兴趣全无,成绩就会大幅度下降.

2.化枯燥为有趣,让学生在快乐中学习

如果我们教师照搬课文来进行教学,那么相对来说肯定是枯燥的,无趣的,学生学起来就会感觉无味,自然就提不起学习数学的兴趣.所以我们教师要将课本的知识尽量转化为有趣的问题或者活动来进行教学.比如,在研究“视图”时,可引入游戏.在讲台上放一个物体,然后将学生分为几个组,并让这几个组从不同的方位去观察它,并将自己看到的几何图形画出来.这样不仅使学生学到了数学知识,也锻炼了学生的动手能力和合作能力.

3.利用中学生好奇的心理特点,激发他们的学习兴趣

初中生都是一帮15岁左右的小孩,在这个年龄段,学生的好奇心是很强的,对很多事物都会很感兴趣.所以针对这一特殊心理特征,我们教师可以大胆地创设一些使学生产生强烈好奇心的实际问题,从而更好地提高学生的兴趣.例如,在讲解乘方的时候,可让学生讨论:给你一张足够大的纸,对折六十次后有多高?学生讨论后,教师再告诉他们结果,这时学生会觉得非常好奇、非常惊讶(因为他们想不到会有教师说的那么高),这样学生对学习乘方就产生了很大的兴趣.

4数学思维能力的培养

创设情境,引发思维

教师创设的问题情境都应具备目的性、新异性和适度的障碍性,从而激发学生强烈的求知欲,保持学生自主探究的热情,发挥学生的创造潜能,取得最佳的教学效果。兴趣是最好的老师,是创新的源泉、思维的动力,也是产生学习动机的主观原因。从心理学上来说,兴趣可以使感官和大脑处于最活跃的状态,引起学习中高度注意,使感知清晰,想象活跃.记忆牢固,能抑制疲劳,产生愉快情绪,能以最佳心态获取信息。学生一旦有了用数学解决问题的兴趣,就会积极地去实践,这对思维能力的培养非常重要。

小学生每接触一种新生事物,都有一定的好奇心,教师应抓住学生的心理特征,适当引导,就会激起学生的求知欲,使学生产生一定的兴趣。比如:在教学《角的初步认识》时,用校园环境情景图来激发学生的学习兴趣,学生纷纷投入了角的认识这一知识的学习之中,他们绘声绘色地描述了角,对角有了深刻的认识。之后,我又把枯燥的数学习题编成一个个故事,把学生带入快乐的情境中,学习兴趣一下子被调动起来,他们积极参与学习,探索角的有关知识,进一步理解了角的含义,这样不但引发了学生的思维,而且还增加了记忆能力。

注重习题教学,培养创新思维

习题,看似平常的知识,殊不知在习题中隐含着扩展数学功能的作用。在解答习题时,学生各方面的能力都会得以形成,思维的独立性和创造性也得到发展。首先利用一题多解培养学生发散思维,教学实践告诉我们,学生的创新思维能打破习惯程序而赋予开拓意识。因此,在处理教材习题时,应引导、鼓励学生大胆质疑,进行联想,使思维更加活跃。例如:在教学六年级下册圆柱表面积计算时便遇到了这样一道习题“有一个由圆柱体和长方体组成的路灯座,长方体长12厘米、宽16厘米、高12厘米。圆柱底面直径是12厘米、高55厘米。

要将这个路灯座漆上白色的油漆,要漆多少平方米?(上面是长方体,下面是圆柱体)”在引导学生弄明白题意后,便让他们独立思考。学生感到很难,便向我摇头示意。这时,我便把事先准备好的长方体和圆柱体发给学生,让他们摆一摆,看看有什么发现,学生们通过动手操作,找到了解题办法。可是,这些解题方法对于中下等的学生理解起来还是困难重重。针对这种现象,我又提示大家,能不能找到什么规律?学生们再次进行研究性学习,经过讨论,他们把这道题的解法列成了公式型,即:路灯座的表面积=长方体的表面积+圆柱的侧面积-圆柱的底面积。看来,一道题中蕴藏着多种解题方法,在教学中教师要善于引导和鼓励学生多动脑筋,发散自己的思维,找到解题的办法,给思维插上翅膀,使学习效率倍增。

篇2:七年级数学教学方法

1七年级数学应该怎么教

循序渐进,快慢适当,培养学生的恒心与毅力

初中数学教学是让学生从数的运算逐步上升到代数式、方程、不等式、函数运算的全程教学,同时具有渗透性的特点。如:集合对应知识作渗透安排,方程、不等式、函数等知识以及归纳、演绎、转化等的教学思想方法也是先渗透而后逐步深入介绍的,因此在教学过程设计中,就应循序渐进、快慢适当。从七年级开始就应重视三方面先慢后快的的教学设计:①、中小学衔接教学中,从非负数引进负数,完成有理数运算教学放慢;②、整式加减、整式乘除运算进度放慢;③、第二学期平面几何入门教学,使学生逐步从数、式运算过渡到图形分析教学进度放慢。从全程教学来看,有理数运算、整式加减运算,教学进度放慢,赢得了一元一次方程、一元一次不等式、二元一次方程组教学进度的飞跃;

整式乘除进度的慢,提高了对乘法公式的进一步认识,赢得了因式分解教学进度的快;几何入门教学进度的慢,为平面几何教学打下了坚实的基础。同时根据各阶段的特点,编制检测题,对学生进行考查,使各类学生在不同的起点反应自己的最佳成绩及存在的问题(薄弱环节),以便有针对性地对个别中、差学生进行辅导、点拨,进一步调动学生学习的积极性,树立学习数学的恒心,增强学习数学的毅力。在教学中,我们在循序渐进、精讲多练的同时,有机地运用渗透式教育方法,让学生在学习中领悟,在领悟中求新,这样既使学生获得牢固的基础知识,又能使他们独立思考与创造力得到锻炼。

掌握特点,及时点拨,培养能力

七年级代数教材除了具有渗透性特点外,还具有归纳与演绎相结合及理论结合实际的特点,从有理数概念的建立到运算法则、运算规律的导出,乃至代数式的运算法则、方程与不等式知识的介绍,都是用归纳与演绎想结合的方法安排。我们要抓住这一特点,既重视指导学生从实际的具体事物归纳出概念与一般法则,又重视在归纳中引导学生从理论到理论的演绎概括。而理论结合实际的特点,更有助于培养学生联系实际,动脑动手解决实际问题的能力,在平时的教学中要注意引导学生联系实际,多开展解决问题的活动,这样有利于激发学生的学习兴趣,有利于培养学生动脑动手的习惯和能力。

由于知识基础和教育环境的差异,七年级学生在学习有理数、混合运算开始时,容易出现不明显的分化,表现在注意力分散及互相抄袭作业,在教学过程中,要重视集体辅导,也要对个别学生存在的错误及时点拨,以增强学生学好数学的信心,同时对解题格式严格要求,逐步培养学生学好数学的良好习惯。

2激发学生数学学习兴趣

数学教学中培养学生的创新能力

创新能力在数学教学中主要表现对已解决问题寻求新的解法。“学起于思,思源于疑”,学生探索知识的思维过程总是从问题开始,又在解决问题中得到发展和创新。教学过程中学生在教师创设的情境下,自己动手操作、动脑思考、动口表达,探索未知领域,寻找客观真理成为发现者,要让学生自始至终地参与这一探索过程,发展学生创新能力。如在球的体积教学中,我利用课余时间将学生分为三组,要求第一组每人做半径为10厘米的半球;第二组每人做半径为10厘米高10厘米圆锥;第三组每人做半径为10厘米高10厘米圆柱。

每组出一人又组成许多小组,各小组分别将圆锥放入圆柱中,然后用半球装满土倒入圆柱中,学生们发现它们之间的关系,半球的体积等于圆柱与圆锥体积之差。球的体积公式的推导过程,集公理化思想、转化思想、等积类比思想及割补转换方法之大成,就是这些思想方法灵活运用的完美范例。教学中再次通过展现体积问题解决的思路分析,形成系统的条理的体积公式的推导线索,把这些思想方法明确地呈现在学生的眼前。学生才能从中领悟到当初数学家的创造思维进程,激发学生的创造思维和创新能力。

在数学教学中培养学生团队精神

团队精神就是一种相互协作、相互配合的工作精神。数学教师在教学中多设计一些学生互相配合能解决的问题,增进学生协作意识,培养他们的团队精神。如我又在讲授球的体积公式时,课前我让20名学生用厚0.5厘米的纸板依次做半径为10、9.5、9 …… 0.5厘米圆柱,列出各圆柱的体积计算公式并算出结果。又让40名学生用厚0.25厘米的纸板依次做半径为10、9.75、9.5 …… 0.5、0.25厘米圆柱,列出各圆柱的体积计算公式并算出结果。课堂上我先把球的体积公式写在黑板上,然后让学生用两根细铁丝分别将两组圆柱按大到小通过中心轴依次串连得到两个近似半球的几何体。

让大家比较它们的体积与半径为10厘米的半球体积,发现第二组比第一组的体积接近于半球的体积,如果纸板厚度变小得到的几何体体积愈接近于半球的体积,帮助学生发现了球的体积公式另一证法。同时不仅向学生讲教学过程中的实验材料为什么让大家各自准备,而且有意识地让学生损坏串连到一起的几何体和各自的小圆柱。通过这些使学生认识到只有齐心协力才能达到成功的彼岸。数学教学具有不仅使学生学知,学做;而且使学生学共同生活,学共同发展的目标任务。

3引导学生学习数学

注重学生学习兴趣的培养,激发学生的学习热情

夸美纽斯说过:“兴趣是创造一个欢乐和光明的教学环境的主要途径之一。”兴趣是学习的动力,是引导学生进入知识殿堂的向导,一旦学生对某一事物有兴趣,心理上就会处于一种兴奋状态,学习起来便感到其乐无穷。作为教师,在课堂教学中应注意有目的、有计划地采用多种形式和方法来培养学生学习数学的兴趣,做到以“趣”引路,以“情”导航。教师在讲课时,尽可能抑扬顿挫、语调丰富,多采用风趣幽默、通俗易懂的语言,给学生创造一个宽松和谐的课堂氛围,让学生怀着轻松的心情投入学习、大胆发言、积极思考,从而对数学产生浓厚的兴趣。

改革课堂教学结构,发挥学生的主体作用

《数学课程标准》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式,数学教学的过程应是一个生动活泼的、主动和富有个性化的过程。”因此,教师要树立新的教学理念,彻底改变传统课堂教学中“教师主讲,学生主听”的单一教学组织模式,努力为学生创造一个民主和谐的学习环境,为学生提供良好的主动参与条件和机会。要达到这一目标,就必须做到:第一,课堂上多给学生留些自主学习和讨论的空间,使他们有机会进行独立思考,相互讨论,并发表各自的意见;第二,利用教师的主导作用,引导学生积极主动参与教学过程,使学生的主体性得以充分的发挥和发展;第三,运用探究式教学。在教师的主导下,坚持学生是探究的主体,引导学生对知识的发生、形成、发展全过程进行探究活动,让学生学会发现问题、提出问题,并逐步培养他们分析问题、解决问题的能力,从而激发起强烈的求知欲和创造欲,真正实现主动参与。

将开放题目带入课堂教学,提高学生的创造性思维

数学教学中将开放题目带入课堂是对素质教育的一种探索,也是当前数学教育发展的一种潮流。数学开放题目的显著特点是思考空间广阔,思维活动的自由度大,以便学生的思维活动易于展开,在思考中能提出更多的问题。解决问题的途径也很多,它具有与传统封闭型题目不同的特点,在教学中具有独特的效果。主要表现在:第一,数学开放题的教学过程是学生主动建构、积极参与的过程,有利于培养学生的数学意识,发展学生的数感,真正学会数学思维;第二,数学开放题的教学为学生提供了更多的交流与合作机会,能促进学生思考,为充分发挥学生的主体作用创造了良好的条件;第三,数学开放题的教学过程是学生探索和创造的过程,有利于培养学生开放式的数学思维和开拓进取精神。因此,我们教师要提高认识,充分认清开放题目教学的重要性,根据开放题的基本要求,适度开展开放题的教学,为提高学生的创造性思维而努力。

4如何让学生喜欢上数学课

降低难度,让学生在学习中找到乐趣

结合专业,教学中按“必需、够用”的原则优化教学内容,淡化严格的数学论证,强化几何说明,重视直观、形象的理解,注重实践应用。中职学校数学教学要树立“实用主义”思想,对数学概念的教学要轻“形式”重“意义”,避免使学生陷入枯燥的形式学习中。如,“三角函数”教学,按教材结构先研究任意角三角函数的定义,再研究图象性质及和、差、倍、半角的计算等。我认为这部分教材处理可分成“实用”和“延伸”两部分,对大多数专业和学生而言,学生只要了解三角函数的概念和会解三角形即可

因此,讲授这部分内容时,教师结合工厂生产实际,下料划线的定位及计算等来讲授、练习,就很容易提高学生的学习兴趣,因此要将三角函数“延伸”到理解任意角三角函数的定义、掌握图像和性质、会进行和差倍半的计算。教学中结合实际的例子,向学生讲明为何要学习这部分内容,以及它对专业知识学习方面的作用,这样他们在同步学习专业课时,容易理解掌握相关理论知识,反过来会促进学生数学学习兴趣的提高。另外,在“实用”和“延伸”的处理上,还应注意学生的基础层次,对基础较差的学生只需“实用”,对基础较好的学生在实用基础上还要“延伸”,这样才能保证绝大部分学生对数学学习保持足够的兴趣。

创设有效的数学情境,让生认为数学“来源于生活”

奥苏伯尔的有意义学习理论认为,创设一定的数学情境,能够使学生对知识本身发生兴趣,进而产生认识需要,产生一种要学习的倾向,从而能够激发学生的学习动机。当然,数学情境的创设,取决于数学教师的素质,教师素质的高低决定了情境创设的好坏。第一,需要教师熟悉教学内容,把握教学的具体要求和新旧知识间的内在联系。第二,需要教师充分了解学生已有的智力发展和认知结构状况。并在此基础上,按照数学知识本身的内在逻辑和思维规律,由简到繁、由易到难地安排学习内容。

第三,在探究性教学的每一节课中,教师要根据课堂内容,寻找与教学内容密切相关的、可以激发学生兴趣的数学材料,创设出若干数学问题情境,用学生喜闻乐见的方式,生动活泼、富有趣味性的语言讲出来,让学生发现问题并怀着强烈的好奇心和求知欲参与其中。如果数学情境创设得好,可以吸引学生主动地参与学习。比如在讲等比数列的求和公式时,可以给学生讲大数学家高斯小时候巧解数学题的故事,并趁机提出“如果你是高斯,你将如何解题”的问题,学生们都会跃跃欲试,争着回答问题。在这样良好的气氛下,很自然就开始了求和公式的推导,并且有了这个从特殊到一般的过渡,对于等比数列求和公式的推导过程学生也会更容易理解。又比如在讲“向量的加法”这一节时,可以让一个学生到讲台上示范,让他“朝正前方前进五步,再朝正右方前进四步,问这个学生的位移是多少?”通过现场演示,学生就容易理解向量这个既有大小又有方向的量。

七年级数学应该怎么教

篇3:七年级数学不等式课件

七年级数学不等式课件

教学目标:

通过对具体实例的学习,使学生能够了解生活中的不等量关系,理解不等式的概念,知道什么是不等式的解,为以后学习不等式的解法奠定基础.

知识与能力:

1.通过对具体事例的分析和探索,得到生活中不等量的关系.

2.通过理解得到不等式的概念,从而使学生经历实际问题中数量的分析、抽象过程,体会现实中有各种各样错综复杂的数量关系.

3.了解不等式的意义,知道不等式是用来刻画生活中的数量关系的.

4.知道什么是不等式的解.

过程与方法:

1.引导学生分析具体事例,从对具体事例的分析中得到不等量关系.

2.引导并帮助学生列出不等式,分析不等式的成立条件.

3.通过分析、抽象得到不等式的概念和不等式的解的概念.

4.通过习题巩固和加深对概念的理解.

情感、态度与价值观:

1.通过学生的分析和抽象过程使他们体会现实中错综复杂的数量关系,然后从而培养其抽象思维能力.

2.通过分组讨论学习,体会在解决具体问题的过程中与他人合作的重要性,培养学生的团体协作精神,使学生获得合作交流的学习方式.

3.通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.

4.通过创设问题串,让学生仔细观察、对比、归纳、整理,尝试对有理数进行分类,然后体验教学活动充满着探索性和创造性.

教学重、难点及教学突破

重点:不等式的概念和不等式的解的概念.

难点:对文字表述的数量关系能列出不等式.

教学突破:由于学生在以前已经对数量的大小关系和含数字的不等式有所了解,但还没有接触过含未知数的不等式,在学生分析问题的时候注意引入现实中大量存在的数量间的不等关系,研究它们的变化规律,使学生知道用不等式解决实际问题的方便之处.在本节的教学中能够在组织学生讨论的过程中适当地渗透变量的知识,让学生感受其中的函数思想,并引导学生发现不等式的解与方程的解之间的区别.在处理本节难点时指导学生练习有理数和代数式的知识,准确“译出”不等式.

教学过程:

一.研究问题:

世纪公园的票价是:每人5元,一次购票满30张可少收1元.某班有27名少先队员去世公园进行活动.当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票.但有的同学不明白.明明只有27个人,买30张票,岂不浪费吗?

那么,究竟李敏的提议对不对呢?是不是真的浪费呢

二.新课探究:

分析上面的问题:设有x人要进世纪公园,①若x≥30,应该如何买票?②若x<30,则又该如何买票呢?

结论:至少要有多少人进公园时,买30张票才合算?

概括:1、不等式的定义:表示不等关系的式子,叫做不等式.不等式用符号>,<,≥,≤.

2、不等式的解:能使不等式成立的未知数的值,叫做不等式的解.

3、不等式的分类:⑴恒不等式:-7<-5,3+4>1+4,a+2>a+1.

⑵条件不等式:x+3>6,a+2>3,y-3>-5.

三、基础训练.

例1、用不等式表示:⑴a是正数;⑵b不是负数;⑶c是非负数;⑷x的平方是非负数;⑸x的一半小于-1;⑹y与4的和不小于3.

注:⑴不等式表示代数式之间的不相等关系,与方程表示相等关系相对应;

⑵研究不等关系列不等式的重点是抓关键词,弄清不等关系.

例2、用不等式表示:⑴a与1的和是正数;⑵x的2倍与y的3倍的差是非负数;⑶x的2倍与1的和大于—1;⑷a的一半与4的差的绝对值不小于a.

例3、当x=2时,不等式x-1<2成立吗?当x=3呢?当x=4呢?

注:⑴检验字母的值能否使不等式成立,只要代入不等式的左右两边,如果符合不等号所表示的关系,就成立,否则就不成立.⑵代入法是检验不等式的解的重要方法.

学生练习:课本P42练习1、2、3.

四、能力拓展

学校组织学生观看电影,某电影院票价每张12元,50人以上(含50人)的团体票可享受8折优惠,现有45名学生一起到电影院看电影,为享受8折优惠,必须按50人购团体票.

⑴请问他们购买团体票是否比不打折而按45人购票便宜;

⑵若学生到该电影院人数不足50人,应至少有多少人买团体票比不打折而按实际人数购票便宜.

解:⑴按实际45人购票需付钱_________ 元,然后如果按50人购买团体票则需付钱50×12×80%=480元,所以购买团体票便宜.

⑵设有x人到电影院观看电影,当x_____时,按实际人数买票______张,需付款_______元,而按团体票购票需付款________元,如果买团体票合算,那么应有不等式________________,

由①得,当x=45时,上式成立,让我们再取一些数据试一试,将结果填入下表:

x12x比较480与12x的大小48<12x成立吗?

由上表可见,至少要__________人时进电影院,购团体票才合算.

五、小结:

⑴不等式的定义,不等式的'解.

⑵对实际问题中探索得到的不等式的解,然后不仅要满足数学式子,而且要注意实际意义.

六、作业课本P42习题8.1第1、2、3题.

补充题:

1.用不等式表示:

(1)与1的和是正数;(2)的与的的差是非负数;

(3)的2倍与1的和大于3;(4)的一半与4的差的绝对值不小于.

(5)的2倍减去1不小于与3的和;(6)与的平方和是非负数;

(7)的2倍加上3的和大于-2且小于4;(8)减去5的差的绝对值不大于

2.小李和小张决定把省下的零用钱存起来.这个月小李存了168元,然后小张存了85元.下个月开始小李每月存16元,小张每月存25元.问几个月后小张的存款数能超过小李?(试根据题意列出不等式,并参照教科书中问题1的探索,找出所列不等式的解)

3.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,然后从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元,(1)设从乙仓库调往A县农用车辆,用含的代数式表示总运费W元;(2)请你用尝试的方法,探求总运费不超过900元,共有几种调运方案?你能否求出总运费最低的调运方案.

篇4:七年级数学不等式与综合

七年级数学不等式与综合

知识理解

1.已知点M(-35-P,3+P)是第三象限的点,则P的取值范围是 .

2.不等式ax>b解集是x< ,则a的取值范围是 .

3.如果关于x的不等式(a-1)x

4.不等式3(x-2)

5.不等式1-2x<6的负整数解是 .

6.在方程组 中,已知x>0,y<0,则a的取值范围是 .

7.不等式组 的整数解是 .

8.不等式组 的解集为 ≤x≤a,则a的取值范围是 .

9.已知点M(-3-m,2+m)是第三象限的点,则m的取值范围是 .

10.若点P(a-3,5-a)是第四象限的点,则a必满足 .

11.不等式组 的解集无解,则a的取值范围是 .

12.在方程组 中,已知x-y<0,则a的取值范围是 .

13.如果关于x的不等式(a-3)x

14.不等式 (x-m)>2-m的解集为x>2,则m的值为 .

15.不等式3(x-1)

16.不等式2-2x<5的负整数解是 .

17.不等式组 的解集是 .

18.不等式组 的最小整数解是 .

19.不等式组 的整数解是 .

20.已知关于x,y的方程组 的解xy<0,则m的取值为 .

21.小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分立方米收费2元,小颖家每月用水量至少是 .

22.若点P(a,4-a)是第二象限的点,则a必满足( )

A.a<4 B.04

23.不等式 (x-m)>2-m的解集为x>2,则m的值为( )

A.4 B.2 C. D.

24.下列不等式组中,无解的是( )

A. B. C. D.

25.不等式组 的最小整数解是( )

A.0 B.1 C.2 D.-1

26.不等式组 的最小整数解是( )

A.-1 B.0 C.2 D.3

27.下列说法:①∵ 无解,∴ 不是一元一次不等式组;②当a>b时,不等式组 无解;③当a>b时, 的解集为x>3,则a=3;④当a>b时, 的解集为x>3,则b<3;其中正确的说法是( )

A.①②③ B.①④ C.②③ D.②③④

28.关于x的不等式2x-a≤-1的整数解集如图所示.

(1)求a的值;

(2)已知关于x的不等式x-a-b<0的非负整数解只有3个,求b的取值范围.

29.已知方程组 ,m为何值时,x-2y>0?

综合思考

30.已知,在△ABC中,D为直线AC上一点,∠ABC=∠ACB=x°,∠ADF=∠AFD=y°,直线DF交BC于E,且∠DEC=30°.

(1)如图1,若y=65,求x的值;

(2)当点D在线段AC上时,求∠BAF的度数;

(3)若点D在CA的延长线上(如图2),其它条件不变,给出下列两个结论:①∠BAF的度数不变;②∠BAD的度数不变;请选择其中正确的结论证明并求值.

31.如图,已知AB∥CD,P为CD上一点,AN平分∠CAP,AM平分∠PAB,Q为AB上一点,且∠ACD=∠AQM.

(1)∠ACD=∠AQM=100°时,求∠MAN的度数;

(2)当点P在射线CD上运动时, 的值是否变化?若不变,求其值;

(3)在(1)的条件下,当点P在射线CD上运动过程中,是否存在∠APC=∠AMQ?若存在,求∠AMC的度数.

32.如果关于x的不等式(a-1)x

(1)求a的值;

(2)已知A(0,a),射线OM与y轴负半轴的夹角为80°,B为射线OM上一动点,直线AC平分∠BAy,交x轴于C点,若∠OAB=a∠OBA时,求∠OCA的度数;

(3)在(2)的条件下,∠OBA的平分线交AC于点P,求∠BPC的度数.

篇5:不等式数学七年级下册教案

不等式人教版数学七年级下册教案

一、内容和内容解析

(一)内容

概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集、

(二)内容解析

现实生活中存在大量的相等关系,也存在大量的不等关系、本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望、再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念、前面学过方程、方程的解、解方程的'概念、通过类比教学、不等式、不等式的解、解不等式几个概念不难理解、但是对于初学者而言,不等式的解集的理解就有一定的难度、因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助、

基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上、

二、目标和目标解析

(一)教学目标

1、理解不等式的概念

2、理解不等式的解与解集的意义,理解它们的区别与联系

3、了解解不等式的概念

4、用数轴来表示简单不等式的解集

(二)目标解析

1、达成目标1的标志是:能正确区别不等式、等式以及代数式、

2、达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合、

3、达成目标3的标志是:理解解不等式是求不等式解集的一个过程、

4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具、操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右、

三、教学问题诊断分析

本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度、

因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集、

四、教学支持条件分析

利用多媒体直观演示课前引入问题,激发学生的学习兴趣、

五、教学过程设计

(一)动画演示情景激趣

多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?

设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣、

(二)立足实际引出新知

问题一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件?

小组讨论,合作交流,然后小组反馈交流结果、

最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)

篇6:七年级下册数学教学方法

注重起始阶段教学,激发学生学习数学兴趣。

“良好的开端是成功的一半”。新教材中渗透了对学生初始学习数学的情感的激发。学生翻开数学课本后,都感觉新奇、有趣,都有想学好数学的欲望。因此,教师要不惜花费时间,狠下工夫,在教学中采取有效的方法,让学生在学习的起始阶段产生学习数学的浓厚兴趣。

教师要在七年级数学起始阶段的教学中,以数学的趣味性、教学的艺术性感染学生,让学生向往着教师,向往着数学学习。从而在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。

课堂教学要求新、求活,保持课堂教学的生动性和趣味性。

七年级数学比较贴进生活实际,具有很强的知识性、现实性和趣味性,以其丰富的内容诱发学生学习情趣。新教材在编排上抓住了七年级学生情绪易变、起伏较大的心理、生理特点,要求教师要采用灵活多样的教学方法,培养学生持久的学习兴趣,全面提高学生的素质和能力。具体做法如下。

1.注重课堂教学中的导入环节。在课堂教学导入中,教师要以有效的导入形式,运用各种手段把学生的学习积极性调动起来,唤起学生的参与意识,把问题设置于适当的情境之下,营造生动有趣的学习氛围。学生在轻松愉悦的环境下,兴趣盎然,自然会积极主动地投入到学习中。

2.最大限度地让学生参与实践操作。教材针对七年级学生喜欢观看、喜欢动手的性格特征,安排了大量的实践性内容。所以,教师要尽可能利用自制教具进行教学,优化课堂结构,激发学生的学习兴趣。在课堂教学中可以把学生分成几个学习小组,共同准备实验器材,共同进行实验演示。在实验中可以展开讨论,相互交流,共同总结。在实验操作过程中,学生通过亲自参与认识“自我”,产生学习兴趣和求知欲。

篇7:七年级下册数学教学方法

一、明确教学目的,从经验中总结并改进

现初中教学的教学目的明确提出了要“运用所学知识,解决实际问题”,“在解决实际问题的过程中,要让学生受到把实际问题抽象成数学问题的训练”,作为新时代的数学教师,我们必须全面、深刻第掌握数学教学的目的,并围绕教学目的展开教学。

对于教师而言以往的经验固然重要,同时经验在教学过程中也占据着较大比例,但如果只是一直依赖着陈旧的教学经验不做出任何改变的话,在不久的将来自己将会被社会淘汰。所以要学会从以往的教学经验中总结、反思,并大胆的对教学方法进行改进,让自己的教学方法能紧跟教育时代的脚步。

二、注重学生学习兴趣的培养、从各方面激发学生学习热情

如何培养学生的学习兴趣,是教师在教学生涯中永远都在探讨的话题,还记得夸美纽斯曾说:“兴趣是创造一个欢乐和光明的教学环境的主要途径之一”,从这句话中已经表达出“兴趣”对于教学的重要性,教师是学生开启数学学习大门的钥匙,而“兴趣”是这扇大门后的向导,只有不断的培养学生学习的“兴趣”才不会让学生在学习数学的道路上迷失方向。

在教学过程中教师还要注重课堂情境,在讲课时拒绝死板,给学生一个轻松和谐的课堂氛围,在讲课时可带入风趣幽默、通俗易懂的语言,让学生愉悦的气氛中全身心投入学习,积极思考,从而对数学产生浓厚的学习兴趣和热情。

三、认识学生差异,教学多元化

每个班级里的每个学生都具有不同于他人的素质和生活环境,都有自己的爱好、长处和不足,学生之间有生活经验的差异,思维水平的差异等,特别是学生的认知水平有一定的差异性,而且一时难以改变,如果创新课堂教学方法,时间长了就会出现学优生学习没有动力,冒不了尖;学困生最基本的也掌握不了的情况,一旦此类情况在学习中出现还会影响到其他学科的学习,所以,作为教师在认识学生差异的基础上,要努力做到让教学多元化,针对不同的学生设置适合他们自己的不同的教学目标。并对不同学习层次的学生设置出有梯度的学习目标,才可以使学优生“吃得饱”,中等生“吃得好”,学困生“吃得了”,才能实现不同的学生“在数学上得到不同的发展”,逐渐形成了学困生易学,中等生乐学,优等生好学的良好局面。

3活跃数学课堂气氛

一、创设问题情境,引发学生参与动机

创设问题情境,就是把学生引入一种与问题有关的过程,目的是激发学生的求知欲,引发他们的参与动机。例如,在教学数额分解与组合时,新课开始,我拿出6个气球,学生一下子就被这五颜六色的气球吸引了,紧接着我请学生帮助我把这6个气球分一分,分成两份。我的话刚说完,学生就拿出自己已准备好的学具动手分起来了。紧张、高兴的情绪洋溢在他们的脸上,最后得出五种分法,有:(1)6可以分成1和5;(2)6可以分成5和1;

(3)6可以分成2和4;(4)6可以分成4和2;(5)6可以分成3和3。这时我适时地讲解:“第一种和第二种气球的分法相同,只是放在左右手的顺序不同,第三种和第四种也是如此,所以由6可以分成1和5可以想到6可以分成几和几……”接下来就利用刚学习的6的分与合的方法学习7的分与合,让学生自主学习,自主探索,最后完成“想想做做”的题目。整节课学生都在动手、动脑,在愉悦的氛围中学习,体验了6、7的分与合的探索过程,轻松地完成了学习任务。

二、学会联想,促进学生主动思考问题

让学生学会提问题,离不开仔细观察,认真比较、分析、综合,这些方法平时在教学中要多加应用,教师还要鼓励学生大胆想象、联想。如在教学“连加、连减”时,针对例题1,我先根据教学图编一个故事,教学第二个例题时让学生根据图自己展开想象、编故事。从中可以看出知识面越广,联想力就越强,有了联想,问题意识才能得到培养。

三、善待学生的好奇心,珍爱问题的源泉

居里夫人说:“好奇是人类第一美德。”好奇是儿童的天性,他们常常会提出一些让成人意想不到的问题,无时无刻不表现出了解大自然、探索大自然的强烈愿望。周培源从小就爱问为什么,如“小鸟为什么会在天上飞”“白云为什么会飘”等等,有一次他和小伙伴发现了一个水池,老是会发出“咕噜咕噜”的声音,他就想这是为什么。由此萌动了好奇心,他细心钻研,后来发现这是个沼气池。因为他从小就爱问,而且自己能专心研究,最终成为一名科学家。为什么儿童能提出大人们提不出的问题?原因就在于好奇心,有了好奇心,就会产生解决问题的愿望,这是问题的源泉,也是创新的开始,我们应加以善待和珍爱。

4学习数学的兴趣激发

运用多媒体等现代化教学手段,激发兴趣

电教把媒体引入数学课教学,既能耳闻,又能目睹,这样的教学效果别具特色。电教媒体具备独有的特点,集声、色、光、图为一体,以其特有的方式使学生多种感观同时受到刺激,促进情感思维信息在传递与反馈方面形成快速交互,从而激发学生联想和想象能力的迅速萌发,促进学生全面、均衡的、主动的发展。

如:在“直线和线段”的教学中,先用多媒体呈现出“小灵通和小机灵带我们去漫游数学王国”的画面,在简短讲述后,提问“你们愿意去吗?数学王国里有许多数学知识等着你们来学习。看,今天我们学习什么?”再出示两组“线的对比图”,同时提问:“左右两组线有什么不同?”“直线是怎样的?”接着又用动态画面引导学生认识直线。“小灵通和小机灵给你们变一个小魔术。”这时,用动态演示:先出现一个亮点,由这个亮点出发,亮点逐渐向左右延伸,成为一条直线。这时老师讲述:由一点,向左向右延伸成了一条直线。这一电教手段的演示,由静态变为动态,再变为静态,更为鲜明直观和有趣。

联系生活,激发兴趣

教学时,教师从日常生活中的实例出发,创设一定情境,激发学生学习兴趣,使学生产生最佳学习状态。如:学习“厘米和米的认识”,要求学生先估计一下讲台、课桌、黑板各有多长,再让学生用自己的方法实际测量,通过讨论交流,发现用不同的测量工具得到的数不同,从而体会到统一测量工具的必要性。在建立1厘米和1米的表象之后,让学生说一说生活中与1米、1厘米长度有关的物体,如图钉的长约1厘米;食指的宽大约是1厘米;讲台的长大约是1米;米尺的长是1米……再让学生估一估、量一量身边熟悉的事物,如门、电视柜、讲桌、铅笔、身高、步长有多长。

一堂课结束,同学们在活泼、友好、团结的气氛中学会了。通过对身边事物的实际测量和估测,激发了学生学数学、用数学的热情。通过这一系列的训练,不仅可以逐渐培养学生估算、估计的能力和测量能力,还可以使学生感受到身边处处有数学,数学就在我身边。又如在教学“认识人民币”时,我设计了这样一个活动:在教室里布置了一家超市,里面摆了好多商品,琳琅满目,选一位小朋友扮演售货员,其他小朋友先仔细观察这些商品的价格,一方面使学生进一步认识了人民币,使课内的数学知识得以巩固。另一方面也让学生真正认识到数学就在我们生活中间。既看得见也摸得着,不再觉得数学是脱离实际的海市蜃楼。而且培养了学生分析问题和解决问题的能力,调动学生学习数学的兴趣。

七年级下册数学教学方法

篇8:七年级下册数学教学方法

一、明确教学目的,从经验中总结并改进

现初中教学的教学目的明确提出了要“运用所学知识,解决实际问题”,“在解决实际问题的过程中,要让学生受到把实际问题抽象成数学问题的训练”,作为新时代的数学教师,我们必须全面、深刻第掌握数学教学的目的,并围绕教学目的展开教学。

对于教师而言以往的经验固然重要,同时经验在教学过程中也占据着较大比例,但如果只是一直依赖着陈旧的教学经验不做出任何改变的话,在不久的将来自己将会被社会淘汰。所以要学会从以往的教学经验中总结、反思,并大胆的对教学方法进行改进,让自己的教学方法能紧跟教育时代的脚步。

二、注重学生学习兴趣的培养、从各方面激发学生学习热情

如何培养学生的学习兴趣,是教师在教学生涯中永远都在探讨的话题,还记得夸美纽斯曾说:“兴趣是创造一个欢乐和光明的教学环境的主要途径之一”,从这句话中已经表达出“兴趣”对于教学的重要性,教师是学生开启数学学习大门的钥匙,而“兴趣”是这扇大门后的向导,只有不断的培养学生学习的“兴趣”才不会让学生在学习数学的道路上迷失方向。

在教学过程中教师还要注重课堂情境,在讲课时拒绝死板,给学生一个轻松和谐的课堂氛围,在讲课时可带入风趣幽默、通俗易懂的语言,让学生愉悦的气氛中全身心投入学习,积极思考,从而对数学产生浓厚的学习兴趣和热情。

三、认识学生差异,教学多元化

每个班级里的每个学生都具有不同于他人的素质和生活环境,都有自己的爱好、长处和不足,学生之间有生活经验的差异,思维水平的差异等,特别是学生的认知水平有一定的差异性,而且一时难以改变,如果创新课堂教学方法,时间长了就会出现学优生学习没有动力,冒不了尖;学困生最基本的也掌握不了的情况,一旦此类情况在学习中出现还会影响到其他学科的学习,所以,作为教师在认识学生差异的基础上,要努力做到让教学多元化,针对不同的学生设置适合他们自己的不同的教学目标。并对不同学习层次的学生设置出有梯度的学习目标,才可以使学优生“吃得饱”,中等生“吃得好”,学困生“吃得了”,才能实现不同的学生“在数学上得到不同的发展”,逐渐形成了学困生易学,中等生乐学,优等生好学的良好局面。

3活跃数学课堂气氛

一、创设问题情境,引发学生参与动机

创设问题情境,就是把学生引入一种与问题有关的过程,目的是激发学生的求知欲,引发他们的参与动机。例如,在教学数额分解与组合时,新课开始,我拿出6个气球,学生一下子就被这五颜六色的气球吸引了,紧接着我请学生帮助我把这6个气球分一分,分成两份。我的话刚说完,学生就拿出自己已准备好的学具动手分起来了。紧张、高兴的情绪洋溢在他们的脸上,最后得出五种分法,有:(1)6可以分成1和5;(2)6可以分成5和1;

(3)6可以分成2和4;(4)6可以分成4和2;(5)6可以分成3和3。这时我适时地讲解:“第一种和第二种气球的分法相同,只是放在左右手的顺序不同,第三种和第四种也是如此,所以由6可以分成1和5可以想到6可以分成几和几……”接下来就利用刚学习的6的分与合的方法学习7的分与合,让学生自主学习,自主探索,最后完成“想想做做”的题目。整节课学生都在动手、动脑,在愉悦的氛围中学习,体验了6、7的分与合的探索过程,轻松地完成了学习任务。

二、学会联想,促进学生主动思考问题

让学生学会提问题,离不开仔细观察,认真比较、分析、综合,这些方法平时在教学中要多加应用,教师还要鼓励学生大胆想象、联想。如在教学“连加、连减”时,针对例题1,我先根据教学图编一个故事,教学第二个例题时让学生根据图自己展开想象、编故事。从中可以看出知识面越广,联想力就越强,有了联想,问题意识才能得到培养。

三、善待学生的好奇心,珍爱问题的源泉

居里夫人说:“好奇是人类第一美德。”好奇是儿童的天性,他们常常会提出一些让成人意想不到的问题,无时无刻不表现出了解大自然、探索大自然的强烈愿望。周培源从小就爱问为什么,如“小鸟为什么会在天上飞”“白云为什么会飘”等等,有一次他和小伙伴发现了一个水池,老是会发出“咕噜咕噜”的声音,他就想这是为什么。由此萌动了好奇心,他细心钻研,后来发现这是个沼气池。因为他从小就爱问,而且自己能专心研究,最终成为一名科学家。为什么儿童能提出大人们提不出的问题?原因就在于好奇心,有了好奇心,就会产生解决问题的愿望,这是问题的源泉,也是创新的开始,我们应加以善待和珍爱。

4学习数学的兴趣激发

运用多媒体等现代化教学手段,激发兴趣

电教把媒体引入数学课教学,既能耳闻,又能目睹,这样的教学效果别具特色。电教媒体具备独有的特点,集声、色、光、图为一体,以其特有的方式使学生多种感观同时受到刺激,促进情感思维信息在传递与反馈方面形成快速交互,从而激发学生联想和想象能力的迅速萌发,促进学生全面、均衡的、主动的发展。

如:在“直线和线段”的教学中,先用多媒体呈现出“小灵通和小机灵带我们去漫游数学王国”的画面,在简短讲述后,提问“你们愿意去吗?数学王国里有许多数学知识等着你们来学习。看,今天我们学习什么?”再出示两组“线的对比图”,同时提问:“左右两组线有什么不同?”“直线是怎样的?”接着又用动态画面引导学生认识直线。“小灵通和小机灵给你们变一个小魔术。”这时,用动态演示:先出现一个亮点,由这个亮点出发,亮点逐渐向左右延伸,成为一条直线。这时老师讲述:由一点,向左向右延伸成了一条直线。这一电教手段的演示,由静态变为动态,再变为静态,更为鲜明直观和有趣。

联系生活,激发兴趣

教学时,教师从日常生活中的实例出发,创设一定情境,激发学生学习兴趣,使学生产生最佳学习状态。如:学习“厘米和米的认识”,要求学生先估计一下讲台、课桌、黑板各有多长,再让学生用自己的方法实际测量,通过讨论交流,发现用不同的测量工具得到的数不同,从而体会到统一测量工具的必要性。在建立1厘米和1米的表象之后,让学生说一说生活中与1米、1厘米长度有关的物体,如图钉的长约1厘米;食指的宽大约是1厘米;讲台的长大约是1米;米尺的长是1米……再让学生估一估、量一量身边熟悉的事物,如门、电视柜、讲桌、铅笔、身高、步长有多长。

一堂课结束,同学们在活泼、友好、团结的气氛中学会了。通过对身边事物的实际测量和估测,激发了学生学数学、用数学的热情。通过这一系列的训练,不仅可以逐渐培养学生估算、估计的能力和测量能力,还可以使学生感受到身边处处有数学,数学就在我身边。又如在教学“认识人民币”时,我设计了这样一个活动:在教室里布置了一家超市,里面摆了好多商品,琳琅满目,选一位小朋友扮演售货员,其他小朋友先仔细观察这些商品的价格,一方面使学生进一步认识了人民币,使课内的数学知识得以巩固。另一方面也让学生真正认识到数学就在我们生活中间。既看得见也摸得着,不再觉得数学是脱离实际的海市蜃楼。而且培养了学生分析问题和解决问题的能力,调动学生学习数学的兴趣。

篇9:七年级数学不等式同步测试题及答案

七年级数学不等式同步测试题及答案

一、选择题

1,a、b两数在数轴上的位置如图所示,下列结论中,正确的是

A.a<0,b>0B.a>0,b<0c.ab>0D.│a│>│b│

2,设“○”,“□”,“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”,“□”,“△”这样的物体,按质量由小到大的顺序排列为()

A.○□△B.○△□C.□○△D.△□○

3,已知实数a,b,c在数轴上对应的点如图所示,则下列式子中,正确的是()

A.cbabC.cb>abD.c+b>a+b

4,若a<0,b>0且│a│<│b│,则a-b=()

A.│a│-│b│B.│b│-│a│C.-│a│-│b│D.│a│+│b│

5,若0

A.a<1

6,已知x>y,且xy<0,│x│<│y│,a为任意有理数,下列式子正确的是()

A.-x>-yB.a2x>a2yC.-x+a<-y+ad.x>-y

二、填空题

7,规定一种新的运算:a△b=ab-a+b+1加3△4=3×4-3+4+1,请比较(-3)△5______5△(-3)(填“<”“=”“>”).

8,若│a-3│=3-a,则a的取值范围是_________.

9,有理数a、b在数轴上的位置如图所示,用不等式表示:

①a+b_____0②│a│____│b│③ab_____④a-b____0.

10,设a,b,c为有理数,且满足用a,b,c分别去乘不等式的两边,会使不等号依次为不变方向,变成等号,改变方向,则a,b,c的大小关系是______.

11,不等式m-5<1的正整数解是_______.

12,若3a-2b<0,化简│3a-2b-2│-│4-3a+2b│的结果是_______.

三、解答题

13,若方程(a+2)x=2的解为x=2想一想不等式(a+4)x>-3的解集是多少?试判断-2,-1,0,1,2,3这6个数中哪些数是该不等式的解.

14,已知2(1-x)<-3x,化简│x+2│-│-4-2x│.

15,已知关于x的不等式2x-m>-3的解集如图所示求m值.

16,(2008新疆建议兵团)某社区计划购买甲、乙两种树苗共600棵,甲、乙两种树苗单价及成活率见下表:

种类单价(元)成活率

甲6088%

乙8096%

(1)若购买树苗资金不超过44000元,则最多可购买乙树苗多少棵?

(2)若希望这批树苗成活率不低于90%,并使购买树苗的费用最低,应如何选购树苗?购买树苗的最低费用为多少?

17,某童装加工企业今年五月份每个工人平均加工童装150套,最不熟练的工人加工童装套数为平均套数的`60%,为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从今年六月起进行工资改革,改革后每个工人的工资分两部分:一部分为每人每月基本工资200元;另一部分为每加工一套童装奖励若干元.

(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低标准450元,按五月份工人加工的童装套数的计算,工人每加工1套童装企业至少应该奖励多少元?(精确到分)

(2)根据经营情况,企业决定每加工1套童装奖励5元,工人小张争取六月份工资不少于1200元.问小张六月份应至少加工多少套童装?

答案

一、1,B.解析:数轴上原点右边的数是正数,原点左边的数是负数,故选项B正确,而选项C中ab<0,故C错误,选项D中│a│<│b│故选项D错误.

2,D.解析:由第一个图可知1个○的质量大于1个□的质量,由第二个图可知1个□的质量等于2个△的质量,因此1个□质量大于1个△质量,故选D.

3,C.解析:由数轴可知c

4,C.解析:利用绝对值性质│a│=,从而将四个选项中代数式化简看哪一个结果为a-b.

5,A.正确:因为0

6,C.解析:x>y利用不等式基本性质3,两边都乘以-1得-x<-y则A错误,而-x<-y,利用不等式基本性质1,两边都加上a,得-x+a<-y+a,因此选项c正确,而a错误,另外由x>y,xy<0,则x>0,y<0又│x│<│y│可得x<-y,不是x>-y故D错误;又x>y利用不等式基本性质2,两边都乘以a2(a≠0)可得a2x>a2y,而这里没有确定a是≠0的,故a2x>a2y不一定成立,因此B错误.

二、7,<.解析:依据新运算a△b=ab-a+b+1计算-3△5,5△(-3)再比较结果大小.

8,a≤3.解析:根据│a│=-a时a≤0,因此│a-3│=3-a,则a-3≤0,a≤3.

9,①<②<③>④>解析:由数轴上的数可知:a<0,b<0且│b│>│a│,因此a+b<0,ab>0,a-b>0.

10,a>b>c.解析:由不等式基本性质②和③可知a>0,b=0,c<0,所以a>b>c

11,1,2,3,4,5.解析:不等式m-5<1,利用不等式基本性质1,两边都加上5得m<6,其中正整数解1,2,3,4,5

12,-2.解析:由3a-2b<0则3a-2b-2<0故│3a-2b-2│=-(3a-2b-2),同理│4-3a+2b│=4-3a+2b,原式=-(3a-2b-2)-(4-3a+2b)=-3a+2b+2-4+3a-2b=-2.

三、13,解:把x=2代入方程(a+2)x=2得2(a+2)=2,a+2=1,a=-1,然后把a=-1代入不等式(a+4)x>-3得3x>-3,把x=-2代入左边3x=-6,右边=-3,-6<-3,∴x=-2不是3x>-3的解;同理把x=-1,x=0,x=1,x=2,x=3分别代入不等式,可知x=0,x=1,x=2,x=3这4个数为不等式的解.

14,解:2(1-x)<-3x,2-2x<-3x,根据不等式基本性质1,两边都加上3x,2+x<0,根据不等式基本性质1,两边都减去2,x<-2,∴x+2<0,-2x>4,∴-4-2x>0,∴│x+2│-│-4-2x│=-(x+2)-(-4-2x)=-x-2+4+2x=x+2.点拨:先利用不等式基本性质化简得x<-2,再根据代数式中要确定x+2,-4-2x的正负性,从而将x<-2不等式利用不等式基本性质变形可得:x+2<0,-4-2x<0最后化简得出结果.

15,解:2x-m>-3,根据不等式基本性质1,两边都加上m,2x>m-3,根据不等式基本性质2,两边都除以2,x>,又∵x>-2,∴=-2,∴m=-1.点拨:解不等式x>,再根据解集得=-2,本题将一元一次方程和一元一次不等式有机地结合起来,同时还利用了数形结合的方法,从数轴上观察一元一次不等式的解集x>-2.

16,解:(1)设最多可购买乙树苗x棵,则购买甲树苗()棵

.

答:最多可购买乙树苗400棵.

(2)设购买树苗的费用为y

根据题意

∴当时,y取最小值.

.

答:当购买乙树苗150棵时费用最低,最低费用为39000元.

17,解:(1)设工人每加工1套童装企业至少要奖励x元,依题意可得:200+150×60%x≥450,解这个不等式得x≥2.78,所以工人每加工1套童装企业至少应奖励2.78元.(2)设小张在六月份加工x套童装,依题意可得200+5x≥1200,解这个不等式得x≥200,所以小张在六月份应至少加工200套童装

篇10:七年级数学《认识不等式》评课稿

七年级数学《认识不等式》评课稿

宋老师本节课的教学设计合理,紧紧围绕教学目标,通过生活实例、观察、类比进行教学活动,由通过师生互动、生生互动的方式认识了不等式。体现了教师主导、学生主体.通过学生与教师身高比较(学生熟知的生活背景),从而引入不等式符号,体现从学生“现有发展区”向“最近发展区”发展,由浅入深地引导学生逐步认识不等式,并提供了学生进行数学活动的时间和空间,让学生感悟到等式与不等式的联系与区别,体现了重视教学过程教学方法与育人价值的思想。在落实双基方面做了精心准备,选题由浅入深,题目典型能较好发反馈学生掌握情况。学生在本节课中的'收获不仅仅停留在认识了不等式,而是通过类比发现了等式与不等式的联系与区别,掌握了合作交流、自主探究的学习方法,体验了学习成功的快乐!

需改进之处:

1.引入不够创新,过于普通;

2.个别提问的有效性不高;

3.学生资源未能很好的利用。

总之,本节课体现了执教者扎实的教学功底,较高的综合素质。通过听课和评课,我从执教者身上学到了许多好的教学策略和方法,吸收并应用在自己的教学中。

篇11:七年级数学《不等式及其解集》说课稿

各位领导

你们好!

今天我要为大家讲的课题是 : 《 不等式及其解集 》 。

首先,我对本节教材进行一些分析:

一、教材分析:

1、教材所处的地位和作用:

本节内容在全书及章节的地位是:《 不等式及其解集 》是 新人教版 初中数学教材第 七 册第 九 章第 1 节内容。 学生已初步体会到生活中的量与量之间的关系,有相等与不等的情形,就是有大小之分…… 在此之前,学生已学习了 等式 基础上,这为过渡到本节的学习起着铺垫作用。

2、教学目标:

根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)知识目标:

了解不等式及一元一次不等式概念。

理解不等式的解、解集,能正确表示不等式的解集。

(2)能力目标:

通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生 互动 ,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。

(3)情感目标:

通过对 《不等式及其解集》 的教学,引导学生从现实生活的经历与体验出发,激发学生对地理问题的兴趣,使学生了解地理知识的功能与价值,形成主动学习的态度,让学生初步认识到地理知识的优越性,同时渗透 安全教育 ;通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3、重点,难点以及确定的依据:

本课中 不等式相关概念的理解和不等式的解集的表 是重点, 不等式解集的理解 是本课的难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:

二、教学策略(说教法):

(一)教学手段:

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

1、“读(看)——议——讲”结合法

2 、读图讨论法

3 、教学过程中坚持启发式教学的原则

基于本节课的特点: 第一节知识性特点 ,应着重采用 自主探讨 的教学方法。

(二)教学方法及其理论依据:

坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据学生的心理发展规律,联系实 际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看图片 、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生根据现实生活的经历和体验及收集到的信息(感性材料)来理解课文中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。

使学生学习对生活有用的数学,学习对终身发展有用的数学的基本理念。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中要积极培养学生学习兴趣和动机,明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

三、学情分析:(说学法):

1、学生特点分析:

中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

2、知识障碍上:

(1)知识掌握上,学生原有的知识 等式 ,许多学生出现知识遗忘,所以应 更学生更过的时间分组预习讨论 。

(2)学生学习本节课的知识障碍。 不等式解集的表示方法

知识,学生不易理解,所以教学中教师应予以简单明白、深入浅出的分析。

3、动机和兴趣上:

明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

最后我来具体谈一谈这一堂课的教学过程:

四、教学程序及设想:

教学程序:

(一)课堂结构: 出示学习目标,预习展示 , 练习反馈 , 课堂自测, 布置作业 五 个部分。

(二)教学简要过程:

1、出示学习目标,课前预习

出示学习目标,学生观察学习目标,自主预习。

设计意图:有了明确的学习目标才能激发起学生的学习热情,才能充分调动学生学习的积极性。

学生分小组进行自主探究学习,同学之间进行合作交流,教师巡视指导,观察学生的探究方法,并倾听学生之间的探讨。

【设计意图】:本次任务为本节课的核心任务,其目的是通过学生的自主学习,理解本节几个概念,并通过学生的举例回答,从具体的实例中去掌握这几个概念。

2 、预习反馈

让学生自己来讲解,有利于提高学生的语言表达能力,学生用语言来概括这几个概念,培养学生的数学语言表达能力及抽象概念能力。

3 、老师归纳,练习反馈

归纳补充知识点,并进行练习反馈。针对每个知识点设置不同的练习。如

1 ) 、不等式的定义设置 , (判断)下列各式是否为不等式;

(1)-2<5 (2)x+3> 2x (3)4x-2y<0 (4)a-2b

(5)x2-2x+1<0 (6) a+b≠c (7)5m+3=8 (8)x≤-4

2 ) 、用不等式表示:

⑴ a与1的和是正数;

⑵ y的2倍与1的和小于3;

⑶ y的3倍与x的2倍的和是非负数 ;

⑷ x乘以3的积加上2最多为5、

3 ) 、下列说法正确的是( )

A、x=3是2x>1的解

B、x=3是2x>1的唯一解

C、x=3不是2x>1的解

D、x=3是2x>1的解集

及认识不等式解集的表示方法有两种:最简形式与在数轴上表示。分组讨论找规律,记口诀。(定界点,定方向)相关题型:

用数轴表示不等式的解集:

(1)x>-2; (2)x≤3; (3)y≤0

找三名同学上台展示。

展示学生的成果,让学生在学习过程中感受学习的乐趣和成功的喜悦,增强学生的学习兴趣。

体会不等式是解决实际问题的有效工具。

4 、课堂自测

检测学习本节课的掌握情况。

5 、布置作业

分层作业。针对学生的学习情况,让每一名同学都 能完成 老师布置的任务,增强成就感及学习数学的兴趣。 A类: 教科书P119,120:1,2,3;B 类: 卷:能力提高作业。

五、反思:

本节教学,有以下几点特别值得回味的地方。

1、从生活中来回到生活中去的教学设计

新课标指出:“数学的教学活动必须建立在学生的认知发展水平和已有知识经验基础上。”心理学的研究表明,学习内容和学生生活背景、知识背景越接近,学生自觉接纳知识懂得的程度就越高。导入的恰当、合理会引起学生极大的学习兴趣,对知识的衔接和理顺起到画龙点睛的作用,又对新知识起到设疑、点拔的作用。用学生身边感兴趣的实例 过马路、跷跷板体验生活中的不等式 ,一方面引起学生的参与欲,另一方面也体现了知识拓展的需要。因为这样既可引出一元一次不等式的意义,又让学生产生学习不等式的需求,也使学生对解不等式 的方法有了很自然的联想 让学生充分感受到学习一元一次不等式的必要性。使学生进一步认识到“数学来源于生活,反过来又为生活服务”,增强学好数学的信心与决定。

2、重视数学思想方法的渗透

数学思想方法是数学的灵魂,知识转化为能力的桥梁。在整节课的教学中都非常重视数学思想方法的渗透。学习不等式时,类比方程、不等式解集的概念,渗透“类比”思想。使学生在已有知识上进行迁移,在主动参与、探索交流中不知不觉学到了新知识。利用数轴求不等式的解集,渗透“数形结合”思想。掌握不等式的解集 在数轴上的表示 ,利用数轴把解集 讲解得非常透彻,使学生充分认识到“数形结合”思想方法的用处。列不等式解决实际问题,渗透“建模”思想,培养学生应用数学的意识。最后的小结,不是流俗的学习内容小结,而是思想方法的小结,它起到了提纲挈领,梳理总结的目的。

3、重视数学的“再创造”

课堂教学改革的宗旨和根本出发点是:改善和促进学生全面、持续、和谐地发展。建构主义理论强调学习的主动性、社会性和情景性,认为学习者不是知识信息的被动吸收者,而是主动积极的建构者。留给学生的作业:完成课外探究题,借助数轴归纳求不等式的解集一般规律。教学时重视了数学的“再创造”,由学生本人把需学的东西自己去发现和创造出来。学生的学习不再是一种被动地吸收知识,反复练习,强化储存知识的过程,而是通过反复研究、探索、思考、概括,亲身经历“再创造”的探究性学习过程,从而自主获得知识。

总之,教学设计时体现新课程标准的思想和理念,注重知识与能力并重,培养发展学生自主探索的独立思考精神。

篇12:七年级数学《一元一次不等式组》说课稿

吴xx老师开设了一堂数学教研课,内容是《一元一次不等式组》。一元一次不等式组是求解数学问题的一个重要工具,吴老师选择方法,巧妙化解重点、难点,较好地完成了本节课的教学任务,听课的老师一致认为是一堂高效的课。

下面我就吴老师的课堂教学谈些粗浅的看法。

首先吴老师的课前准备是充分的,能充分考虑学生的认知水平,科学设计问题,按不同的时段进行有效训练,让不同的学生都有一定的收获。一方面,注重基础训练设计,课堂教学开始阶段设计几道简易的一元一次不等式组,由学生合作完成,并有学生自行观察归纳一元一次不等式组解集的确定方法。方法归纳后,吴老师不是简单地要求学生记忆,而是设计若干道简易的一元一次不等式组,让学生按方法直接确定解集,进一步体会方法的规律性。

另一方面,吴老师更注重知识拓展问题的设计。在特殊的一元一次不等式组解集的确定,逆向思维的培养等问题的设计都层次分明、富有挑战性,有利于学生主动学习。吴老师的课堂教学能力较强,课堂教学思路清晰,课堂教学流程设计科学合理。注重讲练结合,针对学生练习中出现的问题能恰当地点拨指导,规范解题格式,有效地提高学生的解题能力。吴老师课堂教学过程中能注重数学思想和方法的渗透,本节课中他主要指导学生运用数形结合、分类讨论、同组合作讨论等方法,强化学生思维能力的训练。在讲授不等式组解集的确定和由解的情况确定字母系数的值或取值范围时,他都要求学生画数轴,在数轴上标明运行趋势,同时运用教具演示,让学生直观地感知相关量的关系,很自然地明确解题的思路。复杂问题出现时,吴老师不是要求学生直接动笔求解,而是启发学生用什么方法把复杂问题简单化。吴老师课堂教学的另一特点就是讲解详略得当,该讲的就讲细讲透,让学生听得清楚,能真正掌握运用,该略的地方一带而过。注重变式练习,学生训练及时有效。吴老师课堂教学语言精炼,对问题的阐述准确无误,能指导学生全面归纳法则、规律、方法,要求学生在明确一般性的规律时要学会思考有没有特殊性。

吴老师这节课无论从问题的设计、学生的训练,还是教师的讲解点拨,应该说都是不错的。建议:(1)解例1时应放手让学生自己去做,因为前面的探究过程已经很到位了,要把握契机,趁热打铁。(2)、当预设节奏与课堂的实际节奏不一致时该如何处理,因为缺乏经验,有待于进一步提高。(3)、学生演示出现的问题应尽可能让学生去发现并纠正。(4)其中有一处小错误当时没有发现,应该在课堂上及时做好处理。(5)、善于借助辅助教学手段实施课堂教学。

总之,吴老师这节课上得很成功,成功得益于课前的精心准备,得益于平时对教材、教法、学情的研究。我们只要有一份责任,心中装有学生,我们的课堂都会有精彩呈现,课堂效果一定会有效,甚至高效。

篇13:《一元一次不等式组》七年级数学说课稿

今天我说的课题是新人教版七年级下册第九章第三节《一元一次不等式组》第一课时的内容。下面我从六个方面对本节课进行说明。

一、背景分析

1、学习任务分析

《一元一次不等式组》它与第八章学习的方程组有类似之处;它是在一元一次不等式的基础上发展起来的新概念;是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。它是解决有关自然科学领域中实际问题的重要工具。

本节课是第一课时,利用数学中的“类比”思想,类比方程组引入不等式组;利用数学中的“数形结合”思想,用数轴直观表示不等式组的解集;利用数学中的“建模”思想,列不等式组解决实际问题。

因此本节课的教学重点为:理解有关不等式组及其解集的含义。会解由两个一元一次不等式组成的不等式组。

2、学生情况分析

从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化归能力。但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。

基于对学情的分析,我确定了本节课的教学难点是:正确理解不等式组的解集。

二、教学目标设计

知识与技能目标

理解一元一次不等式组和不等式组的解集的概念。会解不等式组,并会用数轴确定解集;培养学生能用类比的思想探索新知;通过学生的观察、思考、分析、表达,培养学生解决问题的能力。

数学思考

经历一元一次不等式组解集的探究过程,渗透类比,化归和从特殊到一般的思想。

解决问题

通过动手操作、观察、讨论等得出一元一次不等式组解集的两种求法,进一步提高学生应用已有知识解决数学问题的能力。

情感态度与价值观目标

让学生充分参与数学学习活动,从而获得成功的体验,建立良好的信心。

三、课堂结构设计

对于课堂教学强调的是一种动态的可持续发展的教学模式。教师“教”是围绕学生的“学”而设计的。

在“教”上主要体现为:设置悬念―引导操作―组织探索―指导应用。

在“学”上主要体现为:动手实践―组织观察―自主探索―合作交流。

四、教学媒体设计

本节课使用多媒体辅助教学,概念教学使用生活中的游戏图片,探究用数轴表示一元一次不等式组的解集使用动画演示,并使用投影仪展示学生动手的成果。使用多媒体辅助教学有助于在共享集体思维成果的基础上,完成对所学知识的意义建构。

五、教学过程设计:

美国心理学家布鲁纳说:学习的最好的动力是学习材料的兴趣。因此,在认真分析教材、教法、学法的基础上,设计教学过程如下

一、设疑激情引出新课

活动1:利用多媒体演示,为庆祝中华人民共和国成立六十周年,我市举行文艺晚会,需要我班几名女同学参加舞蹈演出,被选为舞蹈演员的条件为:身高高于160cm且低于165cm   用个大括号把两个一元一次不等式联立起来)且低于165cm (x<为宜。要求学生用数学式子表示参加演出的身高限制:身高高于160cm。

你能类比二元一次方程组给它起个名称吗?通过学生的回答,从而引出课题:9.3 .1一元一次不等式组。

为了透彻理解概念,我设计一组判断题。

练习:判断是不是一元一次不等式组?

师生总结:

(1)组成不等式组的不等式个数至少两个;

(2)其中每个都是一元一次不等式;

(3)一个不等式组中只能有一个未知数。

一元一次不等式组的定义:由几个未知数相同的一元一次不等式所组成的不等式组叫做一元一次不等式组。

把枯燥的复习融入到新课学习中,把有教育意义的话题做为新棵的引入让学生欣喜并激发他们的爱国心和表现欲,使新课的开场愉悦而有意义。

二、尝试探讨 总结规律

活动2:针对刚刚得到的不等式组

②:

问:谁能成为舞蹈演出的演员,为我校做一点微薄之力?分别请身高高于160厘米的女同学和身高低于165厘米的女同学站起来(多媒体演示),两次都站起来的女同学,就成为参加演出的舞蹈演员,这个实例抽象成一个简单的数学问题。相当于两个一元一次不等式的解集在即满足不等式①,又满足不等式②。一元一次不等式组的解集是要同时满足两个不等式。

怎样去找这个不等式组的解集呢?可设计一个可以翻转的幻灯片。分别在数轴上表示两个不等式解集。然后把他们合二为一,同学们很容易在数轴找出两个不等式解集的公共部分――即不等式组的解集。

几个一元一次不等式解集的公共部分叫做一元一次不等式组的解集。

并用式子记作:160

利用现实生活中的例子并当场演示实验,可以增强学生参与数学活动的意识,充分感受到发现问题和解决问题所带来的愉悦,建立良好的自信心。

如此设计可以让静止的数轴动起来,让学生对不等式组的解集理解更深刻,解决了难点,同时让学生了解到求不等式组的解集时,关键是利用数轴,渗透数形结合的思想。

篇14:七年级下册数学一元一次不等式知识点

七年级下册数学一元一次不等式知识点

1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1

一元一次不等式组

1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

练习题

一、选择题

1、在数轴上表示不等式 ≥-2的解集,正确的是( )

A B C D

2、下列叙述不正确的是( )

A、若x<0,则x2>x B、如果a<-1,则a>-a

C、若 ,则a>0 D、如果b>a>0,则

3、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )

4、不等式 的正整数解为( )

A.1个 B.3个 C.4个 D.5个

5、不等式组 的整数解的和是 ( )

A.1 B.2 C.0 D.-2

6、若 为非负数,则x的取值范围是( )

A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2

7、下列各式中是一元一次不等式的是( )

A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0

8、若│a│>-a,则a的取值范围是( )

A. a>0¬ B.a≥0¬ C.a<0¬ D.自然数

9、不等式组 的解集是( )

10、如果关于x、y的方程组 的.解是负数,则a的取值范围是

A.-45 C.a<-4 D.无解

11、若关于x的不等式组 的解集是x>2a,则a的取值范围是

A. a>4 B. a>2 C. a=2 D.a≥2

12、若方程组 中,若未知数x、y满足x+y>0,则m的取值范围是

二、填空题

13、不等式2(1) x>-3的解集是 。

14、用代数式表示,比x的5倍大1的数不小于x的 与4的差 。

15、若(m-3)x<3-m解集为x>-1,则m .

16、三角形三边长分别为4,a,7,则a的取值范围是

17、若不等式组 的解集为-1

18、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛

初中中心对称知识点

1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点。

2、心对称的两条基本性质:

(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

(2)关于中心对称的两个图形是全等图形。

3、中心对称图形

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

提高数学思维的方法

建立错题本,培养正确的思维习惯

每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。

这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和感想。

审题很关键

成也审题败也审题。如何审题呢?

(1)这个题目有哪些个已知条件?我能不能把已知条件分开?

(2)求解的目标是什么?对求解有什么要求?

(3)能不能画一个图帮助思考?好多问题是没有看清楚题意致错。审题不清,你做得越多,可能错的就越多。

(4)所给出的已知条件相互之间有什么关系?能不能从中发现隐含条件?

(5)已知条件与求解目标有什么联系?能不能从中获得解题的思路?找到进门的门槛?

篇15:《一元一次不等式组》七年级数学说课稿

《一元一次不等式组》七年级数学说课稿

说教材的地位与作用

《一元一次不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。是继一元一次方程、二元一次方程组和一元一次不等式之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数的重要基础,具有承前启后的重要作用。

说教学目标

(一)、知识与能力

1.掌握一元一次不等式组以及一元一次不等式组的解集的概念。

2.会解一元一次不等式组,并教会学生通过在数轴上表示不等式的解集得到不等式组的解集。

(二)、过程与方法

1.创设情境,通过实例引导学生考虑多个不等式联合的解法。并总结一元一次不等式组的解与一元一次不等式的解之间的关系。 2.通过对典型例题的分析加深对结一元一次不等式组的认识。

(三)、情感、态度与价值观

1.通过数轴的表示不等式组的解,渗透数形结合这一重要的思想方法。2.在解不等式组的过程中让学生体会数学解题的直观性和简洁性的数学美。

说教学重、难点

重点 1.一元一次不等式组的概念,会用数轴表示一元一次不等式组解集的情况。  2.一元一次不等式组的解法。

难点 灵活运用一元一次不等式组的知识解决问题。

(四)、说教学方法

本节课采用多媒体教学,利用多媒体教学信息容量大、操作简单、形象生动、反馈及时等优点,直观地展示教学内容,这样不但可以提高学习效率和质量,而且容易激发学生学习的兴趣,调动积极性。

(五)、说学生的学法:

学生已经学习了一元一次不等式,并会解简单的一元一次不等式,知道了用数轴表示一元一次不等式的.解集分三步进行:画数轴、定界点、走方向。本节我们要学习一元一次不等式组,因此由一元一次不等式猜想一元一次不等式组的概念学生易于接受,同时能更好的培养学生的类比推理能力。本节所选例题也真正的实现了低起点小台阶,循序渐进,能使学生更好的掌握知识。

六、说教学过程:

本节课我设计了七个活动。

活动一 创设情境 导入新课

1、通过多媒体图片(选择材料通俗易懂,易引起学生的兴趣)引入一元一次不等式组的概念:

活动二 引领学生 探索新知

2、一元一次不等式组

通过上面实际问题的探究,归纳概括出一元一次不等式组的概念和一元一次不等式组解集的概念。

活动三 范例讲解 学以致用

例1: 借助数轴,求下列不等式组的解集:

(1)、(2)、

(3)、(4)、(分析由课件展示)

例2:解不等式组:(1)(学生板演,教师对照多媒体点评)

活动四:反馈练习巩固提高

课堂练习:P48练习(学生板演,教师点评)

设计意图:这四道习题的设置让学生进一步理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组的解集。

活动五 数形结合 总结规律

一元一次不等式组的解集的确定规律:

(1)、多媒体演练

(2)、总结规律:

1. 同大取大, 2、.同小取小;

3、大小小大中间找, 4、大大小小解不了。

活动六:反思小结,体验收获

这节课我们学到了什么?谈谈自己的体会?

多媒体设计表格总结。

活动七: 知识反馈,布置作业

布置作业:为了让不同的人有不同的收获,我把作业分为选做题和必做题。

(一)、课本P49习题3

(二)、选做题:能力提升

1、若不等式组无解,则m的取值范围是。

2、若方程组的解是负数,求的取值范围。

七、教学设计说明与反思:

本节知识与前一节的知识联系比较紧密,在教学中要特别注意本节内容与一元一次不等式的知识的联系,让学生经历知识的拓展过程,并能通过数轴让学生直观地认识一元一次不等式组的解集,使其了解数形结合的作用。另外,在教学过程中加强对不等式组解集含义的讲述,让学生做到较深刻的理解,并熟练掌握用数轴表示不等式的解集,从而进一步引入利用观察法、归纳法即可掌握求不等式解集的办法。

篇16:七年级数学下册不等式的性质课件

人教版七年级数学下册不等式的性质课件

课题:9.1.2 不等式的性质(1)

教学目标

1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质;

2、初步体会不等式与等式的异同;

3、通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性.

教学难点

正确运用不等式的性质。

知识重点

理解并掌握不等式的性质。

教学过程

(师生活动) 设计理念

提出问题 教师出示天平,并请学生仔细观察老师的操作过程,回答下列问题:

1、天平被调整到什么状态?

2、给不平衡的天平两边同时加人相同质量的砝码,天平会有什么变化?

3、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?

4、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢? 通过天平演示,结合自己的观察和思考,让学生感受生活中的`不等关系。

探究新知

1、用“>”或“<”填空.

(1)-1 < 3 -1+2 3+2-1-3 3-3

(2) 5 >35+a 3+a 5-a 3-a

(3) 6 >2 6×5 2×5 6×(-5)2×(-5)

(4) -2 < 3(-2)×6 3×6

(-2)×(-6) 3×(一6)

(5)-4 >-6(-4)÷2(-6)÷2

(-4)十(-2)  (-6)十(-2)

2、从以上练习中,你发现了什么?请你再用几个例子试一试,还有类似的结论吗?请把你的发现告诉同学们并与他们交流.

3、让学生充分发表“发现”,师生共同归纳得出:

不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变.

不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.

不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变.

4、你能说出不等式性质与等式性质的相同之处与不同之处吗? 通过动手、动口、动脑,引导学生运用类比、归纳的数学思想去探究问题,在品尝成功的喜悦中激发出学数学的兴趣,渗透类比思想。

探究新知

2、下列哪些是不等式x+3 >6的解?哪些不是?

-4,-2. 5,0,1,2.5,3,3.2,4.8,8,12

2、直接想出不等式的解集,并在数轴上表示出来:

(1)x+3 >6(2)2x < 8(3)x-2 >0

巩固新知 1、判断

(1)∵a < b ∴ a-b < b-b

(2)∵a < b ∴

(3)∵a < b ∴ -2a < -2b

(4)∵-2a >0 ∴ a >0

(5)∵-a < 0 ∴ a < 3

2、填空

(1)∵ 2a >3a ∴ a是  数

(2)∵  ∴ a是  数

(3)∵ax < a且 x >1 ∴ a是  数

3、根据下列已知条件,说出a与b的不等关系,并说明是根据不等式哪一条性质。

(1)a-3 >b-3  (2)

(3)-4a >-4b 设置这几个练习,既可以培养学生独立思考的能力,又可强化对概念的理解,使学生真正认识不等式的性质。

总结归纳

在学生自己总结的基础上,教师应强调两点:

1、等式性质与不等式性质的不同之处;

2、在运用“不等式性质3“时应注意的问题. 学生通过总结,可以帮助自己从整体上把握本节课所学知识,培养良好的学习习惯,也为下节课学好解不等式打下基础。

小结与作业

布置作业

1、必做题:教科书第134页习题9.1第4、5题

2、选做题:教科书第134页习题9. 1第7题.

3、备选题:

本课教育评注(课堂设计理念,实际教学效果及改进设想)

本节课设计旨在让学生经历通过实验、猜测、验证,发现不等式性质的探索过程.用类比和实验探究法作为主要方法贯穿整个课堂教学之中,并以多媒体作为辅助教学手段.让学生充分进行讨论交流,在自主探索和合作学习中掌握不等式的性质.这样就能有效地突破本节课的难点,为学生今后的学习打下坚实的基础.

教学过程中贯穿了一条“创设情境,引出新知—实验讨论,得出性质—探究辨析,突破难点—运用性质,解决问题”的线索,使学生真正成为学习的主人.在师生交流合作中营造互动的氛围,让学生积极主动地参与教学的整个过程,使他们的学习态度、情感意志和个性品质等都得到不同程度的提高.

为了突破教学难点,让学生能熟练准确地运用“不等式性质3”,本课设计了多样化的练习以巩固所学知识.在学生回答、板演、讨论的过程中,课堂气氛被激活,教学难点被突破,使学生在轻松愉快的氛围中扎实地掌握性质并灵活运用.同时,学习伙伴之间进行了思维的碰撞和沟通.

数学教学方法总结

数学基本不等式知识点提纲

初中生数学教学方法有哪些

常用高效的数学教学方法

数学有哪些常用的教学方法

初中数学《梯形》教学方法

初一数学一元一次不等式知识点

不等式练习题

小学数学教学方法概述论文

小学数学应用题教学方法有哪些

七年级数学不等式教学方法(合集16篇)

欢迎下载DOC格式的七年级数学不等式教学方法,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档