【导语】“hczj刘久久”通过精心收集,向本站投稿了12篇能被 2 , 5 整除的数教案设计,下面是小编为大家整理后的能被 2 , 5 整除的数教案设计,以供大家参考借鉴!
- 目录
篇1:能被2,5整除的数(人教版五年级教案设计)
教学目标
(一)掌握能被2,5整除的数的特征。
(二)理解并掌握奇数和偶数的概念。
(三)能运用这些特征进行判断。
(四)培养学生的概括能力。
教学重点和难点
(一)能被2,5整除的数的特征。
(二)奇数和偶数的概念,0也是偶数。
教学用具
投影片。
教学过程设计
(一)复习准备
1.提问。
①说出20的全部约数。
②说出5个8的倍数。
③26的最小约数是几?最大约数是几?最小的倍数是几?2.板书。
按要求在集合圈里填上数。
教师:在计算中,经常需要先判断一个数能否被另一个数整除。如果掌握了数的一些特征,就可以帮助我们进行判断。今天我们就学习最常见的,能被2,5整除的数的特征。板书课题。
(二)学习新课
1.能被2整除数的特征。
(1)教师:(指板书练习2)右边集合圈里的数与左边圈里的数是什么关系?
教师:请观察右边圈里的数、它们的个位数有什么特点?(个位上是0,2,4,6,8。)
教师:请再举出几个2的倍数,看看符不符合这个特点?
学生随口举例。
教师:谁能说一说能被2整除的数的特征?
学生口答后老师板书:个位上是0,2,4,6,8的数,都能被2整除。
(2)口答练习(投影片)
请把下面的数按要求填在圈内:
1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。
学生口答完后,老师介绍:
能被2整除的数叫做偶数,不能被2整除的数叫做奇数。(奇读j9)板书,上面两个集合圈上补写出“偶数”,“奇数”。
教师:上面两个集合圈里该不该打省略号?为什么?
学生讨论后老师说明:
在本题所列的有限个数里的奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。
教师:奇数、偶数在我们日常生活中遇到过吗?习惯上称它们为什么数?(单数、双数。)
教师板书:0÷2=0。
问:0算不算偶数?请说一说是怎样想的。
学生讨论后老师总结:商是0,0是整数,说明0也能被2整除,所以0也算偶数。
(3)练习:(先分小组小说,再全班统一回答。)
①说出5个能被2整除的两位数。
②说出3个不能被2整除的三位数。
③说出15~35以内的偶数。
④50以内的偶数有多少个?奇数有多少个?
2.能被5整除的数的特征。
(1)教师先在黑板上画出两个集合圈,然后提出要求:你们能不能用与研究能被2整除的数的特征相同的方法,找出能被5整除的数的特征?
学生自己动手填数、观察、讨论。老师巡视过程中选一位同学板书填空。
教师:说一说能被5整除的数的特征?
教师:请举几个多位数验证。
教师:再说一说什么样的数能被5整除?
板书:个位上是0或者5的数,都能被5整除。
(2)练习:
①按从小到大的顺序,说出50以内能被5整除的数。
②(投影片)下面哪些数能被5整除?
240,345,431,490,545,543,709,725,815,922,986,990。
③(投影片)从下面的数中挑出既能被2整除,又能被5整除的数。这些数有什么特点?12,25,40,80,275,320,694,720,886,3100,3125,3004。
学生口答后教师板书:
既能被2整除、又能被5整除的数有:
40,80,320,720,3100。
个位数字是0。
④教师随口说出数,请立即说出这个数能被2还是能被5整除,或者是既能被2又能被5整除。并说明判断的依据。
(三)巩固反馈
(1~4题口答,5题小组讨论后汇报。)
1.自然数按照能不能被2整除进行分类。
2.在1~100的自然数中,能被2整除的数有( )个,能被5整除的数有( )个3.比75小,比50大的奇数有( )。
4.个位是( )的数能同时被2和5整除。
5.用0,7,4,5,9五个数字组成能被2整除,能被5整除,能同时被2和5整除的数(四)课堂总结和课后作业
1.什么叫奇数?什么叫偶数?
2.能被2整除的数的特征?能被5整除的数的特征?
3.能同时被2和5整除的数的特征。
4.作业:课本P55练习十二:1,2,3,4。
课堂教学设计说明
本节课是要让学生学习了约数、倍数之后,掌握一些常用数的整除特征。这些知识是今后进一步学习的重要基础。能被2,5整除的数的特征,都在个位数,学生极易理解和掌握。奇数、偶数的概念,学生掌握也并不困难。所以课堂设计中都安排让学生通过练习自己去学习,尤其是能被5整除的数的特征,完全安排学生自学,这样既调动了学生的积极性,又锻炼和培养了学生的归纳概括能力。课堂上还设计了较多的练习,使学生能较熟练地应用数的特征和概念进行判断。
新课教学分两部分。
第一部分教学能被 5整除数的特征,分三层。引导学生自己归纳出能被 2整除的数的特征;掌握奇数,偶数概念;巩固能被2整除数的特征和奇、偶数概念。
第二部分教学能被2整除数的特征。分两层。学生自学归纳出能被5整除数的特征;巩固能被2,5整除数的特征,并掌握能同时被2,5整除的数的特征。
板书设计
篇2:能被2,5整除的数
教学目标
(一)掌握能被2,5整除的数的特征。
(二)理解并掌握奇数和偶数的概念。
(三)能运用这些特征进行判断。
(四)培养学生的概括能力。
教学重点和难点
(一)能被2,5整除的数的特征。
(二)奇数和偶数的概念,0也是偶数。
教学用具
投影片。
教学过程设计
(一)复习准备
1.提问。
①说出20的全部约数。
②说出5个8的倍数。
③26的最小约数是几?最大约数是几?最小的倍数是几?2.板书。
按要求在集合圈里填上数。
教师:在计算中,经常需要先判断一个数能否被另一个数整除。如果掌握了数的一些特征,就可以帮助我们进行判断。今天我们就学习最常见的,能被2,5整除的数的特征。板书课题。
(二)学习新课
篇3:能被2,5整除的数
(1)教师:(指板书练习2)右边集合圈里的数与左边圈里的数是什么关系?
教师:请观察右边圈里的数、它们的个位数有什么特点?(个位上是0,2,4,6,8。)
教师:请再举出几个2的倍数,看看符不符合这个特点?
学生随口举例。
教师:谁能说一说能被2整除的数的特征?
学生口答后老师板书:个位上是0,2,4,6,8的数,都能被2整除。
(2)口答练习(投影片)
请把下面的数按要求填在圈内:
1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。
学生口答完后,老师介绍:
能被2整除的数叫做偶数,不能被2整除的数叫做奇数。(奇读j9)板书,上面两个集合圈上补写出“偶数”,“奇数”。
教师:上面两个集合圈里该不该打省略号?为什么?
学生讨论后老师说明:
在本题所列的有限个数里的奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。
教师:奇数、偶数在我们日常生活中遇到过吗?习惯上称它们为什么数?(单数、双数。)
教师板书:0÷2=0。
问:0算不算偶数?请说一说是怎样想的。
学生讨论后老师总结:商是0,0是整数,说明0也能被2整除,所以0也算偶数。
(3)练习:(先分小组小说,再全班统一回答。)
①说出5个能被2整除的两位数。
②说出3个不能被2整除的三位数。
③说出15~35以内的偶数。
④50以内的偶数有多少个?奇数有多少个?
篇4:能被2,5整除的数
(1)教师先在黑板上画出两个集合圈,然后提出要求:你们能不能用与研究能被2整除的数的特征相同的方法,找出能被5整除的数的特征?
学生自己动手填数、观察、讨论。老师巡视过程中选一位同学板书填空。
教师:说一说能被5整除的数的特征?
教师:请举几个多位数验证。
教师:再说一说什么样的数能被5整除?
板书:个位上是0或者5的数,都能被5整除。
(2)练习:
①按从小到大的顺序,说出50以内能被5整除的数。
②(投影片)下面哪些数能被5整除?
240,345,431,490,545,543,709,725,815,922,986,990。
③(投影片)从下面的数中挑出既能被2整除,又能被5整除的数。这些数有什么特点?12,25,40,80,275,320,694,720,886,3100,3125,3004。
学生口答后教师板书:
既能被2整除、又能被5整除的数有:
40,80,320,720,3100。
个位数字是0。
④教师随口说出数,请立即说出这个数能被2还是能被5整除,或者是既能被2又能被5整除。并说明判断的依据。
(三)巩固反馈
(1~4题口答,5题小组讨论后汇报。)
1.自然数按照能不能被2整除进行分类。
2.在1~100的自然数中,能被2整除的数有( )个,能被5整除的数有( )个3.比75小,比50大的奇数有( )。
4.个位是( )的数能同时被2和5整除。
5.用0,7,4,5,9五个数字组成能被2整除,能被5整除,能同时被2和5整除的数(四)课堂总结和课后作业
1.什么叫奇数?什么叫偶数?
2.能被2整除的数的特征?能被5整除的数的特征?
3.能同时被2和5整除的`数的特征。
4.作业:课本P55练习十二:1,2,3,4。
课堂教学设计说明
本节课是要让学生学习了约数、倍数之后,掌握一些常用数的整除特征。这些知识是今后进一步学习的重要基础。能被2,5整除的数的特征,都在个位数,学生极易理解和掌握。奇数、偶数的概念,学生掌握也并不困难。所以课堂设计中都安排让学生通过练习自己去学习,尤其是能被5整除的数的特征,完全安排学生自学,这样既调动了学生的积极性,又锻炼和培养了学生的归纳概括能力。课堂上还设计了较多的练习,使学生能较熟练地应用数的特征和概念进行判断。
新课教学分两部分。
第一部分教学能被 5整除数的特征,分三层。引导学生自己归纳出能被 2整除的数的特征;掌握奇数,偶数概念;巩固能被2整除数的特征和奇、偶数概念。
第二部分教学能被2整除数的特征。分两层。学生自学归纳出能被5整除数的特征;巩固能被2,5整除数的特征,并掌握能同时被2,5整除的数的特征。
板书设计
篇5:小学数学《能被3整除数特征》说课稿
小学数学《能被3整除数特征》说课稿
一、教材分析
本节课主要学习能被3整除的数的特征,是在学生学习了约数和倍数的意义,掌握了能被2、5整除的数的基础上进行的教学。此知识是分解质因数,求最大公约数,最小公倍数的重要基础,同时也为今后学习约分、通分做好准备。依据《课程标准》倡导任务型教学模式,即让学生在教学活动中参与和完成真实的教学任务,从中体验学习的快乐。我设计了如下教学目标和教学重难点:
1.教学目标
数学课程标准指出,基础教育阶段数学课程的总体目标是以学生的身心发展规律为基础,改善学生的学习方式,关注学生对数学的`情感和态度,以促进人的终身发展。基于以上认识,以及对教学内容的分析和教材特点,我将教学目标定为:
(1)知识目标:使学生初步掌握能被3整除的数的特征,会判断一个数能否被3整除。
(2)能力目标:培养学生自主探索的能力,合作学习的品质。
(3)情感目标:让学生在探索发现过程中感受到生活中丰富的数学知识和体验到成功的乐趣,并培养学生学习数学的信心。
2.教学重点和难点
根据以上对教学内容和教学目标的分析以及小学生学习数学的特点,我认为掌握能被3整除的数的特征是本课的重点及难点。
二、说教法
根据新课程以人为本的理念以及以上对教学目标的分析,我主要采用以下几种教学方法:
1.小组合作学习法
小组合作学习是新课程积极倡导的有效学习方式之一,有效的小组合作学习可以加大学生的实践量,提高学生运用数学的能力,促进互相帮助,培养团队意识。
2.情境教学法
为了激发学生想学的愿望,我利用情景教学法,设计报数等游戏,创设有趣的学习氛围,调动学生学习的积极性,充分发挥学生的主体作用,增加学生学习数学的兴趣。
3.鼓励法
有效的课堂活动需要评价手段的支持,有效的活动评价方式是实施有效活动的保障,所以,我的课堂评价主要以鼓励性评价为主。另外,课上恰当的使用激励性评语和赠送小礼物的方法让学生渴望成功的心理得到满足,这也是激励学生积极投身数学学习的一个最简单而有效的方法。
篇6:“创造”的教与学――《能被9整除数的特征》教学案例
“创造”的教与学――《能被9整除数的特征》教学案例
义务教育阶段的数学课程,不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学的理解,增进学好数学的信心。 学习数学的唯一正确方法是实行“再创造”,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生。一、“创造”的教数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。教师是数学学习的组织者、引导者与合作者。 教材中对于“能被3整除数的特征”的归纳是通过找余数与这个数数位上的数字之间的关系来进行总结的,而任意一个自然数除以3只有余数0、1、2这三种情况。在教学过程中,学生很难通过余数发现与自然数的数位上数字的关系。因此,教师想到了如果先研究“能被9整除数的特征”的特征呢?任意一个自然数除以9有余数0、1、2、……6、7、8九种情况,与所研究的自然数的数位上的数字更容易建立关系,有利于学生的观察与理解。 虽然“能被9整除的数的特征”是教材中没有涉及的部分,但是却能很好的帮助学生通过借助能被9整除数的特征,以及3和9之间的关系,去理解能被3整除数的特征。分散了知识点的难度,同时也渗透了知识间的内在联系。二、“创造”的学《新课程标准》提出:“动手实践,自主探索与合作交流是学生学习数学的重要方式。数学学习活动应是一个活泼的、主动的和富有个性的过程”。这一理念不仅告诉我们创新意识和实践能力紧密想随,而且要使学生的探索经历和获取新发现的体验成为数学学习的重要途径。1.设“井”激趣数学的学习方式不能再是单一的、枯燥的,以被动听讲和练习为主的方式,它应该是一个充满生命力的过程。【片断一】出示:87602860、51001758、65064345、85992639师:老师这里有几位同学家的.电话号码。问:每个电话号码都是一个八位数,这四个数中哪些能被2整除?你怎么判断的?哪些能被5整除?判断的依据是什么? 生答:87602860、51001758能被2整除,个位上是0、2、4、6、8的数能被2整除;87602860、65064345这两个数能被5整除,个位上是0或5的数能被5整除。问:哪些数能被9整除呢?你有什么办法吗?生:① 看个位,认为85992639能被9整除。② 算,可以口算、笔算,大数目可以用计算器帮助。③ 各数位上的数字和能否被9整除 师:同学们说了这么多种发法,那就用你们想到的方法来找找看哪些数能被9整除。 生:对这四个数进行验证,得出51001758能被9整除。 交流想法:能被9整除的数看个位是不成立的,85992639不能被9整除;如果身边没有计算工具,算起来很不方便;如果各数位上的数字和能被9整除,这个数就能被9整除。这个方法比较好,很快捷。生质疑:看“各数位上的数字和能否被9整除”这个方法对于每个数都成立成立吗?为什么成立呢? 在课上,同学们受“能被2或5整除数的特征”经验的影响,在验证、讨论的过程中,许多不正确的结论被一一否定,而只留下把“各数位上的数字相加求和,看和与9的关系”的方法。这个方法学生们找不到反例,但又迫切的想了解为什么?这样不仅抑制了前面所学知识的负迁移,同时又激发学生的学习欲望。 当学生意识到了“各数位上的数字相加求和,看和与9的关系”这个方法时,发现、解决问题的过程就有了目标,为最终问题的解决提供一个可能的方向。创设问题情境,把静态的知识结论转化为动态的探索对象,使学生在经历类似于数学家的探索创造过程中,激发探索意识,养成探索习惯,提高再创造的能力。2.追根溯源“学习任何知识的最佳途径是有学生自己去发现。因为这种发现,理解最深,也最容易掌握其中的内在规律联系。” 让学生自己去体验,用自己的思维方式去探究,这就是一个再创造的过程。如果离开了学生的学习活动,学生的发展就会落空。 判断一个数能否被9整除,不能只从一个数的某一位上的数来判断,必须把这个数各个数位上的数相加求和,如果和能被9整除,这个数就能被9整除。这一结论与能被2、5整除的数的特征相比而言不容易被发现,不容易理解。因此,就把重点放在了“说理”上,不仅要使学生知其然,还要使他们知其所以然。 在分析推理能被9整除的数的特征的过程中,充分重视学生的年龄、心理特点,利用他们已有的知识基础,分层次逐步进行研究。【片断二】⑴先引领学生集体先对整十数和整百数进行分析,找出整十数与9、整百数与99的关系,作为认识任意自然数能否被9整除数的特征的基础和突破口;问:10能被9整除吗?你怎么知道的?20、30呢?答:10÷9=1…1,所以10不能被9整除,可以把10写成10=9×1+1。20÷9=2…2,所以20不能被9整除,可以把20写成20=9×2+2。30÷9=3…3,所以30不能被9整除,可以把30写成30=9×3+3。生发现:①整十数都可以写成9乘几加几的形式。 ②余数正好是整十数十位上的数。问:那判断整十数能否被9整除有更简单的方法吗?答:直接看整十数十位上的数字。过渡:整十数能否被9整除的我们会了,那整百数呢? 问:100能被9整除吗?2000呢? 你又发现了什么?答:100不能被9整除,因为100÷9=11…1,所以100去掉1个99还余1。100可以写成99×1+1。200不能被9整除,因为200÷9=22…2,所以200去掉2个99还余2。200可以写成99×2+2。发现:余数与整百数百位上的数字相同。问:要很快的判断出整百数能被否被9整除看什么?生:看整百数的百位就可以了。 ⑵再小组合作把几百几十的数变成几个百、几个十的组合形式,与9和99建立联系,分散难点,初步归纳能被9整除数的特征;问:100能被9整除吗?80能被9整除吗?180呢?你能用前面的知识,小组合作研究为什么吗?小组探究:因为,180 100=99×1 + 1 80= 9×8 + 8 能被9整除 1+8=9 能被9整除 所以,180能被9整除。 发现:余数和与这个数的数位上的数字和是相同的,所以可以看这个数的数位上的数字和。 ⑶最后当学生发现这种暗含的关系后,他们可以把任意一个自然数变成由几个百、几个十、几个一的组合形式,与9和99建立联系,重视学生从具体到抽象,从一般中概括推力出结论的能力的培养。问:这有一个三位数216,你能马上判断出它能被9整除吗?怎么判断的?答:能。2+1+6=9能被9整除,216能被9整除。通过观察拆分之后的余数,学生发现余数和与所给数的数位上的数字和相同,所以可以直接看所给数的各个数位上的数字和能否被9整除。在这节课结束的时候,学生根据自己的理解、用自己的语言归纳出了“能被9整除的数的特征”。 课上学生有了充分的从事数学活动的时间和空间,在自主探索、亲身实践、合作交流的氛围中,解除困惑,更清楚的明确自己的思想,并有机会分享自己和他人的想法,在亲身体验和探索中认识数学,解决问题,理解和掌握基本的数学知识、技能和方法。在合作交流、与人分享和独立思考的氛围中,倾听、质疑、说明、推广而直至感到豁然开朗。篇7:“创造”的教与学-《能被9整除数的特征》教学案例
“创造”的教与学-《能被9整除数的特征》教学案例
义务教育(www.35d1.com-上网第一站35d1教育网)阶段的数学课程,不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学的理解,增进学好数学的信心。 学习数学的唯一正确方法是实行“再创造”,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生。一、“创造”的教数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。教师是数学学习的组织者、引导者与合作者。 教材中对于“能被3整除数的特征”的.归纳是通过找余数与这个数数位上的数字之间的关系来进行总结的,而任意一个自然数除以3只有余数0、1、2这三种情况。在教学过程中,学生很难通过余数发现与自然数的数位上数字的关系。因此,教师想到了如果先研究“能被9整除数的特征”的特征呢?任意一个自然数除以9有余数0、1、2、……6、7、8九种情况,与所研究的自然数的数位上的数字更容易建立关系,有利于学生的观察与理解。 虽然“能被9整除的数的特征”是教材中没有涉及的部分,但是却能很好的帮助学生通过借助能被9整除数的特征,以及3和9之间的关系,去理解能被3整除数的特征。分散了知识点的难度,同时也渗透了知识间的内在联系。二、“创造”的学《新课程标准》提出:“动手实践,自主探索与合作交流是学生学习数学的重要方式。数学学习活动应是一个活泼的、主动的和富有个性的过程”。这一理念不仅告诉我们创新意识和实践能力紧密想随,而且要使学生的探索经历和获取新发现的体验成为数学学习的重要途径。1.设“井”激趣数学的学习方式不能再是单一的、枯燥的,以被动听讲和练习为主的方式,它应该是一个充满生命力的过程。【片断一】出示:87602860、51001758、65064345、85992639师:老师这里有几位同学家的电话号码。问:每个电话号码都是一个八位数,这四个数中哪些能被2整除?你怎么判断的?哪些能被5整除?判断的依据是什么? 生答:87602860、51001758能被2整除,个位上是0、2、4、6、8的数能被2整除;87602860、65064345这两个数能被5整除,个位上是0或5的数能被5整除。问:哪些数能被9整除呢?你有什么办法吗?生:① 看个位,认为85992639能被9整除。② 算,可以口算、笔算,大数目可以用计算器帮助。③ 各数位上的数字和能否被9整除 师:同学们说了这么多种发法,那就用你们想[1] [2] [3]
篇8:能被253整除的数教案设计
能被253整除的数教案设计
教学内容:
苏教版义务教育教材第十册第45~47页练习八(1~7)
教学目标:
1、能说出能被2、5、3整除的数的特征,知道奇数、偶数的概念;
2、会正确判断一个数是否能被2、5或3整除;
3、在探求特征的过程中增强数学模型意识,培养数感以及分析、综合、抽象、概括等思维能力及进行数学交流的能力。
教学重点:抽象、概括出能被2、5、3整除的数的特征。
教学难点:引导学生发现能被3整除的数的特征。
教学准备:师生准备百数表、集合圈图(如课本),小黑板或投影仪。
教学过程:
第一课时
一、创设情境激发兴趣
1、师:前面我们一起学习了整除、约数和倍数,你们愿不愿意和老师比赛做下面这道题目?
2、
(师生比赛)
2、师:你们任意报一个整数,我都能马上告诉它能否被2或5整除。(指名学生报数,教师判断,其他学生笔算验证。)
3、师:你们想不想知道其中有什么秘密?今天我们一起去发现这个秘密好不好?(板书:能被2、5整除的数的特征)
[通过师生比赛的形式激起学生的好奇心,引发他们的探究欲望,为后面的探究学习打下良好的心理基础。]
二、探究规律概括特征
1、探究能被2整除的数的特征。
师:你想怎样去探究能被2整除的数的特征?(组织学生交流自己的.设想。)
[操作前的思考和交流,有利于学生明确操作的目标和方向,养成先思后行的习惯,避免操作的盲目性。]
拿出课前准备的操作材料,你可以按自己的想法去发现这个秘密,也可以借助百数表。
(1)学生操作、寻找规律:
师:你从上面的操作中发现什么规律?
(2)组织交流:
师:同桌之间互相把自己的发现说一说。(同桌交流)
师:你是怎样探究的?发现能被2整除的数怎样的特征?(集体交流)
(当有学生汇报用百数表探究的时候,出示下图,并提问。)
师:你为什么会用百数表探究,你能描述一下能被2整除的数在百数表中的排列模型吗?
[通过交流帮助学生在非正式的直觉的观念与抽象的数学语言符号之间建立起联系,发展和深化学生对数学的理解,并为学生提供反思自己的操作和探究过程的机会。]
123456789
10111213141516171819
20212223242526272829
30313233343536373839
40414243444546474849
5051525354......
(3)概括总结出能被2整除的数的特征。(板书:个位上是0、2、4、6、8的数,都能被2整除。)
(4)教师讲解:所以判断一个数能否被2整除,只要看它的个位。(并指出)能被2整除的数叫做偶数;不能被2整除的数叫做奇数。(板书)
(5)练习、运用:判断下列各数中偶数有哪些?奇数有哪些?
2435、346、127、303、284、0
[探究过程中有意识地引导学生使用百数表,可以提高操作的效率,同时让学生直观感知能被2整除的数在百数表中的排列规律,渗透模型意识,并为最后的概括总结提供有力的表象支撑。]
2、发现能被5整除的数的特征。
(1)学生自主探索。
(2)集体汇报交流。
(3)练习巩固:完成第46页“练一练”。并找出能同时被2和5整除的数。
[有了前面探索的基础,这一环节充分放开,让学生自主探索,进一步提高学生的自主探究和数学交流的能力。]
三、巩固练习:
1、的数能被2整除;不能被2整除的数叫做数。
的数能被5整除;
2、练习八1、2指名学生口答。
四、课堂总结:今天我们探讨什么问题,你有哪些收获?
五、课堂作业:练习八3、4
篇9:小学四年级数学除数不是整十数的除法笔算教案设计
教学目标
1. 使学生在具体情境中,经历探索三位数除以两位数试商的过程,会用四舍五入的方法把除数看作和它接近的整十数进行试商,并能正确地进行除数是两位数(商是一位数)的笔算。
2. 使学生在探索计算方法和解决问题的过程中,增强自主探索的意识,培养合作能力。
教学过程
一、创设情境
谈话:刚刚开学,同学们都制订了自己的学习计划。请大家打开书第6页,我们一起看一看,小明他们几个人制订了什么样的读书计划?在制订计划中又遇到了什么问题?
二、探索算法
1. 收集信息,提出数学问题。
出示例题的情境图。
提问:从这幅插图中,你能了解到哪些数学信息?你能提出一个用除法解决的数学问题吗?(根据学生的回答板书:小女孩说:这本书共192页。小明说:我每天看32页。问题:小明几天可以看完?)
如果有学生提出小强是怎么看书的,提问:如果你是小强,你会怎么计划呢?让学生自己计划每天看的页数,为后面学习用五入法把除数看作和它接近的整十数试商提供数据。
提问:怎样列式解答上面的问题呢?(根据学生回答,板书:19232)
如果有学生提出小强每天看页这一条件,教师也可以引导学生提出小强要几天能够看完这一问题,让学生列出算式,其中最好包含需要用五入法把除数看作整十数试商的。
2. 探索解决问题的`方法,理解算理。
(1) 探索四舍法试商。
提问:怎样计算19232的商呢?先列出竖式。(板书竖式)
提问:19232与前面前几节课学过的除法有什么不同?(前几节课学习的算式中除数是整十数,而这道题除数不是整十数)
启发:除数不是整十数,我们可不可以把它看作一个和它接近的整十数来试商呢?(可以)应该把32看作多少?(可以看作30)
提问:为什么可以把32看作30来试商?(32比较接近30,所以,可以把32看作30)
教师在除数32上面用红粉笔板书:30。
再问:想一想19230应该商几?(商6)
讲解:这个6是19230的商,是不是192 32的商呢,还不能确定,所以我们说这是试商。现在用6和除数32相乘。请大家接着往下算,把计算过程写在书上。
学生尝试计算,教师巡视指导。
反馈:哪位同学愿意把自己的计算过程展示给大家?(指名板演计算过程)
谈话:通过计算我们知道,试商得出的6就是19232的商,说明试商正确。计算完成后,为了保证计算正确,我们还应该验算一下,下面请大家独立验算。
指名完成验算,并安排学生把例题中横式和答语补充完整。
谈话:在刚才的计算中,我们把除数32看作30来试商,如果除数是41,可以把它看作几十来试商?如果除数是53,可以把它看作几十来试商?如果除数是64呢?
师生共同完成下表:
除数
32
41
53
64
看作接近的整十数
30
那么,你从中可以发现什么规律?
如果有学生提出,可以把除数看作整十数来试商,几十几就看作几十,老师可暂时不纠正。
(2) 探索五入法试商。
利用学生提出的小强每天看39页这一条件,或教师自己提出这样的条件,让学生计算小强看这本书,需要几天才能看完。
谈话:大家独立计算,有问题可以与同桌商量。
学生尝试计算,指名板演。教师巡视指导,参与学生讨论,注意帮助学困生。
反馈:你是怎样试商的?
学生回答可能有两种情况:把39看作30来试商;把39看作40来试商。
讨论:为什么要把39看作40来试商?
提问:刚才我们把除数39看作40来试商,如果除数是57,看作几十来试商?68呢?76呢?
师生共同填写表格(表略)。
比较:通过计算19239,我们又发现了什么规律?和19232比一比,有什么相同点和不同点?(相同点:都是把除数看作和它接近的整十数;不同点:把32看作比它小的整十数来试商,把39看作比它大的整十数来试商。)
3. 归纳试商方法。
揭示课题:这就是我们今天这节课所学习的内容。[板书:除数不是整十数的除法笔算(一)]
同桌交流:除数是两位数的除法,可以怎样试商?计算时要注意什么?
小结:除数是两位数的除法,通常把除数看作与它接近的整十数来试商,试商后要把商和原来的除数相乘。
三、巩固运用
1. 完成想想做做第1题。
学生读题后,提问:题目中已经给我们呈现了什么?你能接着计算吗?
学生独立计算,教师巡视,集体订正。
谈话:书上把这几题的将除数所看作的整十数淡淡地印了出来,是帮助我们试商用的,以后我们解题时可以把它记在心里,不要写出来。
2. 完成想想做做第2题。
学生独立计算,全班交流。
3. 完成练习二第2题。
指名读题后,提问:每天从17:00播到17:32表示什么?
4. 拓展题。
出示:2565□
(1) 要使商是4,□内可以是什么数字?(2)要使商是5,□内可以是什么数字?(3) 能不能使商等于6?
四、课堂作业
练习二第1题。
五、总结延伸(略)
篇10:能被5整除的数(人教版五年级教案设计)
教学建议
教材分析
能被2、5、3整除的数是在学生已经学过约数和倍数的基础上进行教学的,这部分内容既是分解质因数、求最大公约数、最小公倍数的重要基础,也是学习约分、通分知识的必要前提.这是因为在以后学习分数运算的时候,很重要的一点是看约分和通分掌握的是否熟练,而约分和通分掌握的是否熟练,在很大程度上取决于以下两点:1、能不能很快的看出分子、分母的公约数;2、能不能很快的求出几个分数的最小公倍数;而求最大公约数和最小公倍数的基础,就是找出一个数的质因数.所以,掌握能被2、5、3整除的数的特征,对于学生学好本单元的知识具有非常重要的基础.
教材在编排中按照“2、5、3”的顺序教学,而不是按照“2、3、5”的顺序教学是因为能被2、5整除的数的特征比较明显,用的是同一种判定方法:看一个数的个位;而能被3整除的数需要看一个数的各位,难以理解.
教学本节知识后,教师要注意对学生的所学知识进行扩展,如:能被“4和25”“8和125”“9”“7、11、13”整除的特征,能被6整除(也就是能同时被2和3整除)的特征,提高学生综合运用知识的能力.
教法建议
能被2、5、3整除的数是在学生已经学过约数和倍数的基础上进行教学的,通过学习,使学生初步掌握能被2、5、3整除的数的特征,提高学生的分析判断能力.
能被2、5整除的数的特征,可以采用观察发现法进行教学.通过“1、大量举例:任意说出2的倍数(可以不按照2的1倍、2倍、3倍……的顺序举例);2、观察归纳:这些数有什么共同特征?3、举例验证:任意说出一些数字进行判断(可以是教师举例,学生判断,也可以学生相互举例判断)”这三个步骤进行教学.
能被3整除的数的特征学生不易掌握,因此在教学中教师要充分的为学生提供活动空间,加强学生的动手操作,在操作过程中发现其本质特征.教师在教学时可以采取以下几个步骤:1、区别对比:首先让学生举例说明能被2、5整除的数的特征,然后举出一些能被3整除的数,继续利用看一个数的个位这种方法判定是否能被3整除.2、实践操作:通过教师和学生摆小棍的方法,发现规律.3、归纳总结:学生讨论并尝试总结能被3整除的数的特征.4、举例验证:选择一些比较大的数字进行判定,然后再实际除一下,验证规律的正确性.5、扩展提高:有条件的可以讲解“弃3法”.
教学目标
1、使学生初步掌握能被2、5整除的数的特征.
2、使学生知道奇数、偶数的概念.
教学重点
掌握能被2、5整除的数的特征及奇数、偶数的概念.
教学难点
灵活运用能被2、5整除的数的特征及奇数、偶数的概念进行综合判断.
教学步骤
一、铺垫孕伏(课件演示:能被2、5整除的数) 下载
1、我们已经掌握了约数、倍数的意义,谁能根据整除的意义判断这几个数能否被2或5整除?
8267 6972 1867 5625
2、导入:你们通过笔算都能判断出哪个数能被2整除,哪个数能被5整除.想不想不用笔算就判断出一个数能否被2或5整除呢?这节课我们一起研究能被2、5整除的数的特征.
(板书:能被2、5整除的数)
二、探究新知(继续演示课件:能被2、5整除的数) 下载
(一)教学能被2整除的数的特征.
1、新课导入:写出20以内(包括20)2的倍数
2、教师提问:你发现了什么?(学生观察并讨论)
3、引导学生明确:右边的数是左边的数的倍数,都能被2整除.
右边的数个位上是0、2、4、6、8.
(教师板书:个位上是0、2、4、6.8的数都能被2整除)
4、反馈练习:
(1)判断:下面这些数能否被2整除.
102、718、900、96、34
(2)学生相互举例并判断:能被2整除的数
篇11:能被3整除的数(人教版五年级教案设计)
教学目标
(一)通过操作发现能被3整除数的特征。
(二)培养学生观察、分析、概括的能力。
(三)渗透理论来源于实践的辩证唯物主义观点。
教学重点和难点
(一)能被3整除的数的特征。
(二)特征的归纳过程。
教学用具
教具:投影片。
学具:每位同学准备15根小棒,数位顺序表。(只到万级)
教学过程设计
(一)复习准备
1.下列数中,哪些能被2整除?哪些能被5整除?哪些能同时被2和5整除?(投影片)
85,87,94,32,50,60,102,143,230,540,405,725,819,528。
2.说一说能被2或者5整除的数的特征?能同时被2和5整除的数的特征?
3.能被2和能被5整除的数的共同特点是什么?(都是看个位数字。)
教师:我们已学习了能被2,5整除的数的特征,并能利用这些特征,很快地对一个数能否被2或5整除作出判断。下面我们继续研究一些数的整除特征。
教师板书:12问能否被3整除。逐次把12改为120,121,123,124,126,1263,请学生口答它们能否被3整除。(竖行排列,能被3整除的画√)
请学生任意说出一个数,老师判断它能否被3整除。(能整除的画√)
教师:(指板书)请观察,能被3整除的数个位数字有什么特点吗?(找不出来。)
教师:能被3整除的数的个位数找不出特征,它们具有什么特征呢?这节课我们就来研究这个问题。板书课题:能被3整除的数。
(二)学习新课
1.请学生操作摆数并判断能否被3整除。
(1)请学生取出数位顺序表和 3根小棒,按数位顺次表任意摆出一个数,看它能否被 3整除。(板书:3根。)
学生口答,老师板书:(横排排列)
300,120,111,2100,…(都能被3整除。)
(2)请分别用4,5,6,7,9,12,15根小棒摆出一些数,并看看它们能否被3整除。(板书:4,5,…根。)
学生口答老师板书:
121, 310, 202, 1111, 12001,…(都不能被 3整除。)
410,1211,230,1112,3011,…(都不能被3整除。)
…
573,134052,912111,8412,…(都能被3整除。)
板书时把用同样多根小棒摆出的数排在根数后面,还可以把能被3整除与不能被3整除的数分别板书在两边。
2.引导学生观察、归纳。
(1)教师:请观察用3根小棒摆成的数,这些数有什么共同特点?(各位上数的和是3。)
教师:请观察板书能被3整除的数。分别找出6根,9根,12根,15根小棒摆出的数各自所共有的特点。
小组讨论要求能找出:用6根小棒摆出的数各位上数的和是6;用9根小棒摆出的数各位上数的和是9;用12根小棒摆出的数各位上数的和是12;用15根小棒摆出的数各位上数的和是15。
(2)教师: 3, 6, 9, 12, 15这些数与 3有什么关系?(这些数都是 3的倍数,都能被 3整除。)
教师:请验证是不是具备这个特点的数一定能被3整除呢?
学生举例验证。
教师:能说一说能被3整除的数的特征吗?
学生口答后教师板书:一个数的各位上的数的和能被3整除,这个数就能被3整除。
练习:教师给出一个数,请同学用反馈牌表示出自己的判断。能被3整除的用√,不能被3整除的用×。(数是逐个出示)
3125( ) 4203( ) 1818( )
10515( ) 8219( ) 56789( )
教师:请观察板书,用4根、5根、7根组成的数,能分别说一说它们的特征吗?
要求学生自己试用前面的方法推出都不能被3整除。
教师:说一说什么样的数一定不能被3整除。(一个数各位上数的和不能被 3整除,这个数就一定不能被3整除。)
(3)老师板书:3148782。问:这个数能否被3整除?说出你的判断方法。
请学生报出一个数,另一位同学进行判断。
请两人一组,一人说数另一人判断。(要求说出判断过程)
3.请看上(3)板书例题,在计算各位上数的和时,可以简算,是3的倍数的可以不算在内,口算起来更快。板书示意:
练习:板书2562913能否被3整除?
口答:解法1:2+5+6+2+9+1+3=28。因为28不能被3整除,所以2562913不能被3整除。
解法2:(如上式)因为2+5=7,7不能被3整除,所以2562913不能被3整除。
显然第二种方法更简便。
教师:请判断31495621,5923467能否被3整除。说出自己是怎样想的。
教师:试写出一个能被2整除,又能被3整除的数。并说出自己是怎样想的。
学生讨论后老师归纳:
要能被2整除,个位数必须是偶数,又要能被3整除,所以各位上数的和要是3的倍数。
教师:能找出能同时被3和5整除的数的特点吗?
学生口答并举例验证。
教师:讨论一下,什么样的数能同时被2,3和5整除。
学生讨论后归纳:
个位上是0,各位上的数的和是3的倍数的数,能同时被2,3和5整除。
(三)巩固反馈
1.(投影片)判断下面的数,哪些能被3整除?
432,1590,7285,61527,5281,1254,32358,13227。
(学生用反馈牌,请错误答案的同学讲判断过程,使之自我纠正错误。)
2.口答:在方框中填上一个数字,使这个数能被3整除。
9□31 72□63
3.按要求在括号内各填5个数。(学生口头汇报,集体订正。)
①能同时被2和5整除的数( );
②能同时被2和3整除的数( );
③能同时被3整和5整除的数( );
④能同时被2,3和5整除的( )。
(四)课堂总结与课后作业
1.能被3整除数的特征。
2.能同时被2和3整除的数的特征。能同时被3和5整除的数的特征。能同时被2,3,5整除数的特征。
3.作业:课本 P55:5,6,7。
课堂教学设计说明
本节内容是在学生学习了能被2和5整除数的特征之后,学生易产生看一个数的个位数字来判断它能否被3整除的错误。因此,在新课前设置了让学生按个位数寻找能被3整除数的特征,在此设疑,可以激发学生探求新知识的欲望,提高学习兴趣。然后再引导学生通过动手操作、观察分析,使他们在充分感知的基础上归纳出能被3整除的数的特征。能同时被2和3;3和5;2,3和5整除的数的特征,都以练习形式出现,促使学生积极思考,运用所学过的知识来解决问题,进而归纳出相应的特征。
新课教学分三部分。
第一部分是让学生动手操作,充分感知。
第二部分引导学生观察、分析、归纳出能被3整除数的特征。
第三部分通过练习让学生掌握用各位数字和进行判断时较为简便的方法,认识能同时被两个或三个数整除数的特征。
板书设计
篇12:能被3整除的数2(人教版五年级教案设计)
教学目标
在理解的基础上,掌握能被3整除的数的特征,并能利用特征判断一个数能否被3整除.
教学重点
归纳能被3整除数的特征.
教学难点
归纳能被3整除数的特征。
教学过程
一、引入(课件演示:能被3整除的数) 下载
1、教师提问:能被2整除的数有什么特征?
能被5整除的数有什么特征?
能同时被2、5整除的数有什么特征?
2、导入
(1)今天这节课,我们一起来研究能被3整除的数.(板书课题)
提问:谁能随便说个数?这个数要能被3整除.
(2)教师:老师也说一个数,请你用3除一除,看这个数能否被3整除.(板书:123)
如果你们说这个数能被3整除,那么老师立刻就可以说:132、231、213、312、321这些数统统都能被3整除!信不信?请除除看.
为什么会有如此结果?能被3整除的数到底有什么特征呢?现在我们一起来研究.
二、新课(继续演示课件:能被3整除的数) 下载
1、我们先来研究12这个数.12为什么能被3整除?可以这样想:(教师演示)
12根铅笔(10根一捆)
提问:这10根铅笔,若3根一捆可以打成几捆?还剩几根?(3捆剩1根)
教师:3个3也就是一个9,那么我们可以把10想成一个9加上1.9肯定能被3整除,可以不再考虑,只需考虑现在未打成整捆的零散根数,10根中剩下的1根加上另外2根是3根,正好打成一捆,说明12能被3整除.
板书:
2、再研究一个数:24
演示:一个10可以想成一个9加1,那么20可以想成什么呢?(2个9加2)
2个9加可以不再考虑,现在只需考虑谁?(2加4)
如果3根一捆,正好打成两捆,说明什么?(24能被3整除)
3、照这样我们来分析一下27
板书:
推理:一个10我们把它想成一个9加1,两个10我们把它想成两个9加2,照这样想,30可以想成什么?(三个9加3),40呢? 50呢? 80呢?
4、分析一个较大的数:126(教师演示)
把100根想成一个99加1,两个10想成两个9加2,零散根数则1+2+6=9.9能被3整除,所以126能被3整除.
5、照此思路分析438
板书:
验证:用3整除,证明刚才的分析正确
6、用此思路分析523
板书:
7、总结:请同学们观察板书,有什么发现吗?能被3整除的数有什么特征?
概括能被3整除数的特征:一个数各个数位上的数的和能被3整除,这个数就能被3整除.
三、巩固练习(继续演示课件:能被3整除的数) 下载
1、口答:现在你知道为什么你们说123能被3整除,老师就立刻可以说132、231……统统都能被3整除吗?
2、判断下面各数能否被3整除:207、891、193、450、222、136
3、在□中填几,这个数就能被3整除?
17□(指导思路:找出最小的数,然后依次加3)
4□2(要求一次说全)
□25□(不必说全,即问:只要保证什么就可以?)
4、下面的数是能被3整除,能被2整除,还是能被5整除?
58、115、207、80、108、45
5、比赛:利用给出6个数字:0,1,2,3,4,5,在30秒钟内,看谁能组出最多个能同时被2、3、5整除的三位数.
四、思考练习
看谁能用最快的方法判断出5169这个四位数能否被3整除.
(引出弃3的倍数法,只考虑数字5+1)
五、全课总结
今天我们学习了哪些新知识?能被3整除的数的特征是什么?
六、布置作业
1、写出三个能被3整除的偶数;
2、写出三个能被3整除的奇数;
3、先求出下面每个数各位上的数的和,看能不能被9整除;再算一算下面各数能不能被 9整除.
162 378 586 632 2988
七、板书设计
★ 整改书
能被 2 , 5 整除的数教案设计(精选12篇)




