基于机内测试的故障注入系统设计

时间:2023-11-09 03:35:18 作者:oczrcn 综合材料 收藏本文 下载本文

【导语】“oczrcn”通过精心收集,向本站投稿了9篇基于机内测试的故障注入系统设计,下面是小编整理后的基于机内测试的故障注入系统设计,希望能帮助到大家!

篇1:基于机内测试的故障注入系统设计

基于机内测试的故障注入系统设计

摘要:随着机内测试(Built-in Test,BIT)的深入研究和广泛应用,对其验证和评价提出了迫切要求,也使这一领域成为新的研究热点.通过故障注入的方式检测BIT性能是一种有效的验证其测试性水平的方法.在综合国内外相关研究的基础上,详细分析了BIT验证和评价的'重要性、迫切性及其实用价值,着重阐述了关于BIT验证和评价的故障注入系统设计方案,并给出了系统实现的总体结构框图、工作流程图、系统中各子模块的关系图以及实验数据等.在硬/软件设计实现的基础上,进行了初步的BIT验证实验,模拟一定数量的故障注入到被测电路中,用以验证BIT测试的有效性.结果表明该故障注入系统能够满足验证BIT设计指标的要求,达到了预期的初步设计目的. 作者: 张晓杰[1]  王晓峰[1]  金曼[2] Author: Zhang Xiaojie[1]  Wang Xiaofeng[1]  Jin Man[2] 作者单位: 北京航空航天大学,工程系统工程系,北京,100083北京航空航天大学,机械工程及自动化学院,北京,100083 期 刊: 北京航空航天大学学报   ISTICEIPKU Journal: JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS 年,卷(期): 2006, 32(4) 分类号: B2 关键词: 故障注入    故障诊断    测试性    机内测试    机标分类号: TU3 TM7 机标关键词: 机内测试    故障注入    系统设计    验证实验    注入系统    评价    相关研究    实验数据    设计指标    设计实现    设计方案    结构框图    基础    初步设计    流程图    关系图    测试性    应用    性能    软件 基金项目: 基于机内测试的故障注入系统设计[期刊论文]  北京航空航天大学学报 --2006, 32(4)张晓杰  王晓峰  金曼随着机内测试(Built-in Test,BIT)的深入研究和广泛应用,对其验证和评价提出了迫切要求,也使这一领域成为新的研究热点.通过故障注入的方式检测BIT性能是一种有效的验证其测试性水平的方法.在综合国内外相关研究的基础上...

篇2:系统设计通信测试

1串口通信

采用MSComm控件实现PC机与单片机之间的串口通信[11]。

MSComm控件通过OnComm事件响应函数编程实现数据的接收与发送。

1.1串口设置在ClassWizard(类向导)中为MSComm控件定义成员对象(m_ctrlComm),设置串口属性。

1.2接收信息PC机接收电子罗盘航向角和电池电量信息。

使用ClassWizard为MSComm控件添加OnComm事件响应函数。

当下位机发送数据时,触发On-Comm()事件,将字符保存到Byte数组rxdata[]中,根据通信协议对接收到的数据进行分类存储与处理,主要代码如下:1.3探测器运动的控制为了控制探测器运动,添加了前进、左转、右转、加速、减速和停止6个动作按钮。

当动作按钮被按下时,PC机向单片机发送相应的命令控制探测器运动,动作按钮的设计原理类似。

“前进”动作按钮的设计过程如下:使用ClassWizard为“前进”动作按钮添加消息响应函数OnButtonQianjin(),根据通信协议,当“前进”动作按钮被按下时,PC机向单片机发送命令“s11100p1”。

由于串口初始化中设置二进制读/写方式,因此需将其转换为二进制,字符转换及发送代码如下:1.4航向角数据的提取按下“航向角”命令按钮时,PC机向单片机发送命令“s12020p1”,单片机采集当前电子罗盘航向角信息,并向PC机发送信息,PC机接收信息并将其存储于缓冲区,对接收信息进行分析处理,提取航向角数据并实时显示。

电子罗盘采用NMEA-0183传输协议[12],信息结构为$HCHDT,<1>,T*hh。

信息以“$”开始,以“”结束。

“HCHDT”为一帧数据的帧头,<1>为航向角,格式为0.0到360.0,T为真,<*>为校验和标志,为校验和。

信息处理方法:通过搜寻“$HCHDT”,判断是否为一帧数据的帧头。

识别帧头后,通过逗号个数的计数值,提取出航向角数据信息。

1.5电池电量数据的提取为了直观显示电池所剩电量,将其分为4个等级:100%、75%、50%和25%。

按下“电池电量”命令按钮,PC机发送命令“s13001p1”,单片机采集当前电池剩余电量信息,并向PC机发送信息,PC机接收信息并将其存储于缓冲区,对接收信息进行分析处理,提取电量数据并实时显示。

2视频捕获

VC++提供的vfw32.lib库文件以及AVICap窗口类,便于访问视频硬件,并控制视频捕获[13]。

导入vfw32.lib库文件,并在对话框源文件中添加#include“vfw.h”语句。

在对话框中添加图形控件(IDC_PICTURE)作为捕获父窗,在其头文件中加入全局变量HWNDgWndCap,在其初始化函数OnInitialDialog()中,采用capCreateCaptureWindow函数创建视频捕获窗,采用CapDriverConnect()函数实现捕获窗与捕获设备的连接,采用Preview(预览模式)显示视频。

3结语

基于VC++设计了岩腔三维地貌探测器上位机监控系统,运用MSComm控件实现PC机与单片机之间的串口通信,编程简便,工作可靠;采用VFW进行实时视频显示,界面友好,切实有效。

通过上位机监控界面按钮操作实现探测器运动控制、电子罗盘航向角测量、电池剩余电量监测、盐腔三维地貌视频实时显示保存等功能。

作者:关利乐 马春燕 陈晓恒 单位:太原理工大学 信息工程学院 电气与动力工程学院 煤矿装备与安全控制山西省重点实验室

篇3:系统设计通信测试

1测试系统

1.1测试内容根据生产实际测试要求,需要测试传感器的如下电学功能参数:1)高低电流值:指轮速传感器输出脉冲信号的导通电流值(高电流)和关断电流值(低电流);

2)高低电流比:指导通电流和关断电流的比值;3)高低脉冲时间:指一个周期内输出脉冲信号中高电平和低电平的持续时间;

4)占空比:指高电平在一个周期之内所占的时间比率;5)电容值:霍尔芯片中为了提高电磁兼容性而封装的电容的值。

1.2测试原理主动式轮速传感器是利用霍尔原理工作的,测试原理如图2所示。

测试轮是一个刚性脉冲圈,等间距分布着48个相等齿高和齿宽的齿。

轮速传感器中封装有霍尔芯片和永磁铁,霍尔芯片位于测试轮和永磁铁之间,能够检测齿经过传感器时所引起的磁通变化。

当测试轮转动时,轮速传感器会受到测试轮的激励,交替变化的齿隙会引起恒定磁场中的相应波动。

磁通量的连续变化产生相应的信号,再通过信号放大和调理转换成输出电流信号的脉冲沿。

轮速数据以方波脉冲的形式作为外加电流来传递,脉冲频率与轮速呈比例,而且能一直检测到车轮几乎停止(0.1km/h)。

在测试电路中,可使用75Ω的采样电阻器以使其转换为电压波形,再用数据采集卡进行采集。

2测试系统设计

2.1测试系统硬件设计根据测试项目要求搭建的轮速传感器测试系统,主要由工控机、数据采集模块(数据采集卡、GPIB卡、LCR测试仪)、运动控制部分(数字I/O卡、伺服驱动器、伺服电机)和人机交互部分组成,其连接见图3。

2.1.1工控机工控机是测试系统的核心,也是测试软件的载体,其运行的稳定与否直接关系到测试工作能否可靠进行。

系统采用研华的IPC—610工控机,结构紧凑,扩展灵活,具有良好的稳定性,适于在工业环境中使用。

测试中负责处理LCR测试仪测量的数据和数据采集卡采集的数据,并将结果显示在软件界面上。

2.1.2数据采集模块数据采集卡主要完成对传感器输出信号数据的采集。

系统选用凌华PCI—9816数采卡,通过容量为512MB板载内存存储数据波形,以供工控机处理。

该卡具有4通道同步单端模拟输入,并配备了4个高线性度的16位A/D转换器,每通道采样率最高可达20MSPS。

在实际测试中经过验证,可以很好地满足系统的精度要求。

GPIB通信协议转换卡安装在工控机中,用于连接LCR测试仪和工控机,从而实现信息的发送和接收。

其中的LCR测试仪选用安捷伦LCR4263B,用于测量传感器中的电容值,它能快速准确地通过GPIB线缆传输测试数据,测试频率可达100kHz。

2.1.3运动控制部分测试过程中,伺服电机带动测试轮转动,负载小。

选用施耐德Lexium23系列超低惯量伺服驱动器和伺服电机,可以满足要求。

采用伺服位置控制方式,通过数字I/O卡向伺服驱动器的/PULSE,PULSE和/SIGN,SIGN口输出脉冲信号,以控制伺服电机的速度和方向。

2.1.4人机交互部分人机交互由键盘、鼠标和显示器组成,能完成产品型号输入、测试软件调用、测试结果显示、电机启停控制等功能。

2.2测试系统软件开发2.2.1软件功能与界面测试系统软件采用LabVIEW作为开发平台,人机交互界面友好,功能强大,其主要功能包括传感器参数数据采集、实时显示、自动存储、分析计算和自动判断、错误显示,对测试过程和步骤进行自动化控制[5~6]。

根据生产实际分析,本测试软件分为5个部分:1)载入测试文件:输入产品型号,载入对应的测试文件,准备开始自动测试。

2)校准模式:连接信号源和标准电容,用以校准并显示结果。

3)波形显示分析:显示并分析数据波形。

4)手动模式:手动控制继电器,信号灯和伺服电机。

5)自动测试模式:产品自动测试与结果显示。

其中,自动测试模式直接用于生产中轮速传感器的.测试,界面由5个模块构成:结果显示、参数显示、数据统计、测试状态和产品不良提示。

在测试结果显示模块中,可显示测量到的各参数的值,以及各参数允许的最大值和最小值,通过比较用以判断是否通过测试。

在测试参数显示模块中,可显示产品型号、工装型号和测试节拍。

在测试数据统计模块中,可实时显示产品不良数、产品通过数、测试产品总数等信息。

在测试状态模式中,可实时显示测试过程中的各个状态,以方便实时监控。

在测试不良提示模块中,可显示产品测试不良的类别和个数,以供技术人员监控产品质量,若出现较多测试不良,可及时采取措施,保证产品质量。

2.2.2软件流程测试软件流程图如图4所示。

测试前,软件先搜寻插入工控机的板卡,若搜寻成功,软件加载相应驱动并初始化,以做好测试前的准备。

再输入产品型号,更换工装和校准测试轮位置,通过扫描枪扫描工装二维码确认换型状态以后,按下开始按钮开始测试。

测试过程中,软件会响应触发事件逻辑执行各个VI,从而完成整个测试。

通过GPIB卡和GPIB电缆传送执行指令,驱动LCR测试仪,完成对电容的测量;数据采集卡通过高频信号线,采集轮速传感器输出电流在电阻器两端的电压脉冲信号。

所有项目测试完成后,软件根据各个项目的测试结果与各测试项目标准参数进行比较,判断产品是否合格,并显示在自动测试界面上。

测试通过,需要手动进行热刻印打标;测试不通过,需要把报废品放入废料盒,并通过光电传感器检测,否则,不能进行下一次检测。

每一组测试,软件还会统计不良品数和测试节拍,并实时显示测试状态。

测试完成后,项目测试数据和测试结果会自动存储到硬盘里,以方便技术人员查看和产品质量分析。

3测试举例

在正常生产环境下对DF11S型汽车轮速传感器共100只产品进行了测试,测试结果如表1所示。

从表中数据可以看出:本测试系统测得的数据具有一致性好、精度高、稳定性好等特点,证明了该测试系统的设计满足要求。

4结束语

本文设计了一种基于LabVIEW的汽车轮速传感器功能测试系统,实现了对轮速传感器电学功能的自动测试。

通过生产现场对产品连续大批量的测试,所得数据准确可靠,证明了系统的高稳定性。

测试精度达到0.1%,测试速度达到10.5s/pcs,满足了生产中对测量的快速和高精度要求。

本系统人机接口良好,运行稳定可靠,减少了人工因素的影响,保证了产品出厂合格率在100%的水平,满足了现代化生产对测试的要求。

作者:殷苏民 陆文俊 江煜 朱锦萍 王祖声 单位:江苏大学 机械工程学院 机械电子工程系

篇4:系统设计测试论文

1MapX在不同开发环境下应用比较

此处列出VisualC++下部分工具对应的参数:miZoomOutTool缩小工具miArrowTool箭头工具miPanTool手掌工具(移动地图)miSelectTool选择工具miRadiusSelectTool圆形选择工具miRectSelectTool矩形选择工具以上为在VisualC++开发环境下的举例。

在Labview开发环境下将MapX作为控件插入ActiveX容器[9]中,然后通过设置其属性、调用其方法和响应其事件来实现相应基本工具。

地图放大工具实现如图1所示。

因为LabVIEW是用图标代替文本行创建应用程序的图形化编程语言,完成地图放大工具只需要把MapX的CurrentTool的参数(miZoomInTool)和Current-Tool属性节点相连接就可以。

此处列出LabVIEW下部分对应的参数,如图2所示。

通过比较,发现在LabVIEW开发环境下开发所需要的系统存在着很大的优势,只需要连接相应属性参数图标到相应的属性节点图标,编程较简单,减少了工作量。

但是它也存在很多开发困难:1)应用VisualC++,VB,Delphi等开发相关系统属于主流,造成用LabVIEW开发可参照的例程比较少。

2)Labview程序设计是基于数据流的,如果忽略这一点会造成意想不到的错误。

2系统功能的实现

2.1基本工具功能的实现在LabVIEW开发环境下开发相关系统是可行的,MapX提供了几个常用的地图化基本工具,如放大、缩小、漫游、居中等。

地图缩小工具的实现:把MapX的CurrentTool的参数(miZoomOutTool)和CurrentTool属性节点相连接,如图3所示。

ToolNumber是代表自定义工具的常量,这个值可以是1到999之间的整数。

这里创建500来代表测距工具。

Type是决定工具行为的ToolTypeConstants值。

在这里,指定为使用户可以用该工具拖动鼠标来画直线的miToolTypeLine,常量。

Cursor创建为5,它代表miSizeCursor这个常量,地图漫游工具的实现:把MapX的CurrentTool的参数(miPanTool)和CurrentTool属性节点相连接,如图4所示。

在这里只列出所需要的基本工具程序,其他的可根据上述程序举一反三。

2.2自定义工具功能的实现MapX还支持自定义工具的设计,以满足用户特殊的需要。

这里以系统中的测距工具为例介绍自定义工具的设计。

测距工具的用途是确定地图上两点之间的距离。

创建自定义工具,首先调用CreateCustomTool方法[10],如图5所示。

在CreateCustomTool方法调用过程中,指定了3个必选参数:ToolNumber,Type和Cur-sor。

ToolNumber是代表自定义工具的常量,这个值可以是1到999之间的整数。

这里创建500来代表测距工具。

Type是决定工具行为的ToolTypeConstants值。

在这里,指定为使用户可以用该工具拖动鼠标来画直线的miToolTypeLine,常量。

Cursor创建为5,它代表miSizeCursor这个常量,意味着当工具被选中时,它会以方向光标的形式出现。

CreateCustomTool有3个可选的参数,它们也取CursorConstants,常量值。

ShiftCursor指示应在Shift键被按下时出现光标,可选。

如果省略,Shift键对光标没有影响。

CtrlCursor指示应在Ctrl键被按下时出现光标,可选。

如果省略,Ctrl键对光标没有影响。

bInfoTips如果想显示infotips,设置为true,默认值为false。

当CreateCustomTool方法调用以后,编写实现自定义工具的相应程序。

这里主要用到ConvertCoord和Distance两个调用节点。

当调用ConvertCoord节点时把屏幕的Horizontal和Vertical坐标传递给ScreenX和ScreenY两个参数;MapX和MapY两个参数设置为0;Direction参数设置为miScreenToMap,这代表把屏幕的坐标转变为地图上的坐标(即经纬度);Distance节点用于计算两个点之间距离,把起点和终点转变地图上相应的坐标传递给X1,Y1,X2,Y2等4个参数就可完成两点间距离的测量。

具体实现过程如图6所示。

2.3定位功能的实现无线设备GPS定位就是对无线设备采集的GPS数据进行处理,然后在电子地图的基础上进一步完成可视化的过程。

无线设备GPS定位系统测试实验在山东理工大学大棚附近进行。

每一个无线设备在接收到采集GPS数据命令后,开始采集并且向系统发送GPS数据,然后系统对数据进行处理。

这里以设备一为例,由于只需要经纬度两个数据,无线设备发送数据格式为$GPGGA,083435.00,3648.52284,N,11759.33423,E就可满足要求。

3648.52284为采集的纬度,表示36°48.52284';11759.33423为采集的经度,表示117°59.33423'。

这些数据还统一需要转化成度,如图7所示。

首先通过截取字符串函数从索引号17开始截取2个字符为纬度36°,从索引号19开始截取8个为纬度48.52284',再把把字符串通过分数/指数字符串至数值转化函数转换成数值[9],48.52284'除以60加上36°得出纬度值为36.808714°;同理得出经度为117.988904°。

得出经纬度后把纬度传递给AddSym-bol节点的X参数,经度传递给Y参数。

这样就可以在相应的坐标位置以符号的形式显示无线设备了,如图8所示。

3监控界面

通过无线设备GPS定位系统测试实验,完成了设备一的定位显示,如图9所示。

4结论

通过现场小规模测试实验得出,利用MapX控件在LabVIEW开发环境下可以快速方便地完成冬枣栽培环境因子监测系统中的无线设备GPS定位功能,效果良好,可以达到VisualC++,VB,PowerBuilder,Del-phi等完成的水平。

在以后的使用过程中还可以对其进行功能的追加或者进行功能的修改,使其功能更加的可靠、完善。

作者:苏夏侃 杨自栋 单位:山东理工大学 农业工程与食品科学学院

篇5:系统设计测试论文

1关键技术

1.1模拟滤波电路设计由于测量环境中不可避免的存在各种噪声,为此设计了有源二阶压控低通滤波电路,采用大电阻与小电容结合的方式,搭建了截止频率为31.2kHz的低通滤波器如图5所示,其频率特性如图6所示。

从AD8495输出的信号不在0~5V范围内,故设计了二级放大器。

1.2数字电路设计的关键技术1.2.1AD转换器信号经过模拟适配电路后需要经过模数转换器转换成数字量,这里运用CC430内部自带的12bitAD转换器。

基于温度是一个缓变信号,因此其采样频率较低为25kHz。

而CC430的外部高速晶振为26MHz[7-8],经计算和实验验证其采样频率可达80kHz,满足测量频率的要求。

1.2.2无线射频(RF1A)电路设计系统采用CC430作为主控芯片,其将MSP430单片机与CC1101无线射频集成于一体。

运用软件SmartRFStudio对RF参数进行仿真[9],目前国内用的比较多的'免费频315MHz和433MHz,315MHz使用较多,易干扰,因此寄存器初始化中心频率设为433MHz。

设计中选用SMA接头的全向天线,天线阻抗为50Ω,只要设计相应的天线匹配电路,即可实现无线收发功能。

运用软件SI9000对微带线进行了线宽和铜厚设计[10],设计其线宽为55mil,铜厚为1OZ,经过实验验证,该射频收发模块在中心频率为433MHz,数据传输率为250kbit/s时,在300m以内可以实现准确的数据收发。

2软件设计

本系统的软件设计主要包括两部分:一是基于CC430的智能型无线温度监测系统控制终端的软件设计;二是上位机监测软件VB的设计[11-12]。

2.1控制终端的软件设计基于CC430的智能型无线温度检测系统的下位机控制终端是在IAR环境中采用C语言开发的,控制终端的主程序流程如图7所示。

本设计使用的是无协议通信方式,其属于点对点的通信,即两个子系统通信独享一条线路。

其发射板和接收板之间采用中断来进行发射和接收,用LED闪烁表示响应,程序流程图如图8所示,其中图8(a)为射频发送程序流程,图8(b)为射频接收程序流程。

2.2上位机软件设计上位机软件设计采用VB开发,实现人机操作界面,界面如图9所示。

操作界面中显示当前的温度值,有温度上限及下限设置功能,当测量点温度超出阈值范围时,则会有报警,故障灯由绿色变为红色。

3热电偶校准与测试数据分析

为验证该系统的可靠性及精度,运用便携式干体温度校验炉对该测试系统进行了静态校准,如图10所示。

图中左边为K型热电偶的标准源,其测量出的炉内温度显示于左边的显示栏中,右边为实验所用的K型热电偶,热电偶的输出端接至该智能型无线测温系统中,测试结果显示于上位机的界面中,测试数据如表1所示。

本次试验的最大误差为0.4℃,精度在±1%以内,满足测试要求。

理论上,K型热电偶的输出热电动势与被测温度之间为线性关系,在Mathcad软件中对采集到的数据运用最小二乘法进行曲线拟合,得到K型热电偶的灵敏度和线性度,图11中实线为标准热源的输出热电动势与被测温度间的曲线图,拟合出的方程为:y1=0.009·x+0.2911,灵敏度为0.009V/℃,相关系数为:R2=1,表明该标准温度源的输出热电动势与被测温度之间为线性关系且可靠性高;图中虚线为本测试系统的测试数据曲线图,拟合出的方程为:y2=0.0092·x+0.29,灵敏度为0.0092V/℃,相关系数为:R2=0.9995,与标准热源相比,其线性误差为-0.5%。

计算标准系统与被校准系统之间的相关系数,若满足ρ>0.9997则认为本次校准有效并采用该数据。

经计算得到:ρ1,2=1满足上述条件,故认为本次校准有效,该被校系统可以使用,满足要求。

4结语

本文介绍了基于CC430的智能型无线温度监测系统的软、硬件设计,经实验验证:该系统能够准确测量温度,满足设计要求。

与参考文献中的系统相比其集成度高、使用方便、功耗低,使用专门的K型热电偶补偿芯片,且对系统进行了校准,提高系统精度;但是,其对温度数据监测是在上位机上实现的,不便于携带,故需要进一步的改进,将其做成便携式智能无线温度监测系统。

作者:岳晗 裴东兴 张单位:中北大学电子测试技术国家重点实验室

篇6:飞控测试系统设计

飞控测试系统设计

针对某大型运输机飞控系统的测试需求和LabWindows/CVI在开发虚拟仪器方面的优势,采用NI公司的PXI总线及其相应模板构建了一套自动测试系统.通过软件和硬件相结合,解决了模拟器问题;通过创建检测库和设计分线盒解决了复杂系统检测的'难点问题.使用表明,基于虚拟仪器技术的飞控测试系统能很好地完成该型飞机的定检工作,测试精度高,稳定性好,具有极大的推广应用前景.

作 者:李海军 孙秀霞 刘聪 LI Hai-jun SUN Xiu-xia LIU Cong  作者单位:空军工程大学工程学院,西安,710038 刊 名:电光与控制  ISTIC PKU英文刊名:ELECTRONICS OPTICS & CONTROL 年,卷(期):2007 14(2) 分类号:V271.493 关键词:虚拟仪器   PXI   模拟器   检测库  

篇7:基于柔性测试技术的系统设计

基于柔性测试技术的系统设计

柔性测试技术是多种技术的集大成者.偏重于满足不同生产应用的需求.

作 者:阚宏伟  作者单位:北京中科泛华测控技术有限公司 刊 名:航空制造技术  ISTIC英文刊名:AERONAUTICAL MANUFACTURING TECHNOLOGY 年,卷(期):2008 “”(9) 分类号:V2 关键词: 

篇8:随钻测量仪测试系统数据采集控制器设计

随钻测量仪测试系统数据采集控制器设计

介绍了随钻测量仪测试系统中,基于MC68HC908GZ60微处理器的`数据采集控制器设计.利用MC68HC908GZ60微处理器的串行外围接口模块SPI,实现微处理器与A/D模块之间串行通讯.采集到的数据通过RS-232串行接口送入计算机进行实时处理,用数据采集测试软件动态监测系统工作状况.通过测试系统联凋数据曲线图分析,可知设计满足要求.测试系统的应用使随钻测量仪调试工作变得方便、直观,进一步提高了生产效率.

作 者:吕小维 李安宗 张维 白岩 李童 杨亚萍  作者单位:吕小维(中国石油集团测井有限公司随钻测井仪器研究中心,陕西,西安,710061;西安石油大学电子工程学院,陕西,西安,710065)

李安宗,张维,白岩,李童,杨亚萍(中国石油集团测井有限公司随钻测井仪器研究中心,陕西,西安,710061)

刊 名:测井技术  ISTIC PKU英文刊名:WELL LOGGING TECHNOLOGY 年,卷(期):2009 33(5) 分类号:P631.83 关键词:测井仪器   数据采集控制器   微处理器   A/D模块   串行通讯  

篇9:千兆网综合布线系统设计与测试

千兆网是一种快速以太网,其数据传输速率达1Gbps,仍采用CSMA/CD的访问控制机制并与现有的以太网兼容,在布线系统的支持下,可以使原来的快速以太网平滑升级并能充分保护用户原来的投资,

千兆网综合布线系统设计与测试

。目前,千兆网技术已成为新建网络和改造的首选技术,由此对综合布线系统的性能要求也提高。

1、千兆网布线标准

千兆以太网的标准由IEEE 802.3制定,目前有802.3z 和802.3ab两个布线标准。其中802.3ab是基于双绞线的布线标准,使用4对5类UTP,最大传输距离为100m。而802.3z是基于光纤通道的标准,使用的媒体有三种:

a) 1000Base-LX规范:该规范为长距离使用的多模和单模光纤的参数。其中多模光纤传输距离为300(550米,单模光纤的传输距离为3000米。该规范要求使用价格相对昂贵的长波激光收发器。

b)1000Base-SX规范:该规范为短距离使用的多模光纤的参数,使用多模光纤和低成本的短波CD(compact disc)或VCSEL激光器,其传输距离为300(550米。

c)1000BASE-CX规范:使用短距离的屏蔽双绞线STP,其传输距离为25m,主要用于在配线间使用短跳线电缆把高性能的服务器和高速外设相连。

2、千兆网综合布线系统的线缆选型

综合布线系统包含建筑群布线子系统、建筑物主干布线子系统、水平布线子系统(包含工作区电缆)三大布线子系统。千兆网综合布线系统除具有一般快速以太网综合布线系统设计的特点之外,更重要的是要合理选择UTP、光缆及接插件。(学电脑)

2.1光缆的选择

光缆主要用于建筑群布线子系统,对抗干扰要求高或建筑物主干距离超过100m的场合也用光缆作为建筑物主干布线子系统。选择光缆应根据实际距离并结合802.3z规范进行。在满足技术要求的前提下再虑经济问题。

2.2双绞线的选择

双绞线在三大综合布线子系统中所占比例最大,它的使用在很大程度上决定了综合布线系统的性能,必须合理选用。

由香农定理知,信道带宽与信道容量之间的关系为:

C=Wlog2(1+S/N) (bps) ……………………..(1)

式中C为信道容量,W为信道宽度,N为噪声功率,S为信号功率,S/N表示信噪比,

由(1)可知,可通过提高信道带宽和信噪比两方式来提高信道容量。目前可供选择的支持高速网络应用的双绞线有5类、超5类、和6类,其最大带宽分别为100MHZ、100MHZ和200MHZ。由于千兆网双绞线的布线标准802.3ab是基于使用4对5类UTP制定的,而5类UTP的带宽范围为1(100MHZ。因此,仅从带宽角度而言,选则5类双绞线即可满足千兆网应用的要求。

再从信噪比的角度来考虑。千兆网需同时使用UTP的四对电缆进行高速并行数据传输,信号和噪声分别线缆的下列特性参数有关,这些参数是:

衰减(Attenuation):指信号沿链路传输的减弱。

回波损耗(RL):由于线缆特性阻抗和链路接插件阻抗偏离标准值而导致的对发送信号功率的反射。

近端串扰损耗(NEXT):类似于噪音,是从相邻的一对线上传过来的干扰信号。这种串扰信号是由于UTP中邻近的绕对通过电容或电感偶合过来的。

相邻线对综合串扰(Power sum):指在使用UTP四对线对同时传输数据的环境下,其它三对线上的工作信号对另一对线线间串扰总和。设发送信号为T,上述四个特性参数分别用A、R、NE、P表示,则:

Singal(f)=f1(T、A) …………….…..(2)

Noise(f)=f2(R、NE、P) .……………..(3)

式(2)和(3)分别表示接收信号和噪音,两式中的参数A、R、NE、P均为频率f 的函数。因此得到下列计算信噪比的两个公式:

由这两个公式知,要提高信噪比,就要选择A、R、N、P 等各项参数优良的UTP来提高S,降低N。类别越高的UTP,上述各项参数离标准规定的极限值的富余量就越多,其性能越优良。由于5类UTP的部分参数受施工质量或环境的影响大,往往达不到布线标准的要求,超5类UTP改进了5类UTP的上述缺陷。因此,超五类及六类UTP可以满足信噪的要求。由于六类 UTP的性能忧于超五类,且六类UTP还能满足将来更高速的网络应用,因此,在目前情况下应首选六类UTP及其配套的接、插件。

机内测试虚警分析和控制

系统测试总结

教学系统设计

ubuntu系统:集群连接状态测试

直升机电动绞车测试系统的研制

湿法烟气脱硫系统及关键设备性能测试

火箭发动机测试系统热电偶通路抗干扰技术

基于虚拟仪器技术的车身控制器功能测试系统

多内核CPU的性能测试Unix系统

减速顶检测系统设计及应用

基于机内测试的故障注入系统设计(精选9篇)

欢迎下载DOC格式的基于机内测试的故障注入系统设计,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档