100以内的合数有什么

时间:2023-07-03 03:34:54 作者:小白 综合材料 收藏本文 下载本文

【导语】“小白”通过精心收集,向本站投稿了10篇100以内的合数有什么,下面是小编帮大家整理后的100以内的合数有什么,希望对大家有所帮助。

篇1:合数有哪些100以内

1、合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。

2、100以内的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,一共有25个。

3、所有大于2的偶数都是合数。所有大于5的`奇数中,个位为5的都是合数。除0以外,所有个位为0的自然数都是合数。所有个位为4,6,8的自然数都是合数。

篇2:100以内的合数有什么

所有大于2的偶数都是合数。

所有大于5的`奇数中,个位为5的都是合数。

除0以外,所有个位为0的自然数都是合数。

所有个位为4,6,8的自然数都是合数。

最小的(偶)合数为4,最小的奇合数为9。

每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)

合数是指在大于1的整数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。

合数可分为奇合数和偶合数,也能基本合数(能被2或3整除的),分阴性合数(6N-1)和阳性合数(6N+1),还能分双因子合数和多因子合数。

篇3:质数和合数

教学内容:教科书59、60页的例1、例2,练习十三的第1~4题.

教学目的

1.使学生理解质数和合数的意义,知道它们之间的联系与区别,能根据它们的意义判断哪些数是质数,哪些数是合数.

2.培养学生的观察能力、比较能力、分类能力和归纳概括能力.

教具、学具准备:教师准备视频展示台,学生准备1~12的数字卡片,画圈的作业 纸.

教学过程

一、学习准备.

教师:什么是约数?(学生回答略)写出下面这些数的所有约数:

15    18    20    26    34    41    55

学生写完后,将一学生的作业 在视频展示台上展示出来,集体订正.

教师:请同学们拿出1~12的数字卡片,把这些卡片分成两堆,可以怎样分?

学生小组讨论,尽量发挥他们的聪明才智分卡片,分完后抽学生到视频展示台上来展示,具体说一说他们是怎样分的.如:按能不能被2整除,分成奇数和偶数;按数位的多少,分成一位数和两位数等.只要学生说得有理,老师都及时给予肯定.

二、导入  新课

教师:同学们还有新的分法吗?(没有了)这节课老师要给你们介绍一种新的分法,这就是按一个数的约数的多少来分,把它分成质数和合数.

篇4:质数和合数

三、进行新课

1.教学例1.

教师:怎样按约数的多少分类呢?先请同学们找出下面这些数的所有的约数.(视频展示台展示例1.)

学生做完后,抽一个学生的作业 在视频展示台上展示出来,请同学们判断他做得对不对,然后教师在黑板上出示下表,请学生把答案填写在表内.

1的约数

1

1个

7的约数

1   7

2个

2的约数

1   2

2个

8的约数

1 2 4 8

4个

3的约数

1   3

2个

9的约数

1  3  9

3个

4的约数

1 2 4

3个

10的约数

1 2 5 10

4个

5的约数

1   5

2个

11的约数

1   11

2个

6的约数

1 2 3 6

4个

12的约数

1 2 3 4 6 12

6个

教师:请同学们按约数的多少,把你们手里的数字卡片分别摆放在作业 纸上相应的圈里:

只有一个约数              有两个约数            有两个以上约数

学生分完后,抽一个学生的作业 纸展示在视频展示台上,让学生判断这样分对不对,直到学生全部都能按题中的要求正确分类.这时教师明确地指出:只有两个约数的数是质数,有两个以上约数的数是合数,而只有一个约数的数既不是质数,也不是合数.并完善以下板书:

只有一个约数            只有两个约数            有两个以上约数

既不是质数,也不是合数          是质数                   是合数

教师:质数和合数的主要区别是什么呢?

引导学生讨论后回答:主要区别是这个数约数个数的多少.只有2个约数的数是质数,有两个以上约数的数是合数.

教师:在13至20中,哪些是质数,哪些是合数呢?

学生讨论解答.

教师:仔细观察黑板上表中的5个质数的约数有什么特点?

学生:每个质数仅有的两个约数都是1和这个数本身.

教师:谁来试着给质数下个定义呢?

引导学生归纳出:一个数,如果只有1和它本身两个约数,这样的数叫做质数(师板书质数的定义).

教师:再看表中的合数,都有1和它本身这两个约数吗?(都有)这点和质数是一样的,但它们和质数有哪些不同呢?

学生:除了1和它本身这两个约数外,还有其它约数.

教师:谁来试着给合数下个定义?

引导学生归纳出:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数(师板书合数的定义),并引导学生把质数和合数的意义读一遍.

教师:你觉得判断一个数是质数还是合数的关键词是什么?

要求学生重视“只有……两个……”,“除了……还有……”的句式,并深入理解这些文字的含义.

教师:请同学们写出20以内的质数和合数.

学生写完后,集体订正,并请同学们记住20以内的质数,因为这些数在今后的学习中要经常用到.

教师:请同学们看教科书第59页,看书上还说了些什么?

学生看书后自由发言.如还知道质数又叫素数;知道1既不是质数,也不是合数等.

2.教学例2.

出示例2.

教师:怎样判断呢?小组讨论一下,说说你们的意见.

学生讨论后,引导学生说出第一种方法是:查质数表判断,如17,就可以查我们刚才记住的20以内的质数表,直接判断它是质数;第二种方法是:逐一检查一个数约数的个数.

教师:怎样检查一个数的约数呢?是不是要把这个数的所有约数都查完?

学生:不用,根据质数和合数的'定义,除了1和它本身外,关键是看还能不能找出其它的一个约数就可以判断了.

教师:好!请同学们小组讨论,用检查一个数的约数个数的方法,判断22、29、35、37、87是质数还是合数.

学生讨论后回答:22是合数,因为22除了1和22这两个约数外,还有约数2和11;29是质数,因为29除了1和29这两个约数,就再也没有其它约数了……学生回答完后,再讨论完成第60页中的“做一做”.

3.教学100以内的质数表.

教师:你们发现用查表法判断质数和合数快呢?还是用逐一检查约数的方法判断质数和合数快呢?

生:用查表法快.

教师:为了又对又快地判断质数和合数,我们不仅要掌握20以内的质数表,还要掌握100以内的质数表.怎样做100以内的质数表呢?请同学们翻开书第63页,照练习十三的第1题的方法先写上2~100的数,然后照这道题的要求划去2、3、5、7的倍数,但2、3、5、7本身不能划去,剩下的数就是100以内的质数了.下面请同学们照这个方法做一做.

学生小组讨论做100以内的质数表,做完后请学生与第72页的100以内的质数表比较一下,看自己做的质数表对不对.

四、巩固练习

1.把下面表中的质数用小圆圈起来,把既不是质数又不是合数的数划去.

奇数

1  3  5  7  9   11  13  15  17  19

偶数

2  4  6  8  10  12  14  16  18  20

从这个表中,你知道了什么?

引导学生说出在自然数中(不包括0)最小的奇数是1,最小的偶数是2,最小的质数是2,最小的合数是4,既是奇数又是合数的数有9、15等数,而既是偶数又是质数的数只有2.

2.判断下面各数,哪些是质数,哪些是合数?

23    47    52    33    71    85    97    98

五、课堂小结

师生共同小结以下内容:

1.这节课我们学习了什么内容?

2.什么叫质数?什么叫合数?质数和合数的最大区别是什么?

3.可以用哪些方法判断质数和合数?

4.你还知道些什么?从中掌握了哪些学习方法?

六、课堂作业

指导学生完成练习十三的第2、3、4题.

板书设计

篇5:质数和合数

1的约数

1

1个

7的约数

1   7

2个

2的约数

1   2

2个

8的约数

1 2 4 8

4个

3的约数

1   3

2个

9的约数

1  3  9

3个

4的约数

1 2 4

3个

10的约数

1 2 5 10

4个

5的约数

1   5

2个

11的约数

1   11

2个

6的约数

1 2 3 6

4个

12的约数

1 2 3 4 6 12

6个

只有一个约数                只有两个约数                有两个以上约数

既不是质数,也不是合数              是质数                       是合数

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数).

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.

1既不是质数,也不是合数.

教学设计说明

本课通过对约数的复习,让学生找准原有认知结构与新的学习内容之间的潜在合适性,为新知识的学习建立认知平台,同时用分类活动,把学生推上学习的主体地位,通过“同学们还有新的分法吗?”的提问,创设探究环境,激发学生探求新知的强烈欲望.在新课的教学中,首先告诉学生本课是按“一个数的约数的多少”来分类,在学生明确分类标准的基础上,通过学生的分类活动,让学生自觉地去认识和理解所学的自然数有的只有1个约数,有的有两个约数,有的有两个以上的约数.在学生清楚地认识到有的数只有两个约数,而有的数有两个以上约数的基础上,老师引导学生说出质数和合数的定义,并通过对质数和合数的约数特点的观察比较,让学生掌握质数和合数相同的地方是都有1和这个数本身两个约数;不同点是质数只有这两个约数,而合数除了这两个约数,还有其它约数.抓住“只有……”、“除了……还有……”这些关键词,让学生深刻理解质数和合数的本质特征,深化学生对质数和合数概念的认识.在学生掌握了质数和合数这两个概念后,教师放手让学生用这两个概念去判断一个数是质数还是合数,并在判断的过程中引导学生找到两种基本的判断方法,这就是查表法和约数列举法,寓方法的掌握于知识的教学过程 ,这也是本课的一个特色.接着通过让学生做100以内的质数表,在奇数和偶数中找质数和合数等方式,强化学生对所学知识的理解,提高学生对知识的掌握水平.整个教学过程 注重激发学生的求知欲望,重视发挥学生的主体作用,重视营造生动活泼的学习局面,让学生在轻松和谐的气氛中完成自己的学习任务.

篇6:素数和合数

素数和合数

教学目标:

1、使学生理解素数、合数的意义,会判断一个数是素数还是合数。

2、培养学生观察、比较、概括和判断的能力。

3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩证唯物主义的观点。

教学重点:理解素数和合数的意义。

教学难点:判断一个数是素数还是合数的方法。

教具:多媒体课件。

教学过程:

一、准备复习,创设情境。

1、求7和10的因数。

2、25有几个因数?

二、探究发现,理解新知。

(一)教学例1

1、出示例1,写出下面每个数所有的因数(1~12)。

(1)先小组合作完成例一,分别填出每个数的所有的'因数,并指出各有几个因数。

(2)例1反馈。

(3)同学们观察一下这些数因数的特点:

思考:在自然数范围内,按照每个数的因数个数的特点进行分类,可以分为哪几类?

先独立分类,再小组交流。

(4)学生汇报分类情况。

2、比较每类数因数的特点,教学素数与合数的定义。

(1)先观察有2个因数的数。

谁能发现,它们的因数有什么特点呢?

归纳特点,给出素数的定义。

(2)第三种类型的数与素数的因数比较,又有什么不同?

概括合数的定义。

(3)1既不是素数,也不是合数。

(4)举出素数的例子?

(5)举出合数的例子。

3、自然数按照每个数的因数的多少,又可以怎样分类?

(二)教学例2

1、出示例2。判断下面各数,哪些是素数,哪些是合数?

17、22、29、35、37、87。

(1)同桌先交流一下,再汇报。

(2)37为什么是素数?87为什么是合数?

(3)小结。

(三)看书质疑

(四)游戏。(学号游戏)

(五)出示100以内素数表。学生练习记素数。

三、巩固练习,发展提高。

1、在自然数1~20中:

(1)奇数有――――,偶数有――――;

(2)素数有――――,合数有――――。

2、下面的判断对吗?

(1)所有的奇数都是素数。(  )

(2)所有的偶数都是合数。(  )

(3)在自然数中,除了素数都是合数。(  )

(4)一个合数,至少有3个因数。(  )

3、猜一猜,老师的电话号码是多少。

四、总结。(略)

篇7:质数和合数

教学目标

1.使学生理解质数、合数的概念.

2.熟记20以内的质数.

教学重点

1.理解掌握质数、合数的概念.

2.初步学会准确判断一个数是质数还是合数.

教学难点

区分奇数、质数、偶数、合数.

教学步骤

一、铺垫孕伏.

例1.写出下面各数的所有约数:

1的约数: 2的约数: 3的约数: 4的约数:

5的约数: 6的约数: 7的约数: 8的约数:

9的约数: 10的约数: 11的约数; 12的约数:

二、探究新知.

(一)引导学生归纳.

1.按这些约数个数的多少,可以分为哪几种情况?

2.分组讨论后汇报.

3.引导学生说明:

有一个约数的.(板书:有一个约数的)

有两个约数的.(板书:有两个约数的)

有三个约数的,有四个约数的,有六个约数的.

教师提示:像有三个、四个、六个甚至更多的约数,我们把它们归纳为一种情况,用一句话概括为有两个以上约数的.(板书:有两个以上约数的)

(二)按约数个数的多少,把自然数分成三种情况.

1.分组再讨论.

2.汇报讨论结果.

3.引导学生说出:1的约数是:1(板书:1的约数:1)

有两个约数,它们分别是:

板书:2的约数:1、2

3的约数:1、3

5的约数:1、5

7的约数:1、7

11的约数:1、11

有两个以上的约数,它们分别是:

板书:4的约数:1、2、4

6的约数:1、2、3、6

8的约数:1、2、4、8

9的约数:1、3、9

10的约数:1、2、5、10

12的约数:1、2、3、4、6、12

(三)观察比较发现特点.

1.观察2、3、5、7、11的约数,你发现了什么?

(板书:只有1和它本身两个约数)

2.观察4、6、8、9、12的约数,你发现了什么?

(板书:除了1和它本身还有别的约数)

3.教师明确:根据这些数约数的个数的多少,给这些数分类,也就是今天我们要学习

的新知识,质数和合数.(板书课题:质数和合数)

(四)质数、合数的定义.

1.一个数,如果只有1和它本身两个约数,这样的数叫做质数.(或素数)(板书)

2.一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.(板书)

3.教师提问:1是质数还是合数?

学生明确:1既不是质数也不是合数,因为1只有一个约数,既不符合质数的特点,又不符合合数的特点.

1既不是质数,也不是合数.(板书)

(五)按约数个数的多少给自然数分类.

1.按照能否被2整除可以把自然数分为奇数、偶数,那么,按照约数个数的多少,自然数又可以分为哪几类?(三类:质数、合数和1)

2.教师提问:判断一个数是质数还是合数,关键是找什么?(关键:找约数的个数)

(六)教学例2.

1.判断下面各数,哪些是质数,哪些是合数.

17     22     29     35     37     87

(学生独立练习,集体订正)

教师强调:熟练运用找约数的方法,这种做题法是做对题的关键.

2.反馈练习: 下面哪些数是质数,哪些数是合数?

19     21     43     67

(七)介绍100以内的质数表.

1.除了用找约数的方法判断一个数是质数还是合数,还可以用查质数表的方法.

2.用质数表检查例2

检查方法;表中有17、29、37,说明是质数;

22、35、87表中没有,又不是1,说明是合数.

3.教师提示:要熟记20以内的质数

三、全课小结

同学们,这节课你学到了什么知识?

四、课堂练习

1.下面是2到50的数,下话画掉2的倍数,再依次画掉3、5、7的倍数(但2、3、5、

7、本身不画掉),剩下的数都是什么数?

2     3     4     5     6     7     8     9     10

11     12     13    14    15    16    17    18    19    20

21     22     23    24    25    26    27    28    29    30

31     32     33    34    35    36    37    38    39    40

41     42     43    44    45    46    47    48    49    50

教师提示:古希腊的数学家就是用这种方式找质数的,有兴趣的同学可以用这种方法找100以内的质数.

2.检查下面各数的约数的个数,指出哪些是质数,哪些是合数,分别填在指定的圈里,再用质数表检查.

3.填空题.

①质数有(   )个约数,合数至少有(   )个约数.

②最小的'质数是(   ),最小的合数是(   ).

③(   )既不是质数也不是合数.

4.判断.

①所有的奇数都是质数.(    )

②所有的偶数都是合数.(    )

③在自然数中,除了质数以外都是合数.(     )

④既不是质数也不是合数.(      )

5.在整数1~20中:

①奇数有:                   偶数有:

②质数有:                   合数有:

五、板书设计

篇8:质数和合数

有一个约数的

有两个约数的

有两个以上的数的

1的约数1

2的约数1、2

3的约数1、3

5的约数1、5

7的约数l、7

11的约数1、11

4的约数1、2、4

6的约数1、2、3、6

8的约数1、2、4、8

9的约数1、3、9

10的约数l、2、5、10

12的约数1、2、3、4、6、12

l既不是质数也不是合数

一个数,如果只有1和它本身两个约数,这样的数叫做质数(素数)

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.

篇9:合数的定义是什么

合数的定义

36-31形的阴性数在以下式中可以确定是阴性上合数和阴性下合数还是阴性素数。

A阴一上

(3N)^2+N+(b-1)/36=W^2

A阴二上

(3N)^2+2N+(b-5)/36=w^2+w

N

A阴二下

(3N+2)^2+4N+2+(b+31)/36=W^2+w

N

N自然数,b阴性数(加1能被6整除的),W另一自然数。

两式都没有整数解的,这个阴性数是素数.36-25形的阴性数在以下式中可以确定是阴性上合数和阴性下合数还是阴性素数。

A阴三上

(3N+1)^2-N+(b-11)/36=w^2

N

A 阴三下

(3N+2)^2+N+(b+25)/36=W^2

N

N自然数,b阴性数(加1能被6整除的),W另一自然数。

两式都没有整数解的,这个阴性数是素数.36-19形的阴性数在以下式中可以确定是阴性上合数和阴性下合数还是阴性素数。

A阴四 上

(3N+1)^2+2N+1+(b-17)/36=w^2+w

N

A阴四下

(3N+1)^2+4N+1+(b+19)/36=W^2+w

N

N自然数,b阴性数(加1能被6整除的),W另一自然数。

两式都没有整数解的,这个阴性数是素数。36-13形的阴性数在以下式中可以确定是阴性上合数和阴性下合数还是阴性素数。A阴五上

(3N+2)^2-N+(b-23)/36=w^2

N

(3N+1)^2+N+(b+13)/36=W^2

n

N自然数,b阴性数(加1能被6整除的),W另一自然数。

两式都没有整数解的,这个阴性数是素数.36-7形的阴性数在以下式中可以确定是阴性上合数和阴性下合数还是阴性素数。

A阴六

(3N+2)^2+2N+2+(b-29)/36=w^2+w

n

(3N)^2+4N+(b+7)/36=W^2+w

n

N自然数,b阴性数(加1能被6整除的),W另一自然数。

两式都没有整数解的,这个阴性数是素数.

阳性数可在以下各式中确定是阳性上合数和阳性下合数还是阳性素数。A阳一 上

(3N)^2+N-(B-1)/36=W^2

一个阳性数代入此式B,有整数解的,这个阳性数是阳性上合数,并能很快找到数因子.

A阳一下

(3N)^2-N-(B-1)/36=W^2

一个阳性数代入此式B,有整数解的,这个阳性数是阳性下合数,并能很快找到数因子;

N〈B/252, N自然数,B阳性数(减1能被6整除的),W另一自然数。

两式都没有整数解的,这个阳性数是质数。

阳二上

(3N)^2+4-(B-7)/36=w^2+w

一个阳性数代入此式B,有整数解的,这个阳性数是阳性上合数,并能很快找到数因子;

一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。如4,6,9,15,49等都是合数。[1]

A阳二下

(3N+2)^2+2N+2-(B+29)/36=W^2+w

一个阳性数代入此式B,有整数解的,这个阳性数是阳性下合数,并能很快找到数因子;

N〈B/252, N自然数,B阳性数(减1能被6整除的),W另一然数。

两式都没有整数解的,这个阳性数是质数。

阳三上

(3N+1)^2+N-(B-13)/36=w^2

一个阳性数代入此式B,有整数解的,这个阳性数是阳性上合数,并能很快找到数因子;

A阳三下

(3N+2)^2-N-(B+23)/36=W^2

一个阳性数代入此式B,有整数解的,这个阳性数是阳性下合数,并能很快找到数因子;

N〈B/252, N自然数,B阳性数(减1能被6整除的),W另一然数。

两式都没有整数解的,这个阳性数是质数。

阳四上

(3N+1)^2+4N+1-(B-19)/36=w^2+w

一个阳性数代入此式B,有整数解的,这个阳性数是阳性上合数,并能很快找到数因子;

A阳四下

(3N+1)^2+2N+1-(B+17)/36=W^2+w

一个阳性数代入此式B,有整数解的,这个阳性数是阳性下合数,并能很快找到数因子;

N〈B/252, N自然数,B阳性数(减1能被6整除的),W另一然数。

两式都没有整数解的,这个阳性数是质数。

阳五上

(3N+2)^2+N-(B-25)/36=w^2

一个阳性数代入此式B,有整数解的,这个阳性数是阳性上合数,并能很快找到数因子;

A阳五下

(3N+1)^2-N-(B+11)/36=W^2

一个阳性数代入此式B,有整数解的,这个阳性数是阳性下合数,并能很快找到数因子;

N〈B/252, N自然数,B阳性数(减1能被6整除的),W另一然数。

两式都没有整数解的,这个阳性数是质数.

阳六上

(3N+2)^2+4N+2-(B-31)/36=w^2+w

一个阳性数代入此式B,有整数解的,这个阳性数是阳性上合数,并能很快找到数因子;

A阳六下

(3N+1)^2-N-(B+11)/36=W^2+W

一个阳性数代入此式B,有整数解的,这个阳性数是阳性下合数,并能很快找到数因子;

N〈B/252, N自然数,B阳性数(减1能被6整除的),W另一自然数。

两式都没有整数解的,这个阳性数是质数

合数性质

所有大于2的偶数都是合数。

所有大于5的奇数中,个位为5的都是合数。

除0以外,所有个位为0的自然数都是合数。

所有个位为4,6,8的自然数都是合数。

最小的(偶)合数为4,最小的奇合数为9。

每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)

对任一大于5的合数(威尔逊定理)

合数类型

合数的一种方法为计算其质因数的个数。一个有两个质因数的合数称为半质数,有三个质因数的合数则称为楔形数。在一些的应用中,亦可以将合数分为有奇数的质因数的合数及有偶数的质因数的合数。对於後者, (其中μ为默比乌斯函数且''x''为质因数个数的一半),而前者则为

注意,对於质数,此函数会传回 -1,且 。而对於有一个或多个重复质因数的数字''n'', 。

另一种分类合数的方法为计算其因数的个数。所有的合数都至少有三个因数。一质数的平方数,其因数有 。一数若有著比它小的整数都还多的因数,则称此数为高合成数。另外,完全平方数的因数个数为奇数个,而其他的合数则皆为偶数个。

合数相关

只有1和它本身两个因数的自然数,叫质数(或称素数)。(如:由2÷1=2,2÷2=1,可知2的因数只有1和它本身2这两个因数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个因数外,还有其它因数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的因数除了1和它本身4这两个因数以外,还有因数2,所以4是合数。)

100以内的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,一共有25个。

质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,N+1是素数或者不是素数。

如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。

如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。

因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,Hillel Furstenberg则用拓扑学加以证明。

任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积,这里P1

这样的分解称为N的标准分解式。

算术基本定理的内容由两部分构成:分解的存在性、分解的唯一性(即若不考虑排列的顺序,正整数分解为素数乘积的方式是唯一的)。

算术基本定理是初等数论中一个基本的定理,也是许多其他定理的逻辑支撑点和出发点。

此定理可推广至更一般的交换代数和代数数论。高斯证明复整数环Z[i]也有唯一分解定理。它也诱导了诸如唯一分解整环,欧几里得整环等等概念,更一般的还有戴德金理想分解定理。

篇10:质数与合数

教学目标

(一)准确地理解和掌握质数和合数的意义。

(二)会判断一个数是质数还是合数,会把自然数按约数个数进行分类。(三)培养学生观察比较、抽象概括和判断推理的能力。

教学重点和难点

(一)质数、合数的意义。

(二)质数、合数与奇数、偶数的区别。

教学用具

投影片,2~50的自然数表。

教学过程设计

(一)复习准备

1.判断下面各数,哪些是偶数?哪些是奇数?奇数和偶数是根据什么来分的?(投影片)2,3,4,9,14,15,101,187,235,561,740,927,839,456。

2.按照能否被2整除对自然数进行分类:(投影片)

3.请说出下面各数的所有约数:(投影片出题,学生口答老师板书。)

1的约数有________;2的约数有________;

3的约数有________;4的约数有________;

5的约数有________;6的约数有________;

7的约数有________;8的约数有________;

9的约数有________;10的约数有________;

11的.约数有________;12的约数有________。

教师:请观察板书,左边和右边的数各有什么特点?(左边是奇数,右边是偶数。)教师:我们已经学过按照能否被2整除对自然数进行分类。除了这种分法还有没有别的分法呢?这节课就研究这个问题。

(二)学习新课

十个字以内的座右铭有哪些

《质数和合数》教学设计

质数和合数教学设计

质数和合数同步练习题

小学五年级质数合数练习题

辞职报告50字以内

自我介绍范文500字以内

座右铭十字以内

经典童话3分钟以内

加油稿一百字以内

100以内的合数有什么(精选10篇)

欢迎下载DOC格式的100以内的合数有什么,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档