《能被3整除的数》说课稿

时间:2022-12-29 04:26:22 作者:飞天小猪猪 教案 收藏本文 下载本文

“飞天小猪猪”通过精心收集,向本站投稿了13篇《能被3整除的数》说课稿,下面是小编整理后的《能被3整除的数》说课稿,欢迎大家阅读分享借鉴,欢迎大家分享。

篇1:能被3整除的数

教学目标

(一)通过操作发现能被3整除数的特征。

(二)培养学生观察、分析、概括的能力。

(三)渗透理论来源于实践的辩证唯物主义观点。

教学重点和难点

(一)能被3整除的数的特征。

(二)特征的归纳过程。

教学用具

教具:投影片。

学具:每位同学准备15根小棒,数位顺序表。(只到万级)

教学过程设计

(一)复习准备

1.下列数中,哪些能被2整除?哪些能被5整除?哪些能同时被2和5整除?(投影片)

85,87,94,32,50,60,102,143,230,540,405,725,819,528。

2.说一说能被2或者5整除的数的特征?能同时被2和5整除的数的特征?

3.能被2和能被5整除的数的共同特点是什么?(都是看个位数字。)

教师:我们已学习了能被2,5整除的数的特征,并能利用这些特征,很快地对一个数能否被2或5整除作出判断。下面我们继续研究一些数的整除特征。

教师板书:12问能否被3整除。逐次把12改为120,121,123,124,126,1263,请学生口答它们能否被3整除。(竖行排列,能被3整除的画√)

请学生任意说出一个数,老师判断它能否被3整除。(能整除的画√)

教师:(指板书)请观察,能被3整除的数个位数字有什么特点吗?(找不出来。)

教师:能被3整除的数的个位数找不出特征,它们具有什么特征呢?这节课我们就来研究这个问题。板书课题:能被3整除的数。

(二)学习新课

1.请学生操作摆数并判断能否被3整除。

(1)请学生取出数位顺序表和 3根小棒,按数位顺次表任意摆出一个数,看它能否被 3整除。(板书:3根。)

学生口答,老师板书:(横排排列)

篇2:能被3整除的数

板书时把用同样多根小棒摆出的数排在根数后面,还可以把能被3整除与不能被3整除的数分别板书在两边。

2.引导学生观察、归纳。

(1)教师:请观察用3根小棒摆成的数,这些数有什么共同特点?(各位上数的和是3。)

教师:请观察板书能被3整除的数。分别找出6根,9根,12根,15根小棒摆出的数各自所共有的特点。

小组讨论要求能找出:用6根小棒摆出的数各位上数的和是6;用9根小棒摆出的数各位上数的和是9;用12根小棒摆出的数各位上数的和是12;用15根小棒摆出的数各位上数的和是15。

(2)教师: 3, 6, 9, 12, 15这些数与 3有什么关系?(这些数都是 3的倍数,都能被 3整除。)

教师:请验证是不是具备这个特点的数一定能被3整除呢?

学生举例验证。

教师:能说一说能被3整除的数的特征吗?

学生口答后教师板书:一个数的各位上的数的和能被3整除,这个数就能被3整除。

练习:教师给出一个数,请同学用反馈牌表示出自己的判断。能被3整除的用√,不能被3整除的用×。(数是逐个出示)

3125( )4203( ) 1818( )

10515( ) 8219( ) 56789( )

教师:请观察板书,用4根、5根、7根组成的数,能分别说一说它们的特征吗?

要求学生自己试用前面的方法推出都不能被3整除。

教师:说一说什么样的数一定不能被3整除。(一个数各位上数的和不能被 3整除,这个数就一定不能被3整除。)

(3)老师板书:3148782。问:这个数能否被3整除?说出你的判断方法。

请学生报出一个数,另一位同学进行判断。

请两人一组,一人说数另一人判断。(要求说出判断过程)

3.请看上(3)板书例题,在计算各位上数的和时,可以简算,是3的倍数的可以不算在内,口算起来更快。板书示意:

练习:板书2562913能否被3整除?

口答:解法1:2+5+6+2+9+1+3=28。因为28不能被3整除,所以2562913不能被3整除。

解法2:(如上式)因为2+5=7,7不能被3整除,所以2562913不能被3整除。

显然第二种方法更简便。

教师:请判断31495621,5923467能否被3整除。说出自己是怎样想的。

教师:试写出一个能被2整除,又能被3整除的数。并说出自己是怎样想的。

学生讨论后老师归纳:

要能被2整除,个位数必须是偶数,又要能被3整除,所以各位上数的'和要是3的倍数。

教师:能找出能同时被3和5整除的数的特点吗?

学生口答并举例验证。

教师:讨论一下,什么样的数能同时被2,3和5整除。

学生讨论后归纳:

个位上是0,各位上的数的和是3的倍数的数,能同时被2,3和5整除。

(三)巩固反馈

1.(投影片)判断下面的数,哪些能被3整除?

432,1590,7285,61527,5281,1254,32358,13227。

(学生用反馈牌,请错误答案的同学讲判断过程,使之自我纠正错误。)

2.口答:在方框中填上一个数字,使这个数能被3整除。

9□31 72□63

3.按要求在括号内各填5个数。(学生口头汇报,集体订正。)

篇3:能被3整除的数

2.能同时被2和3整除的数的特征。能同时被3和5整除的数的特征。能同时被2,3,5整除数的特征。

3.作业:课本 P55:5,6,7。

课堂教学设计说明

本节内容是在学生学习了能被2和5整除数的特征之后,学生易产生看一个数的个位数字来判断它能否被3整除的错误。因此,在新课前设置了让学生按个位数寻找能被3整除数的特征,在此设疑,可以激发学生探求新知识的欲望,提高学习兴趣。然后再引导学生通过动手操作、观察分析,使他们在充分感知的基础上归纳出能被3整除的数的特征。能同时被2和3;3和5;2,3和5整除的数的特征,都以练习形式出现,促使学生积极思考,运用所学过的知识来解决问题,进而归纳出相应的特征。

新课教学分三部分。

第一部分是让学生动手操作,充分感知。

第二部分引导学生观察、分析、归纳出能被3整除数的特征。

第三部分通过练习让学生掌握用各位数字和进行判断时较为简便的方法,认识能同时被两个或三个数整除数的特征。

板书设计

篇4:能被3整除的数

(2)请分别用4,5,6,7,9,12,15根小棒摆出一些数,并看看它们能否被3整除。(板书:4,5,…根。)

学生口答老师板书:

121, 310, 202, 1111, 12001,…(都不能被 3整除。)

篇5:能被3整除的数教案

教学目标

1. 使学生通过观察、猜想、比较、验证等一系列数学活动,自主探索并掌握能被3整除的数的特征。

2. 使学生在具体的探索活动中,培养自主探索的意识,发展初步的推理能力。

3. 使学生在参与学习活动的过程中,体验成功的喜悦,增强学习数学的兴趣。

教学准备

学号卡片,计算器,小棒等。

教学过程

一、对比中产生困惑

出示:按要求在下面的□里填上合适的数。

(1) 3□ 能被2整除;能被5整除;能被3整除。

(2) 2□ 能被3整除。

(3) 1□ 能被3整除。

学生回答后,引导思考:看一个数能不能被2、5整除,主要是看这个数的个位,你能从个位上发现能被3整除的数的特征吗?

揭示课题:怎样判断一个数能不能被3整除呢?这就是我们今天要研究的问题。(板书:能被3整除的数的特征)

【说明:学生已经掌握了能被2或5整除的数的特征,在研究能被3整除的数的特征时,会很自然地想到“看个位上的数”。这里正是把学生的已有知识经验作为教学资源,巧妙地通过对比引起学生的思维冲突,促使学生自觉克服思维定势的负面影响,激发学生强烈的探究欲望。】

二、排列中感受奇妙

1. 谈话:我们班有55个同学,课前每个同学都准备了一张写有自己学号的卡片,请大家判断一下,自己的学号数能否被3整除。(稍停,让学生完成判断)请学号数能被3整除的同学,把自己的学号卡片贴在黑板的左边,不能被3整除的,把卡片贴在黑板的右边。

2. 抽取黑板左边能被3整除的12和21。

(1) 谈话:比较这两个数,你能发现什么有趣的现象?(数字相同,数字排列的顺序不同)

(2) 提问:在左边能被3整除的数中,像这样的数还有哪几组?请把它们一组一组地排列起来。(15、51;24、42;45、54)

(3) 提问:在右边不能被3整除的数中,也有这样的数,你能把它们一组一组地排列起来吗?(13、31;14、41;23、32;25、52、34、43;35、53)

3. 提问:你能用自己的语言描述这样的现象吗?(一个能被3整除的数,改变数字的顺序后,仍然能被3整除;一个不能被3整除的数,改变数字的顺序后,仍然不能被3整除)

4. 提问:由此我们可以推想,能被3整除的数的特征和什么有关?(和一个数各位上的数字有关,和数字的排列顺序没有关系)

【说明:以学生熟悉的学号数为研究新知识的素材,易于调动学生的学习兴趣。教师引导学生通过观察、比较、排列等具体的活动,自主地发现“有趣”的现象,体会“能被3整除的数的特征”与一个数各位上的数字密切相关,明确了进一步探究的方向。】

三、操作中发现规律

1. 活动一:每个同学手中都有一些小棒和一张数位表,先请同学们拿出其中的3根小棒,在数位表上摆一个两位数或三位数,如用3根小棒摆两位数:

把摆出的数填在下面的表中:

小棒的根数

摆出的根数

能被3整除

不能被3整除

学生完成操作并填写表格。

反馈:你摆了哪些数?(根据学生回答,填表)这些数能被3整除吗?(在表格里画“√”)

追问:用3根小棒能摆出一个不能被3整除的数吗?

让认为能摆出一个不能被3整除的数的同学自己在下面摆一摆。

2. 活动二:再请同学们拿出5根小棒,在数位表上摆一个两位数或三位数,看摆出的数能不能被3整除。

学生操作并填写表格。

反馈:用5根小棒摆出的数能被3整除吗?

追问:用5根小棒能摆出一个能被3整除的数吗?

3. 活动三:请同学们自己选择小棒的根数摆一摆,把结果填在表格里,并和小组里的同学说一说,从摆小棒的活动中,你发现了什么。

学生活动,并在小组里交流。

反馈:你分别是用几根小棒摆的?结果怎样?你发现了什么?(如果小棒的根数能被3整除,摆出的数就一定能被3整除;如果小棒的根数不能被3整除,摆出的数就不能被3整除……)

4. 提问:通过刚才的活动,我们发现能被3整除的数的一些特点,你能归纳一下,能被3整除的数有什么特征吗?(一个数各位上数的和能被3整除,这个数就能被3整除)

【说明:本环节安排了三次摆小棒的活动,前两次活动主要是引导学生初步体会如果小棒的根数能被3整除,摆出的数一定能被3整数;如果小棒的根数不能被3整除,摆出的数就不能被3整除。第三次活动通过学生自主地操作、观察、比较、交流,进一步丰富前两次活动得出的结论,促使学生主动地发现规律。】

四、练习中提升认识

谈话:我们已经知道能被3整除的数的特征,你能运用这一规律解决一些简单问题吗?

1. 完成第47页的练一练。

让学生说一说怎样判断每一个数能不能被3整除。

2. 完成练习八第6题。

让学生说一说方框里可以填几,为什么。逐步要求学生不重复、不遗漏地填出方框里的数。

五、课堂总结

1. 提问:通过今天的学习,你有什么收获?

2. 延伸:为什么判断一个数能否被2、5整除,只有看它的个位,而判断一个数能否被3整除,却要看这个数各个数位上的数字的和呢?请同学们课后到网上或图书馆去查阅资料,进行研究。

篇6:能被3整除的数教案

【教学过程】

一、复习引入

师:同学们,昨天我们已经学习了2和5的倍数的特征,还记得吗?谁愿意说说?

生:2的倍数的特征是:它的末尾数字是O、2、4、6、8;5的倍数的特征是:它的末尾数字是0、5。

(师板书)

2的倍数

5的倍数

末尾数字

末尾数字

0、2、4、6、8

0、5

师:很好!今天,我们一起来研究3的倍数,看看3的倍数有什么特征?(板书:3的倍数)大家应该还记得,我们在研究2和5的特征时,是通过观察末尾数来发现2和5的倍数的特征的。那么研究3的倍数时,能不能也通过观察一个数的末尾数字得到它的特征呢?下面请大家把《百数表》拿出来,快速地在3的倍数上画图,看看3的倍数的末尾数字有什么特征?

【教学评析】通过复习2、5的倍数的特征,引入研究3的倍数的特征。由于受思维定势的影响,同学首先猜测和考虑的肯定是末尾数字,教师很好地满足了同学的心理需求,放手让同学先走走这条思路。

二、同学探究3的倍数的特征

1.同学研究《百数表》,探究3的倍数的末尾数字。

师:同学们观察得很仔细,很快就有了自身的判断。下面,我想请几个同学来说一说:3的倍数的末尾数字有什么特征?

生1:末尾数字是0到9的数都有可能是3的倍数。

生2:我认为3的倍数的末尾数字没有什么规律,因为0到9都有。

师:那我们能不能根据一个数的末尾数字来判断这个数是不是3的倍数呢?

生:既然3的倍数的末尾数字从0到9都有可能,那肯定不能根据末尾数字来判断。老师,我认为它与各位上数的和有关。

师:哦?你不但看出3的倍数的特征与它的末尾数字无关,还为我们研究3的倍数的特征提供了一条很好的思路。你真聪明,谢谢你!

【教学评析】《百数表》在3的倍数的教学中有多种用法,在这里教师仅用于消除思维定势,否定旧迁移,以此来激发同学的探究欲望。

2.同学做拨珠实验。

(1)同学用4颗算珠拨3的倍数。

师:同学们刚才观察得很仔细,很快就发现3的倍数的特征与这个数的末尾数字没有关系,那么3的倍数的特征到底与什么有关系呢?我们这节课就想方法把它研究出来。首先我们一起来做一个小实验——拨珠实验。请看活动要求:(多媒体显示)①用4颗算珠拨3的倍数;②同桌两人合作,一人拨珠,另一人判断它是不是3的倍数(可借助计算器);③把拨的数记在实验报告单相应的方格里。

拨数实验报告单(一)用了几颗算珠

拨出来的数是3的倍数

拨出来的数不是3的倍数

(生汇报)

【教学评析】用实验的方法来教学3的倍数的特征,改变了以往先列举几组3的倍数和不是3的倍数的数字,然后引导同学归纳特征的教法。这样做,不但提高了数学知识自身的趣味性,而且让同学更好地经历了探究3的倍数的特征的过程。教师首先让同学用4颗算珠拨3的倍数,同学非常投入地去拨数,可就是拨不出3的倍数来,从而发生了很大的困惑。同学的困惑越大,继续研究的欲望就越强。

(2)同学探究要用几颗算珠才干拨出3的倍数。

师:好!既然用4颗算珠拨不出3的倍数,那么,大家愿意不愿意再做一次拨珠实验,看看到底要用多少颗算珠才干拨出3的倍数?

【教学评析】通过同学用任意颗算珠的拨数实验和全班同学的汇报,使同学初步认识到用4颗、5颗算珠拨数,不能拨出3的倍数;而用3颗、6颗算珠拨数,怎么拨都是3的倍数。同学对3的倍数的特征有了初步的感觉,为下一步的猜测活动指引了方向。

3.同学猜测:3的倍数的特征是什么。

师:同学们,学到这里,我想请大家猜测一下:3的倍数的特征可能是什么?

生1:假如算珠的数量是3的倍数,那么拨出来的数一定是3的倍数。

生2:假如一个数各位上的数字加起来是3的倍数,那么这个数一定是3的倍数。

师:好!你能说说你是怎么想的吗?(板书:猜测一:珠子的总数是3的倍数;猜测二:各位上数的和是3的倍数)

生:第一个猜测看的是算珠,第二个猜测看的是数字。

师:有什么不同意见吗?

生:我认为这两种猜测是一样的,因为每一位上数字的和其实就是一共用了多少颗算珠。

师:大家同意吗?

生:同意。

【教学评析】实践证明,教师这个时候让同学进行猜测,相比一开始就让同学大胆猜测来说,防止了同学不着边沿地胡猜乱想,使同学明确了探究的思路,提高了课堂教学效率。

4.同学验证:用3颗、6颗、9颗……算珠,拨3的倍数。

师:请你任意取一些算珠,但颗数必需是3的倍数,然后任意拨一些数,看它是否是3的倍数。假如是3的倍数,就请你把拨的数和用了多少颗珠子输入到屏幕上的这个表格中。(师生一起输入数据)

篇7:能被3整除的数教案

教学目的:知识与能力:使学生掌握能被3整除的数的特征。

过程与方法:引导学生观察各数上的数的和的特征,减缓学生思考的难度,最后让学生概括出能被3整除的数的特征。

情感与态度:渗透“实践第一”的辩证唯物主义观点。培养学生动脑思考,综合概括的能力。

教学过程:

一、复习导入

在12、15、30、45、70、80、100、125中

(1)能被2整除的数有________;

(2)能被5整除的数有________;

(3)能同时被2、5整除的数有________;

这节课,我们一起来研究能被3整除的数的特征。

板书:能被3整除的数

请任意说出一个能被3整除的数,请你再任意说出一个不能被3整除的.数。

老师在这些不能被3整除的数的后面或前面或中间某个位置添上一个数字,就能使其能被3整除,请同学们检验。

能被3整除的数究竟有什么特征呢?让我们共同研究这个问题。

二、讲授新课

刚才你们说12能被3整除,现在我把个位上的数与十位上的数调换位置,变成21,21也能被3整除。你们说48能被3整除,那么84也能被3整除。不信,请口算一下。

刚才有一位同学说123能被3整除,看着这个数,你能像刘老师一样再说出几个能被3整除的数吗?谁来试试?

再看这个四位数:1251,请同学们先口算1251能被3整除吗?看着这个数,你能再说出几个能被3整除的数吗?

板书:(1)1221

(2)4884

(3)123231213......132

(4)125115212151......2511

请你们仔细观察黑板上的四组数,想一想,每一组里的数,什么变了,什么没变?

1、每一组里的数,组成这些数的数字没变,数字的排列顺序有变化。

2、每一组里的数,和没有变。

3、每一组里的数,积没有变。

1与2分别是个位上的数与十位上的数,那么和没有变,可以说成是个位上、十位上的数的和没有变吗?第一组数积没有变,应当怎么说呢?

请同学们再看第二组数,个位上、十位上的数和与积变了吗?那么第三组数、第四组数呢?

板书:和(能被3整除)

积(不一定能被3整除)

l+2=31×2=2

4+8=124×8=32

1+2+3=6

1×2×3=6

1+2+5+1=9

1×2×5×1=10

如果还有几组像这样能被3整除的数是五位数、六位数,和与积没有变,这句话应当怎么说呢?这样说比较罗嗦,你能不能用一句话概括出来。

板书:各个数位上的数的和

请同学们结合老师的板书,思考并讨论三个问题。

1、各个数位上的数的和以及各个数位上的数的积与3有什么关系?

2、判断一个数能否被3整除,看个位行吗?应当看什么呢?

3、请你看着黑板,试着出能被3整除的数的特征。

三、巩固练习

1、判断下面几个数,哪些能被3整除?为什么?

5978307219700230071

2、这是讲新课前刘老师在一个本不能被3整除的数的后面或前面或中间又添上了一个数字,组成的数就能被3整除了。你想一想还可以添几?要想使3□0能被3整除,方格里可以填几?

3、卡片上的数可能被2整除,也可能被5整除,还可能被3整除,它到底能被几整除呢?请你用手指表示出来。

581152078045108

4、请你用以下6个数字,组成能同时被2、5、3整除的三位数。其中最大的一个是几?最小的一个是几?

012345

四、课堂(略)

篇8:能被3整除的数教案

教学内容:

能被3整除的数的特征(《现代小学数学》第八册)。

教学目标:

1.使学生掌握能被3整除的数的特征,并能运用特征进行正确的判断;

2.培养学生的观察分析能力和逻辑思维能力;

教学重点:

认识并掌握能被3整除的数的特征。

教学难点:

通过概括能被3整除的数的特征掌握一定的数学思想和方法。

教具学具:

投影片、纸黑板、数字卡、作业纸

教学过程:

一、复检:

1.前面找们已经学习了能被2、5整除的数的特征,谁来分别说一说?

2.你能说出几个能被3整除的数吗?(板书其中两个45、234)

3.能被3整除的数有什么特征呢?这就是我们今天要研究的内容。(板书课题)

二、新授:

1.质疑引入

刚才同学们口算验证了234能被3整除,老师根据这个数可以写出许多个能被3整除的数(板书243、324、342、423、432、20xx、)。你们想知道老师有什么窍门吗?下面我们一起来研究。

2.引导观察

(1)9能被3整除吗? 3|9

9的2倍能被3整除吗? 板书 3|(92)

9的3倍能被3整除吗? 3|(93)

由此,你想到了什么? 贴纸黑板 (9的倍数都能被3整除)①

(2)9与18的和能被3整除吗? 3|(9+18)

18与27的和能被3整除吗? 板书 3|(18+27)

36与90的和能被3整除吗?3|(36+90)

由此,你又想到了什么?贴纸黑板

(每个加数能被3整除,它们的和也能被3整除)②

(3)下面研究整十、整百数与9的关系。

由此,你推想到了什么?

(几十=几个9+几) (几百=几十几个9+几)③

篇9:第九册能被3整除的数的特征

教学内容:

人教版九年义务教育六年制小学数学第十册

教学目标 :

1、知识目标:掌握能被3整除的数的特征。

2、技能目标:能运用“能被3整除的数”的特征判断一个数能否被3整除。

3、情感目标:培养学生自主探索的能力,合作学习的品质。让学生感受

生活中蕴藏着丰富的数学知识。

教学重点、难点:

篇10:第九册能被3整除的数的特征

教具准备: 多媒体课件

教学过程 :

(一)

师:刚才吉老师给同学们上了一节数学课,同学们在课堂上表现的特别棒!我也想给同学们上一节数学课,你们欢迎吗?

生:……

师:吉老师领大家做了报数游戏,现在我也领大家做一个报数游戏。你们愿意吗?

生:……

师:好,现在我们从第一排第一个同学开始报数,报数的要求是:第一个同学从3开始报数,第二个同学要在第一个同学报的数上加3,第三个同学要在第二个同学报的数上加3,依次类推,第一排最后一位同学报完后,第二排的第一位同学要接着往下报,第二排最后一位同学报完后,第三排的第一位同学要接着往下报,一直报到最后。听懂了吗?

生:……

师:想一想,第一位同学从3开始报数,第二位同学应该报几?第三位同学呢?

生:……

师:报数的时候,其他同学要注意听,同时想一想自己应该报几。并要记住自己的号码。现在开始:报数!

生:……

师:记住你们的号码了吗?

生:……

师:再报一遍!

生:……

师:游戏做到这里。上课!

生:……

师:同学们好!请坐!我们刚学过能被2、5整除的数的特征。现在请你们用3、4、5三个数字组成一个能被2整除的三位数。

生:……

师:为什么要把4放在个位上?

生:……

师:同样还用3、4、5三个数,组成能被5整除的三位数。

生:……

师:你是怎么想的?

生:……

师:判断一个数是否能被2或者5整除,只要看这个数的哪一位?

生:……

师:我们知道了能被2或者5整除的数的特征,请同学们大胆猜想一下,能被3整除的数是否也有特征呢?

生:……

师:有什么特征呢?

生:……

师:好,这就是我们这节课要研究的内容。(板书:能被3整除的数的特征)

师:请同学们看大屏幕:(屏幕出示)

3         6   9   12   15   18   21   24   27   30   33   36   39   42

45        48  51  54   57   60   63   66   69   72   75   78   81

84   87   90   93   96  99  102   105   108   111   114   117

120   123   126   129   132   135   138   141   144   147   150

师:这就是我们刚才报数游戏时同学们的号码。这些数都是3的倍数,都能被3整除,观察这些能被3整除的数,个位上有什么特点?

生:……

师:你从一个数的个位上能判断出这个数能被3整除吗?

生:……

师:那该怎么办呢?(学生猜想规律)请看大屏幕(屏幕出示)

12―21  24―42  48―84  36―63

师:你发现每组的两个数有什么联系?(追问)

生:……

师:你从大屏幕找出这样的例子吗?

生:……(找)

师:这些数把每个数的各位数字调换位置,它们仍然能被3整除。这说明能被3整除的数与组成这个数的数字无关。那么到底与什么有关呢?请同学们小组讨论,共同探讨一下。

生:……

师:讨论完了吗?哪个小组先来汇报?

生:……

师:回答的真好!其他小组同意他们的意见吗?

生:……

师:请同学们在大屏幕上任选一个数字,看看刚才的.同学发现的是不是真理。

生:……

师:我们刚才发现的规律对于两位数、三位数是适用的,那么对于四位数、五位数是不是也适用呢?请看大屏幕(屏幕出示)

3246           5709     3428331

师:请同学们计算一下。这三个能被3整除的数各个数位的和是不是能被3整除?

生:……

师:看来同学们发现的规律确实很有道理。谁能把自己的发现用一句话叙述一下?

生:……

师:(谁能比他说的更完整)

师:对,一个数的各位上的数的和能被3整除,这个数就能被3整除。板书:(…)

小结:以后判断一个数能不能被3整除,只要把这个数的个位上的数加起来,看看和能不能被3整除,就知道了。

师:出示卡片:417,这个数能不能被3整除?

生:……

师:我现在把这个数的位置颠倒一下,出示:147。猜想一下老师下面会出什么数字?

生:……

师:猜对了。你说的这些数字能不能被3整除?你是怎么想的?

生:……(鼓励)

师:还记得我们课前做的游戏吗?看看你们忘没忘记你们的号码。现在我们继续做报数游戏,从3开始报数!

生:……

师:是偶数的同学站起来。请报一下你们的号码。

生:……

师:你们的号码能被2和3同时整除吗?

生:……

师:为什么?

生:……

师:真聪明!请坐!

师:我们已经初步掌握了能被3整除的数的特征。你们想不想做几道题检验一下自己学习的情况。

生:……

屏幕出示:

1、填适当的数使它能被3整除。

12□     7□    3□0    40□

□26     578□   □8    3□3

2、你今年11岁,再过几年,你的岁数能被3整除?

师:好了,通过检验,使我们对能同时被5和3整除的数的特征,认识的更深刻了。咱们再来做个练习,[板书:0、1、2、4、5]这里有5个数字,请你用这些数字组成同时能被2、3、5整除的三位数(每个数字在一个数里只能用一次),我只给20秒,看谁组的多、请写在本上,开始。

生:[在本上组数]

师:时间到,有人组了三个,有人组了四个,最多的组了八个。我请一位组的最多的同学来说一说。

生:120,210;150,510;240,420;450,540。

师:对不对?

生:……

师:通过这节课的学习,你有什么收获?你对自己在课堂的表现满意吗?

生:……

师:这节课同学们的表现真棒,真高兴认识你们,谢谢同学们的合作!下

课!

附板书设计 :

篇11:能被253整除的数教案设计

能被253整除的数教案设计

教学内容:

苏教版义务教育教材第十册第45~47页练习八(1~7)

教学目标:

1、能说出能被2、5、3整除的数的特征,知道奇数、偶数的概念;

2、会正确判断一个数是否能被2、5或3整除;

3、在探求特征的过程中增强数学模型意识,培养数感以及分析、综合、抽象、概括等思维能力及进行数学交流的能力。

教学重点:抽象、概括出能被2、5、3整除的数的特征。

教学难点:引导学生发现能被3整除的数的特征。

教学准备:师生准备百数表、集合圈图(如课本),小黑板或投影仪。

教学过程:

第一课时

一、创设情境激发兴趣

1、师:前面我们一起学习了整除、约数和倍数,你们愿不愿意和老师比赛做下面这道题目?

2、

(师生比赛)

2、师:你们任意报一个整数,我都能马上告诉它能否被2或5整除。(指名学生报数,教师判断,其他学生笔算验证。)

3、师:你们想不想知道其中有什么秘密?今天我们一起去发现这个秘密好不好?(板书:能被2、5整除的数的特征)

[通过师生比赛的形式激起学生的好奇心,引发他们的探究欲望,为后面的探究学习打下良好的心理基础。]

二、探究规律概括特征

1、探究能被2整除的数的特征。

师:你想怎样去探究能被2整除的数的特征?(组织学生交流自己的.设想。)

[操作前的思考和交流,有利于学生明确操作的目标和方向,养成先思后行的习惯,避免操作的盲目性。]

拿出课前准备的操作材料,你可以按自己的想法去发现这个秘密,也可以借助百数表。

(1)学生操作、寻找规律:

师:你从上面的操作中发现什么规律?

(2)组织交流:

师:同桌之间互相把自己的发现说一说。(同桌交流)

师:你是怎样探究的?发现能被2整除的数怎样的特征?(集体交流)

(当有学生汇报用百数表探究的时候,出示下图,并提问。)

师:你为什么会用百数表探究,你能描述一下能被2整除的数在百数表中的排列模型吗?

[通过交流帮助学生在非正式的直觉的观念与抽象的数学语言符号之间建立起联系,发展和深化学生对数学的理解,并为学生提供反思自己的操作和探究过程的机会。]

123456789

10111213141516171819

20212223242526272829

30313233343536373839

40414243444546474849

5051525354......

(3)概括总结出能被2整除的数的特征。(板书:个位上是0、2、4、6、8的数,都能被2整除。)

(4)教师讲解:所以判断一个数能否被2整除,只要看它的个位。(并指出)能被2整除的数叫做偶数;不能被2整除的数叫做奇数。(板书)

(5)练习、运用:判断下列各数中偶数有哪些?奇数有哪些?

2435、346、127、303、284、0

[探究过程中有意识地引导学生使用百数表,可以提高操作的效率,同时让学生直观感知能被2整除的数在百数表中的排列规律,渗透模型意识,并为最后的概括总结提供有力的表象支撑。]

2、发现能被5整除的数的特征。

(1)学生自主探索。

(2)集体汇报交流。

(3)练习巩固:完成第46页“练一练”。并找出能同时被2和5整除的数。

[有了前面探索的基础,这一环节充分放开,让学生自主探索,进一步提高学生的自主探究和数学交流的能力。]

三、巩固练习:

1、的数能被2整除;不能被2整除的数叫做数。

的数能被5整除;

2、练习八1、2指名学生口答。

四、课堂总结:今天我们探讨什么问题,你有哪些收获?

五、课堂作业:练习八3、4

篇12:能被2,5整除的数

教学目标

(一)掌握能被2,5整除的数的特征。

(二)理解并掌握奇数和偶数的概念。

(三)能运用这些特征进行判断。

(四)培养学生的概括能力。

教学重点和难点

(一)能被2,5整除的数的特征。

(二)奇数和偶数的概念,0也是偶数。

教学用具

投影片。

教学过程设计

(一)复习准备

1.提问。

①说出20的全部约数。

②说出5个8的倍数。

③26的最小约数是几?最大约数是几?最小的倍数是几?2.板书。

按要求在集合圈里填上数。

教师:在计算中,经常需要先判断一个数能否被另一个数整除。如果掌握了数的一些特征,就可以帮助我们进行判断。今天我们就学习最常见的,能被2,5整除的数的特征。板书课题。

(二)学习新课

篇13:能被2,5整除的数

(1)教师:(指板书练习2)右边集合圈里的数与左边圈里的数是什么关系?

教师:请观察右边圈里的数、它们的个位数有什么特点?(个位上是0,2,4,6,8。)

教师:请再举出几个2的倍数,看看符不符合这个特点?

学生随口举例。

教师:谁能说一说能被2整除的数的特征?

学生口答后老师板书:个位上是0,2,4,6,8的数,都能被2整除。

(2)口答练习(投影片)

请把下面的数按要求填在圈内:

1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。

学生口答完后,老师介绍:

能被2整除的数叫做偶数,不能被2整除的数叫做奇数。(奇读j9)板书,上面两个集合圈上补写出“偶数”,“奇数”。

教师:上面两个集合圈里该不该打省略号?为什么?

学生讨论后老师说明:

在本题所列的有限个数里的奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。

教师:奇数、偶数在我们日常生活中遇到过吗?习惯上称它们为什么数?(单数、双数。)

教师板书:0÷2=0。

问:0算不算偶数?请说一说是怎样想的。

学生讨论后老师总结:商是0,0是整数,说明0也能被2整除,所以0也算偶数。

(3)练习:(先分小组小说,再全班统一回答。)

①说出5个能被2整除的两位数。

②说出3个不能被2整除的三位数。

③说出15~35以内的偶数。

④50以内的偶数有多少个?奇数有多少个?

能被 2 , 5 整除的数教案设计

数的整除

《亿以上数》说课稿

数小鸡说课稿

我渴望能被读懂作文

数图形的学问说课稿

用字母表示数说课稿

100以内数的认识说课稿

积得近似数说课稿

幼儿园大班《看报学数》说课稿

《能被3整除的数》说课稿(集锦13篇)

欢迎下载DOC格式的《能被3整除的数》说课稿,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档