【导语】“laozhu488”通过精心收集,向本站投稿了6篇释解大学数学教学中的数学建模论文,下面是小编整理后的释解大学数学教学中的数学建模论文,欢迎您能喜欢,也请多多分享。
篇1:释解大学数学教学中的数学建模论文
释解大学数学教学中的数学建模论文
一、数学建模思想与大学数学类课程教学的融合切入点
1、从应用数学出发数学建模主要是通过运用数学知识解决生活中遇到实际问题的全过程。要让数学建模思想与大学数学教学课程进行有效的融合,最佳切入点就是课堂上把用数学解决生活中的实际问题与教学内容相融合,以应用数学为导向,训练学生综合运用数学知识去刻画实际问题、提炼数学模型、处理实际数据、分析解决实际问题的能力,培养学生运用数学原理解决生活问题的兴趣和爱好。授课过程中,要改变以往单纯地进行课堂灌输的行为,多引入应用数学的内容,通过师生互动、课堂讨论、小课题研究实践等多种形式灵活多样的教学方法,培养引导学生树立应用数学建模解决实际问题的思想。
2、从数学实验做起要加强独立学院学生进行数学实验的行为,笔者认为数学建模与数学实验有着密切的联系,两者都是从解决实际问题出发,当前的大学生数学实验基本上是应用数学软件、数值计算、建立模型、过程演算和图形显示等一系列过程,因此进行数学实验的全过程就是数学建模思想的启发过程。但是我国的教育资源和教学方针限制了独立学院学生的学习环境和学习资源,能够进行数学实验的条件还是有限的。即使个别有实验能力的学校,也未能进行充分利用,数学实验课的内容随意性较大,有些院校将其降格为软件学习课程或初级算法课。根据调研,目前大部分独立学院未开设此类课程,这是数学建模思想与大学数学教学课程融合的一大损失,不利于学生创新思维能力的提高。各校应当积极创造条件,把数学实验课设为大学数学的必修课,争取设立数学建模选修课,并积极探索、逐步实现把数学建模的思想和方法融入大学数学的主干课程。
3、从计算机应用切入数学是为理、工、经、管、农、医、文等众多学科服务的基础工具,它在不同的领域因为应用程度不同而导致被重视的程度不同。但在当今的信息化时代,计算机的广泛应用和计算技术的飞速发展,使科学计算和数值模拟已成为绝大多数学科的必要工具和常用手段。数学在不同学科领域有了共同的主题,即应用数学建模,通过计算机对各自领域的科学研究、生活问题等进行模拟分析,这成为数学建模思想在跨学科领域交流和传播的一个重要途径。每个领域的教学可以计算机应用为切入点,让数学建模思想与数学授课无缝结合,在提高学生掌握知识能力、挖掘培养创新思维的同时,增加了大学数学课程内容的丰富性、实用性,促进教学手段变革和创新。因此,大学应以适应现代信息技术发展的形势和学生将来的需求为契机,加快改进大学数学课程教学方式,把数学建模的思想和方法以及现代计算技术和计算工具尽快融入大学数学的主干课程当中。
二、探索适合独立学院学生的数学建模教学内容
大学数学课程是大学工科各专业培养计划中重要的公共基础理论课,其目的在于培养工程技术人才所必备的数学素质,为培养我国现代化建设需要的高素质人才服务。数学建模课程的必修化,要从能够扩充学生的知识结构,培养学生的创造性思维能力、抽象概括能力、逻辑推理能力、自学能力、分析问题和解决问题能力的角度出发,建立适合独立学院学生的数学建模教学内容。日前独立学院开展数学建模活动涉及内容较浅,缺少相应的数学建模和数学实验方而的教材。笔者近几年通过承担此类课题的研究,认为应该加强以下内容的建设:
1、加强对计算机语言和软件的学习,对数学原理进行剖解分析,多分析运行数学解决的社会生活问题,多设定课程设计工作。学生通过对科学问题、生活问题的深入研究,结合自己的课程设计,建立数学建模,让数学建模思想渗透到整个学习过程中。对非数学领域的问题,引导学生通过计算机软件的学习,建模解决专业中遇到的实际问题。比如通用的CAD等基于数学理论,解决不同领域的数学建模问题,以便将来适应社会的需要
。2、开设选修课拓展知识领域,让学生可以通过选修数学建模、运筹学、开设数学实验(介绍Matlab、Maple等计算软件课程),增加建立和解答数学模型的方法和技巧。比如以前用的“文曲星”电子词典里的贷款计算,就是一个典型的运用数学模型方便百姓自己计算的应用。这个模型单靠数学和经济学单方面的知识是不够的,必须把数学与经济学联系在一起,才能有效解决生活中的问题。
3、积极组织学生开展或是参加数学建模大赛比赛是各个选手充分发挥水平、展示自己智慧的'途径,也是数学建模思想传播的最好手段。比赛可以让各个选手发现自己的不足,寻找自身数学建模出发点的缺陷,通过交流,还可以拓展学生思维。因此,有必要积极组织学生参入初等数学知识可以解决的数学模型、线性规划模型、指派问题模型、存储问题模型、图论应用题等方面的模拟竞赛,通过参赛积累大量数学建模知识,促进数学建模在教学中扮演更重要的角色。教师应该对历年的全国大学生数学建模竞赛真题进行认真的解读分析,通过对有意义的题目,如的《葡萄酒的评价》、《太阳能小屋的设计》,的《交巡警服务平台的设置与调度车灯线光源的计算》、的《眼科病床的合理安排》等,与生活相关的例子进行讲解分析,提高学生对数学建模的兴趣和对模型应用的直观的认识,实现学校应用型人才的培养。
4、加快教育方式的转变高等教育设立数学这门学科就是为了应用服务,内容应重点放在基本概念、定理、公式等在生活中的应用上。而传统的高等数学,除了推导就是证明,因此,要对传统内容进行优化组合,根据教学特点和学生情况推陈出新,要注重数学思想的渗透和数学方法的介绍,对高等数学精髓的求导、微分方法、积分方法等的授课要重点放在解决实际生活的应用上。要结合一些社会实践问题与函数建立的关系,分析确定变量、参数,加强有关函数关系式建立的日常训练。培养学生对一些问题的逻辑分析、抽象、简化并用数学语言表达的能力,逐步将学生带入遇到问题就能自然地去转化成数学模型进行处理的境界,并能将数学结论又能很好反向转化成实际应用。
三、注意的问题
21世纪我国进入了大众教育时期,高校招生人数剧增,学生水平差距较大,需要学校瞄准正确的培养方向。通过对美国教学改革的研究,笔者认为我国的数学建模思想与大学数学教学课程融合必须尽快在大学中广泛推进,但要注意一些问题:第一,数学教学改革一定要基于学生的现实水平,数学建模思想融入要与时俱进。第二,教学目标要正确定位,融合过程一定要与教学研究相结合,要在加强交流的基础上不断改进。第三,大学生数学建模竞赛的举办和参入,要给予正确的理解和引导,形成良性循环。要根据个人兴趣爱好,注重个性,不应面面强求。第四,传统数学思想与现在数学建模思想必须互补,必修与选修课程的作用与角色要分清。数学主干课程的教学水平是大学教学质量的关键指标之一,具备数学建模思想是理工类大学生能否成为创新人才的重要条件之一。两者的融合必将促进我国教学水平和质量的提高,为社会输送更多的实用型、创新型人才。
篇2:初高中数学衔接教学释解论文
初高中数学衔接教学释解论文
一、一元二次不等式
一般形式:ax2+bx+c<0,或ax2+bx+c>0(a>0),其中a、b、c为常数。要求不等式的解集,就需要前面所讲的方程和函数的相关知识,利用方程的思想和数形结合的思想解决问题。任何一元二次不等式经过变形都可以化成两种“一般式”之一,当a<0时,将不等式乘-1就化成了“a>0”。要注意的是不等式的解集为φ、R或弄某个区间,由△=b2-4ac与0的大小确定。不要死记书上的解集表,要抓住对应的二次方程的“根”和函数图象之间的关系来活记活用,在对应方程有根的情况下可总结为:大于取两边,小于取中间,向学生解释清楚两边和中间的所指。
二、三者的关系
一元二次不等式、一元二次方程和一元二次函数的联系是:若一元二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象是抛物线L,则不等式ax2+bx+c>0(a>0),ax2+bx+c<0(a>0)的解集分别是抛物线L在x轴上方,在x轴下方的点的横坐标x的集合;一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的根就是抛物线L与x轴的公共点的横坐标。
三、教学实践活动的设计
新课标强调学生的主体学习和积极认知。新旧知识的衔接,初高中知识的衔接,是学生复习旧知识,接收新知识必要过程,设计合理有效的衔接教学过程,对提高教学质量是必要的。
(一)教学过程的设计必须符合学生的认知规律前面已提到教科书对“三个二次”的设计已很符合学生的认知规律,因此教学过程的设计,应尊重教科书的编排体系,即由一元二次方程到一元二次函数再到一元二次不等式,最后反馈应用。
(二)教学过程必须在知识的浅层(即基础知识)发展逐步提高这里有一个认知规律的差异问题,即作为教师必须承认教师的认知规律,学识水平与学生差异是巨大的。教师认为简单的问题学生不一定简单。就一元二次函数的'图像来说,很少有教师在教学中关注,图像在X轴上方,则Y>0,图像在X轴下方,则Y<0,图像与X轴相交,则Y=0因为这个问题,对教师来说,根本不成问题,但对初中生甚至部分高中生来说,或许就是一个问题,这个问题对某些学生甚至无法逾越。因此教学实践活动的设计应以学生为主体进行,考虑学生的心理认知能力,并注意在知识的“浅层”挖掘和发展。
(三)教学实践活动应让绝大部分学生均能参与教学活动更应关注全体学生的积极参与,教学设计要使绝大部分学生投入。如学生解有两实数根的一元二次方程对应的一元二次不等式时,如果学生连分解因式、十字相乘法、求根公式都还没有熟练掌握,就让学生解含参的一元二次不等式这是显然不符合规律,这样的设计,无疑是教师扼杀学生的学习积极性,造成学生学习上的障碍。对于特优学生和特差学生,因材施教作为整体教学的弥补就显得非常重要了。
(四)教学过程不应太过拘泥于课时的限制教师往往受到学时的限制,总想在几个课时内完成教学内容。因此内容安排的很多,往往一个课时有几个重点和几个相应的难点,学生学起来特别吃力。其实学习的过程是一个螺旋上升逐步递进的过程,学生由接受新知识到熟悉知识,再到对所学知识的应用,最后反馈,对知识的进一步巩固和提升,是一个重复学习的过程。教师不能急功近利。若一个课时能完成一个内容,掌握一个知识,就应该是成功的。所以教学实践活动中应突出重点,分散难点不受相应课时的限制,随时进行反馈学习。只要这样才能使学生更好地学习。衔接教学是中学数学教学的一个非常重要的教学过程。衔接教育并非仅有本文所探讨的“三个二次”问题,在整个中学数学教学中。还有许多,如学科间的衔接、年级间的衔接等,搞好衔接教育就像水到渠成一样。因此,要求高中数学教师钻研教材,对整个中学数学教学体系非常熟悉。只有这样才能够很好地把握教学内容,合理安排时间,有效地驾驭课堂教学,全面提高教学质量。
篇3:大学数学建模论文
大学数学建模论文
浅谈MATLAB在数学建模中的应用
摘 要:数学建模是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力的数学手段,是数学与各个领域沟通的桥梁,本文先介绍了数学建模的概念,然后对MATLAB软件相关特点做出介绍,其次从数学建模实例出发,说明了MATLAB软件在数学建模中的重要作用,结果表明MATLAB软件可以使数学建模效率提高,结果清晰、明确,同时在数学教学方面也有重大意义。
关键词:数学建模;MATLAB;数学模型;数值计算
21世纪的今天,我们生活在“大数据”时代里,数据信息隐藏于各行各业,如互联网、股市、勘探、军工、商业等,可以说我们每天都在跟数据打交道,因此高效的数据处理方式显得尤为重要。数学建模是联系实际问题与数学之间的桥梁,建模的思想与以往解决问题的思路有很大的不同,我们以往求解数学问题时,都有明确的目标和已知条件,我们只要通过合理的方法,进行多次的数学运算,便能得到问题的解析解,但在现实生活中,很多实际问题是很难得到解析解的,甚至求解的问题和结果的范围都是模糊不清的,数学建模主要就是解决这样的问题,我们以实际问题出发,根据已有的经验,对已有的数据进行相关的分析、处理,通过合理的简化,建立合适的模型,再求解模型,最终会得到结果,这种方法行之有效,在实际生活中,通过建模已经解决了大量难题,近年来,随着科技的飞速发展,很多数学软件应运而生,如MATLAB、Mathematic、Maple等,目前应用最为广泛的数学软件便是MATLAB,它是1984年由美国MathWork公司推出的商业数学软件,用于算法开发,数据可视化、数值计算的高级计算语言和交互式环境,凭借计算功能强大、操作简便的特点在数学软件中脱颖而出,使得很多人在建模中选择该软件。
为了说明MATLAB软件能够提高数学建模的效率和质量,本文将以高教杯全国大学生数学竞赛A题为例,来演示MATLAB软件在数学建模中的作用,下面首先对数学建模做简要介绍。
1 数学建模简介
1.1 数学建模与数学模型
数学建模一词出现的时间并不是很长,大概可以追溯到30年前,它的出现是基于科学技术的进步,尤其近半个世纪以来,随着计算机技术的进步和发展,数学建模便应运而生,并得到迅速的发展,直到现在已经大致形成了体系,在我国,数学建模比赛也有20多年的时间了,建模参考书籍越来越多,内容越来越完备,不同的书籍对数学建模的定义虽然有所不同,但大致可以归纳位:对实际问题进行分析,做出简化假设,分析其内在规律,并运用数学符号和数学语言将规律描述出来,再用适当的数学工具,得到一个数学结构,该结构称为数学模型,建立数学模型的过程叫做数学建模。
应用数学去解决实际问题时,建立数学模型是至关重要的一步,也是比较困难的一步,建立数学模型的过程,就是把一个实际问题进行合理的简化,并对相关信息进行调查、收集、整理,分析出问题的内在规律,并用数学符号将这种隐含的规律表达出来,然后运用恰当的数学方法对其进行分析、计算,最终解决问题,这一步对建模者的数学基础要求比较高,要求建模者有较为完善的数学体系,并且还要有敏锐的想象力和洞察力,数学建模的作用越来越受到数学工程界的普遍认可,它以成为现代科技者的必备技能之一。
1.2 数学建模的一般步骤
下面结合数学建模的几个环节和数学建模实例,简要介绍MATLAB在数学建模中的一般步骤,模型准备:在建模前要了解问题的实际背景,搜索问题信息,明确求解目的,从而确定用何种数学方法和建立何种数学模型;模型假设:根据实际对象的特征和建模的目的,抓住问题的主要因素,对问题进行合理简化,用精确的语言提出恰当的假设;模型建立:在假设的基础上,利用合理的数学工具刻画各变量、常量之间的数学关系,建立相应的数学结构;④模型求解:利用获取的数据 和已有的数学方法,来求解上一步的数学问题,对模型的参数进行相应计算⑤模型分析:对所建立的模型的思路进行阐述,对所得的结果进行数学上的分析;⑥模型检验:将模型与实际情况进行比较,以此来检验模型的准确性、合理性,如果不符合实际情况需重新建立模型;⑦模型的推广:在现有的模型基础上,对模型进行更加全面的考虑,使模型更能反映实际情况。
2 建模实例
由于MATLAB软件具有很强的数据处理和数据可视化功能,同时具备有操作方便的特点,所以当把MATLAB软件运用在数学建模里时,必将提高数学建模的质量和效率,并能起到事倍功半的效果,下面以20高教杯全国大学生数学竞赛A题为例来说明MATLAB软件在数学建模里的重要作用。
2014年高教杯全国大学生数学竞赛题目A题是嫦娥三号软着陆轨道设计与优化问题,嫦娥三号是中国国家航天局嫦娥工程第二阶段的登月探测器,包括着陆器和玉兔号月球车,嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略问题。在卫星着路的过程中,不考虑主减速段,完全由姿态调整发动机控制水平运动的阶段为粗避障和精避障段,为了节省燃料,应尽量减少卫星在空中的悬停时间。题目中附件三、附件四分别是距月球表面2400米和100米的高程图,根据高程图中的数据信息,我们可以确定最佳的降落位置。我们可以运用MATLAB软件对于高程图的进行处理,首先用MATLAB软件软件中imread命令将其转化为矩阵形式,然后分别做出月球表面立体的三维图和等高线二维平面图,建立数值地形的不同区域,我们可以通过三维图很直观的观察到月球表面具体地形、地貌,通过等高线二维图形,我们可以清楚地看到月球表面地势高低变化成度,从而确定卫星降落地最佳地点。本文只以100米高程图作为例子演示,具体地操作程序以及输出结果如下:
g=imread(‘附件4距100m处的高程图.tif’);
% 用imread函数读取图片信息,注意路径要以电脑中图片的实际路径为准
gg=double(g);
% 将图片中的信息转化为数值矩阵信息以便以MATLAB软件进行后期处理
gg=gg-1/255;
% 将彩色值转为0-1的渐变值以便于观察
[x,y]=size(gg);
% 取原图大小
[X,Y]=meshgrid(1:y,1:x);
% 以原图大小构建网格
mesh(X,Y,gg);
% 呈现三维地貌图
contour(X,Y,gg);
% 呈现月球表面等高线图
grid on
3 结论
从本文数学建模实例可以看出,在建模时,当需要对图片、表格、数据进行处理时,我们可以运用MATLAB软件进行解决,MATLAB凭借其丰富的库函数和工具箱,能够非常方便的解决这些问题,并且将数据可视化,结果清晰明了,显示出其他软件无法比拟的优势,除此之外,MATLAB软件在数据分析、数值计算以及规划、预测等多方面数学问题都占有绝对的优势,因此,我们提倡将MATLAB软件引入教学中去,让更多的学生在建模前了解其相关知识,进行软件操作,这不仅能够激发学生的建模积极性,而且可以使学生掌握一项技能,同时也提高学生动手实践能。
篇4:大学数学建模论文
承诺书
我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.指导教师或指导教师组负责人(打印并签名):
日期:年月日
赛区评阅编号(由赛区组委会评阅前进行编号):
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
题目(黑体不加粗三号居中)
摘要(黑体不加粗四号居中)
(摘要正文小4号,写法如下)
(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。根据这些特点对问题1用······的方法解决;对问题2用······的方法解决;对问题3用······的方法解决。
(第2段)对于问题1,用······数学中的······首先建立了······
模型I。在对······模型改进的基础上建立了······模型II。对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为······,然后借助于······数学算法和······软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)
(第3段)对于问题2用······
(第4段)对于问题3用······
如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软
件、结果、亮点详细说明。并且一定要在摘要对两个或两个以上模型进行比较,优势较大的放后面,这两个(模型)一定要有具体结果。
(第5段)如果在??条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。要注意合理性。此推广模型可以不深入研究,也可以没有具体结果。
关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,
5~7个较合适。
注:字数700~1000之间;摘要中必须将具体方法、结果写出来;摘要写满几乎一页,不要超过一页。摘要是重中之重,必须严格执行!。
页码:1(底居中)
一、问题重述(第二页起黑四号)
在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。篇幅建议不要超过一页。大部分文字提炼自原题。
二、问题分析
主要是表达对题目的理解,特别是对附件的数据进行必要分析、描述(一般都有数据附件),这是需要提到分析数据的方法、理由。如果有多个小问题,可以对每个小问题进行分别分析。
(假设有3个问题)
1.1问题1的分析
对问题1研究的意义的分析。
问题1属于。。。。。数学问题,对于解决此类问题一般数学方法的分析。
对附件中所给数据特点的分析。
对问题1所要求的结果进行分析。
由于以上原因,首先建立一个。。。。。。的数学模型I,然后将其改进建
立一个。。。。。。。的模型II,。。。。。。。。。。对结果分别进行预测,并将结果进行比较.
1.2问题2的分析
对问题2研究的意义的分析。
问题2属于。。。。。数学问题,对于解决此类问题一般数学方法的分析。
对附件中所给数据特点的分析。
对问题2所要求的结果进行分析。
由于以上原因,首先建立一个。。。。。。的数学模型I,然后将其改进建
立一个。。。。。。。的模型II,。。。。。。。。。。对结果分别进行预测,并将结果进行比较.
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
三、模型假设(4号黑体)
(以下小4号)
1.假设题目所给的数据真实可靠;
2.
3.
4.
5.
6.
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
注意:假设对整篇文章具有指导性,有时决定问题的难易。一定要注意假设的某种角度上的合理性,不能乱编,完全偏离事实或与题目要求相抵触。注意罗列要工整。
四、定义与符号说明(4号黑体)
(对文章中所用到的主要数学符号进行解释小4号)
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
尽可能借鉴参考书上通常采用的符号,不宜自己乱定义符号,对于改进的一
些模型,符号可以适当自己修正(下标、上标、参数等可以变,主符号最好与经典模型符号靠近)。对文章自己创新的名词需要特别解释。其他符号要进行说明,注意罗列要工整。如“ijx~第i种疗法的第j项指标值”等,注意格式统一,不要出现零乱或前后不一致现象,关键是容易看懂。
五、模型的建立与求解(4号黑体)
5.1准备工作(4号宋体)
5.1.1数据的处理
1.······数据全部缺失,不予考虑。
2.对数据测试的特点,如,周期等进行分析。
3.·····数据残缺,根据数据挖掘等理论根据。。。。。变化趋势进行补充。
4.对数据特点(后面将会用到的特征)进行提取。
5.1.2聚类分析(进行采样)
用······软件聚类分析和各个不同问题的需要,采得。。。组采样,每组5-8个采样值。将采样所对应的特征值进行列表或图示。
5.1.3预测的准备工作
根据数据特点,对总体和个体的特点进行比较,以表格或图示方式显示。
5.2问题1的。。。模型(4号宋体)
5.2.1模型I(······的模型)
1.该种模型的一般数学表达式,意义,和式中各种参数的意义。注明参
考文献。
2.······模型I的建立和求解
(1)说明问题1适用用此模型来解决,并将模型进行改进以适应问
题1。
(2)借助准备工作中的采样,(用拟合等方法)确定出模型中的参
数。
(3)给出问题1的数学模型I表达式和图形表示式。
(4)给出误差分析的理论估计。
3.模型I的数值模拟
将模型I进行数值计算,并与附件中的真实采样值(进行列表或图
示)比较。对误差进行数据分析。
5.2.2模型II(······的模型)
1.该种模型的一般数学表达式,意义,和式中各种参数的意义。注明参
考文献。
2.······模型II的建立和求解
(1)说明问题1适用用此模型来解决,并将模型进行改进以适应问
题1。
(2)借助准备工作中的采样,(用拟合等方法)确定出模型中的参
数。
(3)给出问题1的数学模型I表达式和图形表示式。
(4)给出误差分析的理论估计。
篇5:大学数学建模论文
(1)大致了解数学建模论文写作时应包含哪些内容
(2)每部分内容都应写些什么
(3)汲取他写作与处理问题的成功之处,以便将这些优点运用于我以后的论文写作中
(4)总结这篇论文写作与处理问题过程中的败笔,提醒我注意在写作论文时不要犯类似错误
所以,在下面的学习心得中将主要涉及以上4个方面的内容。
摘要:简明扼要地指出了处理问题的方法途径并给出作答,起到了较好的总结全文,理清条理的.作用。让读者对以下论述有1个总体印象,而且对于本题的答案用图表形式给出,清晰明了
问题重述:(略)
问题背景:
交待问题背景,说明处理此问题的意义和必要性。
优点:叙述详尽,条理清楚,论证充分
缺点:前两段过于冗长,可作适当删节
问题分析:
进1步阐述解决此问题的意义所在,分析了问题,简述要解决此问题需要哪些条件和大体的解决途径
优点:条理比较清晰,论述符合逻辑,表达清楚
缺点:似乎不够详细,尤其是第3段有些过于概括。
模型的假设与约定:
共有8条比较合理的假设
优点:假设有依据,合情合理。比如第3条对上座率的假设,参考了上届奥运会的情况并充分考虑了我国国情,客观真实。第8条假设用了分块规划和割补的方法,估计面积形状比较合理,而且达到了充分花剑问题的作用。
缺点:有些假设阐述不太清楚也存在不合理之处,第4条假设中面积在50-100之间,下面的假设应该是介于50-100之间的数,假设为最小的50平方米,有失1般性。第6条假设中,假设MS最大营业额为20万,没有说明是多长时间内的,而且此处没有对下文提到的LMS作以说明。
符号说明及名词定义
优点:比较详细清楚,考虑周全,而且较合理地将定性指标数量化。
缺点:有些地方没有标注量纲,比如A和B的量纲不明确。
模型建立与求解
6.1问题1:
对所给数据惊醒处理和统计,得出规律,找到联系。
优点:统计方法合理,所统计数据对解决问题确实必不可少,而且用图表和条形图的方式反映不同量的变化趋势,图文并茂,叙述清楚而且简明扼要,除了对数据统计情况进行报告以外,还就他们之间相关量之间的关系进行了详细阐述,使数据统计更具实效性。
6.2问题2:
6.2.1最短路的确定
为确定最短路径又提出了1系列假设并阐述了理由,在这些假设下规定了最短路径
优点:假设有根据,理由合情合理
缺点:第4条中假设观众消费是单向的,虽然简化了问题但有失1般性,事实上观众往返经过商业区消费的概率是相差比较大的,我认为应改为假设观众在往返过程中消费且仅消费1次。
6.2.2计算人流量的追踪模型
给出计算人流量的方法,并计算了各区人流量,并对计算结果进行了分析。
优点:分情况讨论,并且取了两个典型的具有代表性的例子进行了具体阐述,没有全部罗列所有数据的计算过程,使文章清晰简明,不至于繁冗拖沓,这在以后我们写论文是极其值得借鉴。对结果的分析有针对性,合情合理而且用条形图直观地反映了人流量的数值和各地区间的差异。
缺点:分析还不够详细,考虑因素还不够周到。
6.3问题3
进1步对问题作以简化,将问题的解决最终归结为1个焦点,并对解决这个问题所需确定的因素进行了讨论,最后得出结论。
6.3.1商区消费额的确定
阐述了为什么要计算这个量,计算这个量对解决问题有什么至关重要的作用并且采用了Huff模型并且结合本问题的具体情况来求解数据。
优点:论证充分合理且模型和经济学知识应用恰当,所得数据有效可信,考虑周到而不繁杂,抓住了事物的主要矛盾,而且对Huff模型的解释较为充分。
缺点:对于各商业区的总消费额我们更看重数量而文中用条形图的方式却着重体现了各地区之间的数量差异,有喧宾夺主之嫌,改称图表形式可以更好地反映数据量的值
6.3.2各个商区MS数量的概略确定
确定了确定MS个数的方案,在不失1般性的前提下对问题进行进1步简化,缩小解决问题的范围并对问题进行了求解
优点:简洁明了,论述合理。
6.3.3
引入了1个重要的确定数量的参数,且对解决问题方法的合理性及此数据对问题的解的影响及行了数值分析和理论论证,提出了改进方案,得出结果,并对结果进行分析。
优点:条理清晰,逻辑严谨,论证充分,详尽而不冗长,使本篇论文的精华部分。分析合理且充分考虑到了实际情况使结果更具可信性。
6.3.4LMS和MS的分配情况讨论
对2者关系提出了几条假设。
优点:论述充分,假设合理而且用图表反映结果,简单明了,情况考虑全面周到。
6.4问题4
分析了方法的科学性和结果的贴近实际性
优点:条理清晰,分析有依据,措辞严谨,逻辑严密而且对前面所述方法进行了分别阐述。这使得对方法科学性的论述更加充分可信。对贴近事实性的论述,理论和事实相结合,叙述数据来源,并采用举例论证法论证结果的贴近实际性。
缺点:结果的贴近实际性的论证中,应详细罗列1下数据的来源,也许更加可信。
模型的进1步讨论
为简化抽象现实1边建构模型而忽略掉的1些因素进行了考虑,对于1些可能影响讨论结果的因素给出了算法和解决方案
优点:考虑全面,善于抓住主要矛盾,表述简明客观。
模型检验
与某些近似且已妥善解决的问题进行了比较,用事实说明处理方案的正确性。
优点:采用了较好的参照对象,采用图像对比的方法,使问题清晰明了。
缺点:应该简述1下雅典奥运会采用的方案是成功的,否则比照就失去了意义,还有由于举办地点不同,地区上的差异使这种单纯与雅典奥运会进行得比较稍显单薄。
模型优缺点
总结模型建立并解决问题的过程中的优点和缺点
优点:简明扼要,客观实在
附录(略)
参考文献
篇6:大学数学建模的论文
大学数学建模的论文
探究式教学与数学建模
探究式教学法,不同于传统将知识直接由老师进行传授的教学方法,而将其重心放在学生的“探与究”上。“探”是重头,学生在新接触某个概念和原理时,教师只提供事例和问题,学生通过查阅、观察、记录、实验等途径独立探索。“究”是核心,学生在独立探索的基础上,通过思考、讨论自行发现掌握相应的原理和结论。
最后老师结合学生的探究过程对他们的结论进行评价和矫正。在探究过程中,始终强调以学生为主体,学生的自主学习能力都得到加强,相比被动接受教师传授的知识和结论,通过这种方式获取的知识,学生理解更透彻,掌握更牢固。数学建模课程教学中大量源于实际生活的实例,也使得这门课程在教学手段和教学形式上的得以有大量创新,探究式的教学模式尤其适合在本课程的教学中使用,笔者长期承担数学建模课程的教学工作和指导学生开展数学建模竞赛及有关活动,结合多年的实践谈一谈。
探究过程的具体实施
问题驱动
探究过程的驱动是问题,学生的学习活动围绕教师设计的问题展开。教师在这里要做的是,课前根据教学目的和内容,精心挑选有趣,又难度适宜的问题。例如,在一堂数学建模课中,我们以身边的一个具体实例来提出问题:通常1公斤的面,1公斤的馅,包100个汤圆;今天1公斤面不变,馅比1公斤多了,问应多包几个,每个包小一点,还是应少包几个,每个包大一点?
实践探索
这是探究过程的关键环节,在教师的组织下,学生自己动手实践如何制订研究计划,如何收集必要的资料和有关的'研究方法。基于培养学生团队合作精神的目的,这个过程可将学生分组来完成。例如:包汤圆的问题中,引导学生把问题梳理和抽象出来,一张面积为S的皮,可以包体积为V的馅,如今把这张面积为S的皮,分成n张面积为s的皮,每张面积为s的皮可以包体积为v的馅,那么问题就转化为了讨论,究竟是V大还是nv大的问题了。这个过程中,一定要让学生思考,是不是需要某些合理的假设,如:不论面皮大小,其厚度都应该一致;不论汤圆大小,其形状都一致(这两个假设很关键)。
思考讨论
学生把通过实践探索得到的资料进行思考、梳理、总结,形成自己的结论。各团队就同一问题将自己的结论清楚地表达出来,针对各种不同的观点,共同讨论。评价矫正 在集体讨论、辩论过程中,教师适时给予评价和矫正,分析独特,立意清晰的给予肯定,观点模糊的给予指正,通过融洽的学术交流使大家发现自己的问题所在,不准确、不深入的地方继续完善。
探究式教学中应注意的问题
精心设计
第一,选择适合探究的教学内容。课堂中的探究其根本目的是引导学生主动获取知识,教师要注意不要仅仅为了体现探究的形式而忽略了探究的目的。第二,教师精心组织、编排探究的问题。大学数学课程探究式教学关键是通过问题的驱动,让学生在探究过程中自主的把握问题解决的方向,所有同学都在考虑同一个问题,在讨论探究中产生思维的火花。要达到预期效果,没有教师课前精心组织、设计是很难做到的。第三,控制好各个环节。根据实际情况,设计好探究过程中各环节的时间。将学生探究讨论的时间和教师点评的时间都事先做一个安排,形成一定的惯例,学生课前充分准备,通过细致的安排,确保探究过程高效完成。
注重引导
学生由于认知水平参差不齐导致探究过程有显著差异,教师要充分发挥引领作用,及时给予引导和矫正。
及时总结和评价
教师在学生讨论完成后,及时对探究过程进行总结,讲解正确的分析和理解,让同学对自己的思考形成判断和比较,通过鼓励,调动学生积极性,唤起学习热情。
★ 数学教学论文
释解大学数学教学中的数学建模论文(精选6篇)




