【导语】“山寨周冬雨”通过精心收集,向本站投稿了19篇小学数学《求两个数的最小公倍数》优秀教案,下面是小编给大家整理后的小学数学《求两个数的最小公倍数》优秀教案,欢迎大家借鉴与参考,希望对大家有所帮助。
- 目录
- 第1篇:小学数学《求两个数的最小公倍数》优秀教案第2篇:小学五年级数学《求两个数的最小公倍数》教案设计第3篇:五年级数学《求三个数的最小公倍数》的教案第4篇:五年级数学《求三个数的最小公倍数》的教案第5篇:《求两个数最小公倍数的实际应用》教案设计第6篇:求三个数的最小公倍数的数学教学反思第7篇:五年级数学求两个数的最大公约数教案第8篇:五年级数学求两个数的最大公约数教案第9篇:《求特殊情况下两个数的最大公约数和最小公倍数》教案设计第10篇:《求特殊情况下两个数的最大公约数和最小公倍数》教案设计第11篇:“用短除法求两个数的最小公倍数”教学设计第12篇:五年级数学三个数的最小公倍数复习教案第13篇:五年级数学三个数的最小公倍数复习教案第14篇:小学五年级数学《求两个数的最大公约数》教案设计第15篇:《求两个数最大公约数》微课教案第16篇:小学五年级数学《找最小公倍数》优秀教案第17篇:小学五年级数学《找最小公倍数》优秀教案第18篇:小学五年级数学《找最小公倍数》优秀教案第19篇:求特殊情况下两个数的最小公倍数 教案教学设计(人教新课标五年级下册)
篇1:小学数学《求两个数的最小公倍数》优秀教案
小学数学《求两个数的最小公倍数》优秀教案
教学内容:完成练习四的第5~8题。
教学目标
1、通过练习,使学生发现求两个数的最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最小公倍数。
2、让学生感受数学与生活的联系,体会解决问题策略的多样性。
教学重、难点:求两个数的最小公倍数的一些简捷的方法。
教学过程:
一、基础练习
找出下面每组数的最小公倍数。
4和6 3和7 5和9 10和6
二、完成第25页的5~8题。
1、第5题
⑴ ①让学生观察左边4题,说说这几组数有什么共同的特点。
②找出每组两个数的最小公倍数。
③比较和交流:有什么发现?
(两个数的最小公倍数就是它们的乘积。)
⑵独立完成右边4题,再比较交流发现了什么?
2、第6题
先由学生独立完成。
然后说说分别是什么方法求出每组上数的最小公倍数的`?
3、第7题
先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过
程实际上就是求7和8的最小公倍数。
4、第8题
先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的
最小公倍数,再让学生独立解答。
三、小结:通过今天这一节课的学习,你有什么收获?
四、思考题
提示:先用列举法找3、4和6的最小公倍数。
篇2:小学五年级数学《求两个数的最小公倍数》教案设计
小学五年级数学《求两个数的最小公倍数》教案设计
教学内容:求两个数的最小公倍数
教学目标:
使学生理解、掌握求两个数的最小公倍数的方法,并能正确地,合理地求两个数的最小公倍数。
教学过程:
一、复习
1、什么是公倍数,最小公倍数?
2、写出12、30的公倍数和最小公倍数?
二、教学新课
1、提出课题:“求两个数的最小公倍数”
2、把12、30和它们的最小公倍数60,分别分解质因数。
212230260
26315230
3515
5
12=2×2×3
30=2××3×5
60=2×2×3×5
观察上面各数分解质因数的情况,你发现了什么?
(最小公倍数60的质因数里,包含了12和30公有的`质因数2、3,还有12独有的质因数2,30独有的质因数5。)
3、利用上面的情况,用简便方法求12和30的最小公倍数。
21230………用公约数2除
3615……….用公约数3除
25……..只有公约数1,不必再除
把所有的除数和商连乘起来,得到:
12和30的最小公倍数是2×3×2×5=60,也可以这样表示:
[12。,30]=2×3×2×5=60
4、总结求两个数的最小公倍数,先用这两个数的连续去除,一直除到所得的商只有公约数1,然后把所有的()和()连乘起来。
5、尝试练习
求下面每组数的最小公倍数。
12和16,33和22,16和20,36和54,30和45,10和15
三、教学求倍数关系,互质关系的最小公倍数。
在下面各组数中找出倍数关系,互质关系
12和36,9和5,36和12,4和9,25和75,20和3,51和17,8和11
1、倍数关系
2、互质关系
3、想一想
(1)如果大数是小数的倍数关系,那么()就是这两个数的最小公倍数。
(2)如果两个数是互质数,那么这两个数的()就是它们的最小公倍数。
四、巩固练习
书本第56页1至4题。
五、总结归纳
六、布置作业
反思:让学生了解求两个数的最小公倍数为什么要把两个数的公约数还要各自独有的约数。这是本节课的重点。
篇3:五年级数学《求三个数的最小公倍数》的教案
教学目标
使学生学会求三个数的最小公倍数的方法,并能正确地、合理地求三个数的最小公倍数。
教学重点、难点
篇4:五年级数学《求三个数的最小公倍数》的教案
教具、学具准备
教 学过程
备 注
一、复习准备
1、回答下列每组书的最大公约数和最小公倍数:
6和712和3656和14
4和915和457和13
提问:互质数的最大公约数和最小公倍数各有是什么特点?倍数关系呢?
2、已知10=2×515=3×5,那么10和15的最小公倍数是
谁能说一说最小公倍数的质因数有何特点?
3、求12和18,30和45的最小公倍数。
(1)全体笔练,两个做在投影片上。
(2)反馈(投影片)失声共同评价。
(3)提问引入:你会求三个数的最小公倍数吗?(揭示课题)
二、教学新知
1、教学例3:求12、16和18的.最小公倍数。
(1)学生尝试练习(两人板演,有困难可以看书)
(2)师生共同讨论(并纠正)板演:
A、为什么当商是6,8和9时,还要用两个数的公约数2继续除?
(因为每个数独有的质因数也是最小公倍数的质因数)
B、除到什么时候可以不必再除?
C、最后这个最小公倍数怎么求?为什么?
(3)小结:因为最小公倍数既含有几个数公有的质因数,又含有每个数独有的质因数,所以一直要除到每两个数都互质(简称“两两互质”)为止,并把除数和商全部连乘起来。
(4)练习:求下列每组数的最小公倍数
16、8和1215、30和408、9和12
A、学生练习。
B、投影反馈。
C、先同桌讨论,然后在回答:求三个数的最小公倍数与求三个数的最
教学过程
备 注
公约数有什么不同?
明确:求三个数的最大公约数只要除到三个数的商只有公约数1为止,而求三个数的最小公倍数必须除到“两两互质”为止;求三个数的最大公约数只要把除数乘起来,而求三个数的最小公倍数必须把除数和商都连乘起来。
(5)练习:求下列每组数的最小公倍数
4、12和169、18和2712、15和18
(学生练习后反馈,并互相检查)
2、探求规律
出示:(1)15、30和60(2)3、4和7
8、10和402、5和9
9、7和631、和15
(1)学生练习:求每组数的最小公倍数
(2)反馈练习结果(生报教师板书)
[15、30、60]=60[3、4、7]=84
[8、10、40]=40[2、5、9]=90
[9、7、63]=63[1、8、15]=20
(3)第(1)组中每组数的最小公倍数有什么特点?每组中的三个数又有什么关系?第(2)组呢?
谁能用自己的话把你的发现说一说?
(4)讨论后小结:
若三个数中较大数上另外两个数的倍数,则较大数既是它们的最小公倍数;
若三个数两两互质,则它们的乘积就是它们的最小公倍数。
(注意加“。”内容的强调)
(5)练习:课本P62练一练2(先略做思考,再口答,并说出为什么。)
(6)综合练习课本P62练一练3(当堂反馈,矫正错误)
三、课堂总结
1、这节课学习了什么?怎样求三个数的最小公倍数?
2、通过这节课的学习,并还知道了什么?
3、在练习时要注意分析清楚每组数中各数之间的关系,再解答。
四、作业《作业本》
求三个数的最小公倍数,是本小节教学的难点,教学过程中要特别强调短除法式子中最后的结果(商)必须要两两互质。
篇5:《求两个数最小公倍数的实际应用》教案设计
《求两个数最小公倍数的实际应用》教案设计
设计说明
1.充分利用教材中的素材创设情境,让学生在情境中解决问题。
结合具体的生活情境学习,有助于学生获取知识。“铺墙砖”这一生活情境,学生有一定的生活经验,也具有一定的挑战性,能有效地激发学生的学习兴趣,让学生在实践操作中加强思考与探索,经历知识的形成过程。
2.放手让学生自主探究,获取新知。
著名数学家波利亚认为:“学习任何知识的最佳途径是由自己去发现,因为这种发现,理解最深刻,也最容易掌握其中的内在规律、性质和联系。”为了使学生积极主动地参与学习过程,必须引导学生自己去观察,去思考,去探索。本设计直接出示例题,引导学生利用已有的知识经验,经过自主探究和充分的讨论,获取解决问题的方法,在解决问题的过程中,积累经验,提高解决问题的能力。
课前准备
教师准备 PPT课件
学生准备 若干张长3 dm、宽2 dm的卡片
教学过程
⊙创设情境,引入新课
1.引导学生回忆。
师:同学们还记得前面我们学习的给贮藏室铺地砖的例题吗?这节课我们来学习“铺墙砖”的知识。
2.课件出示例3:用一种长3 dm,宽2 dm的墙砖铺一个正方形(用的墙砖必须都是整块),正方形的边长可以是多少分米?最小是多少分米?
设计意图:在以前学习过的“铺地砖”的基础上创设类似的情境,让学生在实践操作中加强思考与探索,经历知识的形成过程,完成数学建模。
⊙小组合作,解决问题
1.拼一拼。
(1)用长3 dm、宽2 dm的卡片代替墙砖拼正方形。
(2)在印有格子的'纸上画出拼成的正方形。边操作边思考:正方形的边长可以是多少分米?最小是多少分米?正方形的边长与墙砖的长和宽有什么关系?
2.说发现。
师:你拼出来了吗?想一想,正方形的边长必须满足什么条件?(正方形的边长必须是2和3的公倍数)
3.解决问题。
师:正方形的边长可以是多少分米?最小是多少分米?(正方形的边长可以是6 dm,12 dm,18 dm,…最小是6 dm)
4.回顾解决“铺墙砖”问题的关键。
把“铺墙砖”问题转化成求公倍数和最小公倍数的问题,也就是铺成的正方形的边长必须是墙砖长和宽的公倍数,铺成的正方形的边长最小是墙砖长和宽的最小公倍数,这样才能保证用的墙砖都是整块。
⊙学习公倍数的应用
1.解决教材72页11题。
爸爸、妈妈和我一起跑步,爸爸跑一圈用3分钟,妈妈跑一圈用4分钟,我跑一圈用6分钟。如果爸爸、妈妈同时起跑,至少多少分钟后两人在起点再次相遇?此题爸爸、妈妈分别跑了多少圈?[学生分组讨论,教师巡视指导,各组汇报:求至少多少分钟后两人在起点再次相遇,就是求3和4的最小公倍数,3和4的最小公倍数是12,也就是至少12分钟后两人在起点再次相遇,此时爸爸跑了12÷3=4(圈),妈妈跑了12÷4=3(圈)]
2.引导学生在组内提出其他数学问题并合作解答,明确求三个数的最小公倍数的方法。
预设
生1:我和爸爸同时起跑,至少多少分钟后我们在起点再次相遇?
(3和6的最小公倍数是6,也就是至少6分钟后我们在起点再次相遇)
生2:我和妈妈同时起跑,至少多少分钟后我们在起点再次相遇?
(4和6的最小公倍数是12,也就是至少12分钟后我们在起点再次相遇)
生3:三人同时起跑,至少多少分钟后三人在起点再次相遇?
篇6:求三个数的最小公倍数的数学教学反思
师:有的时候也需要求三个数的最小公倍数。(出示课题:求三个数的最小公倍数)
请你们来猜想一下求三个数的最小公倍数可以怎样求?
生1:我觉得求三个数的最小公倍数的方法和求两个数的最小公倍数的方法差不多。
生2:我觉得三个数的最小公倍数的`求法和两个数的最小公倍数的求法应该有所不同。……
师:好,那就请大家用自己的猜想方法来试求6、8和12的最小公倍数吧。请两种不同想法
生1和生2同时板演。
6、8和12的最小公倍数6、8和12的最小公倍数是:的是:2×3×4×6=144。2×2×3×2=24。
师:这是两种不同的结果,下面的同学们还有不同的结果吗?(学生没有举手)
师:现在大家已经见到了2种不同的结果,到底哪一种的结果是6、8和12的最小公倍数呢?下面请大家运用分解质因数的方法和求两个数的最小公倍数的分析方法来研究怎样可以使得到的数是三个数的最小公倍数?(教师组织学生进行小组研究学习,同时参与到小组研究学习中去。)
生1:我们组把它们的倍数写出来,发现这三个数的最小公倍数应该是24。生2是对的。
生2:我们通过分解质因数发现它们三个数只有一个公有质因数2。
生3:我们发现6和12也有一个公有质因数3。
生4:我们也发现:8和12也有一个公有质因数2。
生5:我们觉得生2对的,于是我们发现不止要用2去除。
师:这个2是什么?生5:是6、8、12公有的质因数。然后还要用2和3去除,2是4和6公有的质因数,3是3和3公有质因数。……
生6:我们求两个数的最小公倍数是要除到互质为止,求三个数的最小公倍数时三个数的商一定要除到两两互质为止。
反思:
《数学课程标准》指出:学生的数学学习内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流。教师只有在思想上真正顾及学生多方面成长,顾及生命活动的多面性和师生共同活动中多种组合和发展方式的可能性,才能发现课堂教学具有生成性的特征。因此,我们应该把新课程改革的实践目标定在探索、创造互动发生式的课堂教学,用心收集、捕捉和筛选学习活动中学生反馈出来的有利于促进学生进一步学习建构的生动情境和鲜活的课程资源。如果说过去教师备课主要着眼于如何教,那么今天教师们备课的出发点和归结点必须是引导学生如何学。这就要求教师的备课要充分地研究学生的特点及其与教材之间的关系,努力寻找教师与学生的契合点,从而真正地把教和学结合起来。这样,师生才是全身心投入,不只是在教和学,还在感受课堂中生命的涌动和成长;这样,学生才能获得多方面的满足和发展,教师的劳动才会闪现出创造的光辉和人性的魅力,教学才会成为师生共同创造课程的过程,课程实施才会从“执行教案”走向师生“互动发生”,如此课堂才会真正体现出育人的本质。
篇7:五年级数学求两个数的最大公约数教案
目标
①使学生理解公约数、最大公约数、互质数的概念。②使学生初步掌握求两个数最大公约数的一般方法。③培养学生抽象、概括的能力和动手实际操作的能力。
教学及训练
重点
教学重点 理解公约数、最大公约数、互质数的概念。
教学难点理解并掌握求两个数的最大公约数的一般方法。
仪 器
教具
投影仪等。
教学内容和过程
教学札记
一、创设情境
填空:①12÷3=4,所以12能被4。4能()12,12是3的(),3是12的()。②把18和30分解质因数是
18=
30=
它们公有的质因数是()。③10的约数有()。
二、揭示课题
我们已经学会求一个数的约数,现在来看两个数的约数。
三、探索研究
1.小组合作学习
(1)找出8、12的约数来。
(2)观察并回答。
①有无相同的约数?各是几?
②1、2、4是8和12的什么?
③其中最大的一个是几?知道叫什么吗?
(3)归纳并板书
①8和12公有的约数是:1、2、4,其中最大的一个是4。
②还可以用下图来表示。
813
24612
8和12的公约数
(4)抽象、概括。
①你能说说什么是公约数、最大公约数吗?
②指导学生看教材第66页里有关公约数、最大公约数的.概念。
(5)尝试练习。
做教材第67页上面的“做一做”的第1题。
2.学习互质数的概念
(1)找出下列各组数的公约数来:5和78和912和251和9
(2)这几组数的公约数有什么特点?
(3)这几组数中的两个数叫做什么?(看书67页)
(4)质数和互质数有什么不同?(使学生明确:质数是一个数,而互质数是两个数的关系)
3.学习例2
(1)出示例2并说明:我们通常用分解质因数的方法来求两个数的最大公约数。
(2)复习的第2题,我们已将18和30分解质因数(如后)18=2×3×330=2×3×5
(3)观察、分析。
①从18和30分解质因数的式子中,你能看出18和30各有哪些约数吗?
②18和30的公约数就必须包含18和30公有的什么?
③18和30公有的质因数有哪些?
④18和30的公约数和最大公约数是哪些?(1、2、3、6(2×3))
⑤最大公约数6是怎样得出来的?
(4)归纳板书。
18和30的最大公约数6是这两个数全部公有质因数的乘积。
(5)求最大公约数的一般书写格式。
为了简便,我们把两个短除式合并成一个如:1830
让学生分组讨论合并后该怎样做?
①每次用什么作除数去除?
②一直除到什么时候为止?
③再怎样做就可以求出最大公约数?
④为什么不把商也连乘进去?
(6)尝试练习。
做教材第68页的“做一做”,学生独立解答后点几名学生讲每步是怎样做的,最后集体订正。
(7)抽象概括求最大公约数的方法。
①谁能说说求最大公约数的方法。
篇8:五年级数学求两个数的最大公约数教案
四、课堂实践
做练习十四的1、2、3题。
五、课堂小结
学生总结今天学习的内容。
六、课堂作业
1.做练习十四的第4题。
2.做练习十四的12*题。
篇9:《求特殊情况下两个数的最大公约数和最小公倍数》教案设计
关键词:观察、分析、猜测、推理、验证与交流;自主探索、合作交流
内容:九年义务教育六年制小学教科书第十册P67-73求特殊情况下两个数的最大公约数和最小公倍数。
课堂实录:
一、复习:
1、求两个数的最大公约数和最小公倍数的方法各是什么?
2、求出每组数的最大公约数和最小公倍数(用短除法)
20和2436和5428和1413和40
[评析:复习用短除法求每组数的最大公约数和最小公倍数,体现了教学新旧知识的联系,又体现了知识的循序渐进。]
二、导入新课:
前面我们学习了用短除法来求两个数的最大公约数和最小公倍数,那么是不
是对所有求两个数的最大公约数和最小公倍数的题都要用短除法呢?这就是我们本节课所要研究的内容————求特殊情况下两个数的最大公约数和最小公倍数(板书课题)。
[评析:学源于思,思源于疑,人类思维活动往往是由于解决当前面临的问题而引发的。因此,设置疑问导入新课,能激发学生的好奇心,引起学生的求知欲,开拓学生的思路,使学生兴趣盎然地去探求知识。]
三、新授:
1、电脑出示下面几组数,让学生判断每组数成什么关系?
7和218和912和3614和19
生:7和21,12和36,成倍数关系;8和9,14和19成互质关系。
师:那么成互质关系或倍数关系的两个数的最大公约数和最小公倍数不用短
除法大家能很快求出来吗?
生:能
生:不能
生:能
师:下面我们共同来研究一下,看哪些同学说的对。
师:请分别找出8,9的约数和倍数。韩晓斌严春花
学生回答完后电脑出示:
8的约数:1,2,4,8
9的约数:1,3,9
8的倍数:8,16,24,32,40,48,56,64,72,80,88,96……
9的倍数:9,18,27,36,45,54,63,72,81……
师:请同学们先找出8和9的最大公约数,再找出它们的最小公倍数。
生:8和9的最大公约数是1。
生:8和9的最小公倍数是72。
师:请同学们再观察8,9,72这三个数之间有什么关系?
生:8和9都是72的约数。
生:72是8的倍数,也是9的倍数。
生:8×9=72,即:72是8和9的乘积。
师:大家都说得对,但是,有一位同学观察得更仔细,思考得更认真,他发现72是8和9的乘积,而72是8和9的最小公倍数,也就是说8和9的最小公倍数是它们的什么?
生:8和9的最小公倍数是它们的乘积。
师:又因为8和9成互质关系,那么我们从中能得出什么呢?
生:成互质关系的两个数的最小公倍数是它们的乘积。
师:那么是不是所有成互质关系的两个数的最小公倍数都是它们的乘积呢?
师:写出几组成互质关系的两个数,让学生自己去验证(师边巡视边低声指导)。
例如:7和94和53和5
最后讨论得出:如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
师:我们还知道8和9的最大公约数是1,下面请同学们联系前面那个结论的推导过程,想一想,然后分组讨论,看从这句话中能得到什么?
生:成互质关系的两个数的最大公约数是1。
同样让学生自己验证,最后讨论得出:
如果两个数是互质数,它们的最大公约数就是1。
2、请同学们分别找出7、21的约数和倍数。
学生回答完后电脑出示:
7的约数:1,7
21的约数:1,3,7,21
7的'倍数:7,14,21,28,35,42……
21的倍数:21,42,63……
师:下面请同学们先找出7和21的最大公约数,再找出它们的最小公倍数。
生:7和21的最大公约数是7。
生:7和21的最小公倍数是21。
师:请同学们观察7和21的最大公约数和最小公倍数,再和原数进行对照,
想一想,有什么规律?
生:7和21的最大公约数和最小公倍数就是这两个数。
生:7和21的最大公约数和最小公倍数分别是这两个数当中的一个。
生:7和21的最大公约数和最小公倍数与这两个数有关系,即:7和21的最大公约数是这两个数中的较小数7,它们的最小公倍数是这两个数中的较大数21。
对
生:因为7和21成倍数关系,所以,成倍数关系的两个数的最大公约数是这两个数中的较小数,它们的最小公倍数是这两个数中的较大数。
篇10:《求特殊情况下两个数的最大公约数和最小公倍数》教案设计
对
小大。
这时,学生们的思维都非常活跃,而且回答的内容逐渐趋向完整、准确,此时,教师让学生们根据以上同学的回答,看哪个更加完整、准确,如何概括成一句简练的话?
这样,经过学生们的分组讨论,轻而易举的就得出了结论:如果两个数成倍数关系,那么它们的最大公约数就是两个数中的较小数;它们的最小公倍数就是两个数中的较大数。
同时,让学生自己举例验证得出的结论是否正确。
最后让学生打开课本,阅读完书上的结论后进行比较,看与自己总结的是否一样,进而分享由自己的劳动成果所带来的喜悦。
[评析:以学生的观察、分析、猜测、推理、验证与交流为认知结构,把抽象的数学知识具体化,从而激发了学生的求知欲和学习情趣。通过学生自主探索合作交流,真正理解和掌握了求特殊情况下两个数的最大公约数和最小公倍数的方法,同时获得了更为广泛的数学活动经验。]
四、反馈练习:
很快说出每组数的最大公约数和最小公倍数。
9和367和1329和3013和5236和725和17
[评析:通过反馈练习,不仅能锻炼学生的观察、思维、判断、表达等能力,而且无形当中也就提高了学生运用所学的数学知识和方法解决一些简单问题的能力。]
五、总结:
你有什么感想和收获?
[评析:总结的设计,是本课教学的升华。在此,教师给学生提供了一个充分动脑、动口、表现自我的平台,不仅是所学知识的反馈,更是有效地促进数学课中学生口语表达的训练。]
六、作业:(略)
教学反思:
数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有利于学生自主学习、合作交流的情境,使学生通过观察、分析、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣。所以,我在教学“求特殊情况下两个数的最大公约数和最小公倍数”这一课时,充分发挥了学生的主体作用,促使学生自主探索、合作交流,挖掘学生的思维潜能,培养学生的观察、分析、归纳、猜测、推理、交流能力,真正让学生学会思考,学会学习。
学习任何知识的最佳途径是由自己去发现,因为这种发现最容易被理解,也最容易被掌握。因此,整堂课我始终以学生的活动为主,让学生自己去发现其中的规律和联系,我只是适当点拨、引导而已。显然,课堂气氛非常活跃,学生在快乐的气氛中轻松地学到了知识,发展了能力,同时也获得了成功的体验。
反思本课教学,最大的启示是:在数学课堂教学中,只要我们转变教学观念,以学生为主体,充分调动学生的学习积极性,使之主动参与到学习过程中,就能提高课堂教学效率,使人人有所得,个个有收获。
教学需改进之处———进一步处理好师生之间“教”与“学”的互动关系,充分发挥教师的“主导性”和学生的“主体性”作用,彻底改变习以为常的传统教学观念,为培养出数量多、素质高、能力强的跨世纪人才拼搏奋进!
篇11:“用短除法求两个数的最小公倍数”教学设计
“用短除法求两个数的最小公倍数”教学设计
这节课我是这样设计进行教学的。分如下四个环节:
一、引入自学。(8分钟)
师:上一节课我们已经学习了公倍数和最小公倍数。说说怎样求出两个数的最小公倍数?其实还有一种更简单易行的求最小公倍数的方法。引导学生自学书本第62页。
二、交流汇报。(15分钟左右)
师:通过自学,你看懂了什么?哪些地方看不懂?
学生畅所欲言,教师参与其中,一起分享学生的学习成果,一起解决学生中存在的困惑。
三、巩固练习。(10分钟左右)
1、用短除法求最小公倍数(4题)。
2、“找病因”——出示有差错的求最小公倍数的做法。(3题)
3、先把两个数分解质因数,再求出它们的最小公倍数。(2题)
四、课堂作业:(7分钟左右)
第65页第8题(6小题)。
五、教后反思
上面的设计应该来说是简单的,也是具有可操作性的。从课堂练习的情况来看效果是很好的。反思其成功之处可能有以下几点:
一、学生能自学的尽量让学生去自学。
本节课的教学内容对学生来说是比较简单的。学生完全有能力去自学掌握,为此放手让学生自学,起到了很好的效果。反思自学的效果有如下几个优势:1、学生对方法的习得更直观,更具有可感性。2、能增强学生的思考力,在自学的'过程中学生都有一种认识它、学会它、掌握它的心态,必然积极投入、积极思考。3、由于从书中直接与书本对话,对解题格式的把握上更准确、更到位。4、学生对学习中存在的困惑也更容易暴露。可见,自学是一种简单易行、高效的教学策略。
二、让学生多问问,其实也是一种不错的教学方法。
本节课的第二环节是自学后的交流,这个环节是本节课的核心。在这一环节中我没有教给学生如何做?有什么诀窍?而是充分让学生说出存在的困惑和疑问。因为,自学后,学生必然会有一些困惑,此时我鼓励学生尽量提问、尽量提出自己的意见,在教师创设的和谐氛围中一个一个精彩的问题也随之而来:“能不能用最大公约数去分别除这两个数?”、“为什么把所有的除数和最后的两个商连乘起来就求到最小公倍数了”“怎样确定除数?”……这些问题都贴近了新知领域,通过生生对话、师生对话很巧妙地、很智慧地解决了这一系列问题。随着问题的一个个解决,学生对新知的认识也就越来越明朗,越来越清晰。
三、练习不在乎多,在乎全、精、实。
本节课安排的三组练习都具有很强的针对性。第一个练习是基本练习,它是本节课应该要达到的目标。第二个练习是纠错练习,主要是针对学生可能存在的一些问题而设计的,进行这样的练习可能对以后的作业起到预防的效果。第三个练习是用分解质因数的方法来求最小公倍数,其目的是让学生充分理解求最小公倍数
的基本道理,进而能进一步理解最小公倍数。这样的练习层层递进、紧扣本课内容、练得精练、练得有效。真正让学生学到实实在在的东西。这应该是一堂课所要达到的真谛。
四、课堂作业,当堂完成,学生乐意,老师所望。
课堂作业理应在课堂中完成,课堂作业当堂完成,能够及时检测学生课堂学习的效果,即使纠正学生在学习中出现的问题,能够切实减轻学生的负担,能够让教师得到成功的喜悦。课中留给学生相对充足的时间让学生静下心来,是提高课堂教学效率不可忽视的一个环节,这一点有的教师往往忽视了。其实课堂作业当堂完成,学生做的时候注意力比较集中,做的时候就有一种力争做对的氛围,做的时候就有一种责任感,有了这一些,显然就能提高做作业的质量,显然能达到练习的效果。如果课堂作业移到课后,效果迥然不同。我想这一点大家肯定有同感。
篇12:五年级数学三个数的最小公倍数复习教案
五年级数学三个数的最小公倍数复习教案
教学目标
使学生学会求三个数的最小公倍数的方法,并能正确地、合理地求三个数的最小公倍数。
教学重点、难点
重点、难点:学会求三个数的最小公倍数的方法。
教具、学具准备
教 学过程
备 注
一、复习准备
1、回答下列每组书的最大公约数和最小公倍数:
6和712和3656和14
4和915和457和13
提问:互质数的最大公约数和最小公倍数各有是什么特点?倍数关系呢?
2、已知10=2×515=3×5,那么10和15的最小公倍数是
谁能说一说最小公倍数的质因数有何特点?
3、求12和18,30和45的最小公倍数。
(1)全体笔练,两个做在投影片上。
(2)反馈(投影片)失声共同评价。
(3)提问引入:你会求三个数的最小公倍数吗?(揭示课题)
二、教学新知
1、教学例3:求12、16和18的最小公倍数。
(1)学生尝试练习(两人板演,有困难可以看书)
(2)师生共同讨论(并纠正)板演:
A、为什么当商是6,8和9时,还要用两个数的公约数2继续除?
(因为每个数独有的质因数也是最小公倍数的质因数)
B、除到什么时候可以不必再除?
C、最后这个最小公倍数怎么求?为什么?
(3)小结:因为最小公倍数既含有几个数公有的质因数,又含有每个数独有的质因数,所以一直要除到每两个数都互质(简称“两两互质”)为止,并把除数和商全部连乘起来。
(4)练习:求下列每组数的最小公倍数
16、8和1215、30和408、9和12
A、学生练习。
B、投影反馈。
C、先同桌讨论,然后在回答:求三个数的最小公倍数与求三个数的最
教学过程
备 注
公约数有什么不同?
明确:求三个数的最大公约数只要除到三个数的商只有公约数1为止,而求三个数的最小公倍数必须除到“两两互质”为止;求三个数的最大公约数只要把除数乘起来,而求三个数的最小公倍数必须把除数和商都连乘起来。
(5)练习:求下列每组数的最小公倍数
4、12和169、18和2712、15和18
(学生练习后反馈,并互相检查)
2、探求规律
出示:(1)15、30和60(2)3、4和7
8、10和402、5和9
9、7和631、和15
(1)学生练习:求每组数的最小公倍数
(2)反馈练习结果(生报教师板书)
[15、30、60]=60[3、4、7]=84
[8、10、40]=40[2、5、9]=90
[9、7、63]=63[1、8、15]=20
(3)第(1)组中每组数的最小公倍数有什么特点?每组中的三个数又有什么关系?第(2)组呢?
谁能用自己的话把你的发现说一说?
(4)讨论后小结:
若三个数中较大数上另外两个数的倍数,则较大数既是它们的.最小公倍数;
若三个数两两互质,则它们的乘积就是它们的最小公倍数。
(注意加“.”内容的强调)
(5)练习:课本P62练一练2(先略做思考,再口答,并说出为什么。)
(6)综合练习课本P62练一练3(当堂反馈,矫正错误)
三、课堂总结
1、这节课学习了什么?怎样求三个数的最小公倍数?
2、通过这节课的学习,并还知道了什么?
3、在练习时要注意分析清楚每组数中各数之间的关系,再解答。
四、作业《作业本》
求三个数的最小公倍数,是本小节教学的难点,教学过程中要特别强调短除法式子中最后的结果(商)必须要两两互质。
篇13:五年级数学三个数的最小公倍数复习教案
五年级数学三个数的最小公倍数复习教案
教学目标
使学生学会求三个数的最小公倍数的方法,并能正确地、合理地求三个数的最小公倍数。
教学重点、难点
重点、难点:学会求三个数的最小公倍数的方法。
教具、学具准备
教学过程
备注
一、复习准备
1、回答下列每组书的最大公约数和最小公倍数:
6和712和3656和14
4和915和457和13
提问:互质数的最大公约数和最小公倍数各有是什么特点?倍数关系呢?
2、已知10=2×515=3×5,那么10和15的最小公倍数是()
谁能说一说最小公倍数的`质因数有何特点?
3、求12和18,30和45的最小公倍数。
(1)全体笔练,两个做在投影片上。
(2)反馈(投影片)失声共同评价。
(3)提问引入:你会求三个数的最小公倍数吗?(揭示课题)
二、教学新知
1、教学例3:求12、16和18的最小公倍数。
(1)学生尝试练习(两人板演,有困难可以看书)
(2)师生共同讨论(并纠正)板演:
A、为什么当商是6,8和9时,还要用两个数的公约数2继续除?
(因为每个数独有的质因数也是最小公倍数的质因数)
B、除到什么时候可以不必再除?
C、最后这个最小公倍数怎么求?为什么?
(3)小结:因为最小公倍数既含有几个数公有的质因数,又含有每个数独有的质因数,所以一直要除到每两个数都互质(简称“两两互质”)为止,并把除数和商全部连乘起来。
(4)练习:求下列每组数的最小公倍数
16、8和1215、30和408、9和12
A、学生练习。
B、投影反馈。
C、先同桌讨论,然后在回答:求三个数的最小公倍数与求三个数的最
教学过程
备注
公约数有什么不同?
明确:求三个数的最大公约数只要除到三个数的商只有公约数1为止,而求三个数的最小公倍数必须除到“两两互质”为止;求三个数的最大公约数只要把除数乘起来,而求三个数的最小公倍数必须把除数和商都连乘起来。
(5)练习:求下列每组数的最小公倍数
4、12和169、18和2712、15和18
(学生练习后反馈,并互相检查)
2、探求规律
出示:(1)15、30和60(2)3、4和7
8、10和402、5和9
9、7和631、和15
(1)学生练习:求每组数的最小公倍数
(2)反馈练习结果(生报教师板书)
[15、30、60]=60[3、4、7]=84
[8、10、40]=40[2、5、9]=90
[9、7、63]=63[1、8、15]=20
(3)第(1)组中每组数的最小公倍数有什么特点?每组中的三个数又有什么关系?第(2)组呢?
谁能用自己的话把你的发现说一说?
(4)讨论后小结:
若三个数中较大数上另外两个数的倍数,则较大数既是它们的最小公倍数;
若三个数两两互质,则它们的乘积就是它们的最小公倍数。
(注意加“.”内容的强调)
(5)练习:课本P62练一练2(先略做思考,再口答,并说出为什么。)
(6)综合练习课本P62练一练3(当堂反馈,矫正错误)
三、课堂总结
1、这节课学习了什么?怎样求三个数的最小公倍数?
2、通过这节课的学习,并还知道了什么?
3、在练习时要注意分析清楚每组数中各数之间的关系,再解答。
四、作业《作业本》
求三个数的最小公倍数,是本小节教学的难点,教学过程中要特别强调短除法式子中最后的结果(商)必须要两两互质。
篇14:小学五年级数学《求两个数的最大公约数》教案设计
小学五年级数学《求两个数的最大公约数》教案设计
教学内容:求两个数的最大公约数
教学目标;
使学生理解求两个数的最大公约数的算理,学会求两个数的饿最大公约数的饿方法。
教学过程:
一、复习
1、什么叫公约数,最大公约数和互质数,举出一组互质数
2、写出36的约数,60的约数,36和60的公约数,36和60的最大公约数
二、教学新课
1、提出问题:求两个数的最大公约数。用上面的方法求两个数的最大公约数,很不方便,有没有更简便的方法呢,这就是我们今天要学的内容;
2、教学例3
我们可以这样想:把36和60分别分解质因数,把他们的最大公约数12也分解质因数,观察以下,他们有什么联系?
观察、比较、议论:
(1)36和60的公有约数是几,全部公有质因数的连乘的积是多少?
(2)36和60的公有质因数与他们最大公约数12的质因数相比,有什么发现?
(3)用短除法求最大公约数。
(4)引导学生观察,比较,议论。
3、巩固练习
4、试一试求下面两题的最大公约数。
5、教学例4
(1)求出下面各组数的最大公约数
(2)引导学生探求观察思考
观察上面三组数和他们各自的最大公约数,发现什?
6、教学例5
(1)求出下面各组数的最大公约数
(2)引导学生观察、探索、发现这些数的'最大公约数
(3)教师学生共同小结
(4)练一练
(5)求下面各组数的最大公约数
三、总结布置作业
反思:我认为这几点我做的不好:
1、没有让学生真正懂得为什么两个数全部共有质因数连乘的积就是这两个数的最大公约数。所以在下面的练习中学生知识照搬照抄。缺乏灵活性。
2、对于有特点的两组数:互质数和约数关系时的教学缺乏举例,与学生的自我思考。
篇15:《求两个数最大公约数》微课教案
《求两个数最大公约数》微课教案
您好,本次微课,重点讲解“求两个数最大公约数“的编程实现方法。
微课的内容由5个环节组成:
第一个环节:读程序写结果―分析程序的功能。
第二个环节:展示本程序的题目描述,分析本程序的缺陷,引出“辗转相减法”与“辗转相除法”两种高效求解“最大公约数“的算法
第三个环节:展示两种高效的“求解最大公约数”的算法
第四个环节,剖析各要素,展示用“辗转相除法”编程的过程
第五个环节:布置任务,编程实现“求两个数的最小公倍数”。
下面我们首先进入:
第一环节,读程序写结果。请你通读一下程序,然后根据输入,看输出应该是多少?
下面我们一起来分析一下本程序:可以看出本程序就是要求出m,n的最大公约数。
本程序的题目表述是:
我们刚才看到程序实际上用了穷举算法,在长整范围内,循环体被执行的'次数有可能超过10^8方,也就是部分合法的数据无法在规定时间内得出结果,是不是有更高效的算法呢?
我们进入第三个环节,展示两种高效的求解最大公约数的方法。
第一种,辗转相减法,用实例来讲解这种方法是如何求出最大公约数的。
第二种,辗转相除法,思路相近,但更高效。还是用实例来演示。
对于这两种方法,我们本次微课选择用辗转相除法来实现。下面我们一起来剖析题目要素。找一下刚才的讲解中我们反复要去做的事情,也就是循环体的内容。那么这个循环何时结束,是r=0 这个是结束条件,具体多少次我们不知道,在这样的情况下,我们选择用while循环或者是repeat循环,这两种循环是可以替代的。我们选择用while循环来编写,那么条件是r0 去循环,r是多少,因此r的值在循环前要先算出来,其它就是输入与输出,程序就算完成了。你看一下完整的程序同你想的是否一致。
最后一个环节,你的任务――求两个数的最小公倍数,建议首先是用概念来穷举。然后思考是否能利用刚才的高效的算法来求出最小公倍数。
本部分内容就到这,谢谢你的观看。
篇16:小学五年级数学《找最小公倍数》优秀教案
教学目标:
1.知识与技能:理解公倍数和最小公倍数的含义。
2.过程与方法:经历探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
3.情感态度与价值观:结合生活实际,激发学生学习数学的愿望,培养学生学习数学的乐趣。
教学重点:
理解公倍数和最小公倍数的含义。
教学难点:
掌握找最小公倍数的方法。
教学用具:
课件
教学过程:
一、复习导入
说出2的倍数有哪些,3的倍数有哪些?
二、教学公倍数和最小公倍数的含义
(一)探索公倍数
1.观察刚才同学们说的2的倍数和3的倍数,你有什么发现?
2.师生共同观察分析得出公倍数的含义。
(二)探索最小公倍数,引出课题。
三、探索找两个数最小公倍数的方法
(一)找两个数最小公倍数的一般方法
1.列举法
2.分解质因数法
3.短除法
(二)找两个数最小公倍数的特殊方法
1.找出下面几组数的最小公倍数。
7和14 8和24 9和18
5和6 2和7 9和4
2.观察每横数据和结果,你有什么发现?为什么
3.师生共同观察分析得出特殊情况下的特殊方法。
四、巩固练习
课件出示习题。
五、小结:今天你有什么收获?
板书设计:
找最小公倍数
4的倍数有:4、8、12、16、20、24、28… …
6的倍数有:6、12、18、24、30、… …
4和6公倍数有:12、24、… …
最小公倍数: 12
篇17:小学五年级数学《找最小公倍数》优秀教案
教材分析:
1.“找最小公倍数”是北师大版五年级数学上册教材第三单元的内容,本册教材对找公因数,最小公倍数的知识与约分、通分的知识进行了整合。
2.根据课标要求,本册教材对“找最小公倍数”的要求适当地限制,求最小公倍数把两个数限制在100以等。
3.“找最小公倍数”是学习通分的基础,同时也是进一步学习分数四则计算,运用分数知识解决实际问题的基础,是分数教学的重点。
学情分析:
学生情况分析:在学习“找最小公倍数”之前,学生已掌握“找公因数”的方法和“找一个数的倍数”的方法,为学习“找最小公倍数”作好了铺垫。
学生认知发展分析:注意留给学生自主探索的空间,让学生在原有的基础上进行知识的迁移类推,培养学生迁移、分析、推理的数学能力。
学生认知障碍点:学生对认知“找最小公倍数”的方法还停留在肤浅、模糊的状态,本节课的学习将为学生构建一个完整的知识体系。
教学目标:
1.知识目标:理解公倍数和最小公倍数的含义,会利用列举等方法找两个数的公倍数和最小公倍数。
2.过程和方法:结合具体情境,体会公倍数和最小公倍数的意义和应用,在原有的基础上比较类推,探索找最小公倍数的方法。
3.情感、态度、价值和目标:通过学习,让学生理解数学与生活的密切联系,培养学生热爱数学,热爱生活的情感,同时培养学生推理和抽象概括的能力。
教学重点:
掌握几个数的公倍数和最小公倍数的计算方法。
教学难点:
理解求最小公倍数的算理。
教学过程:
一、课堂导入
1.复习铺垫
(1)找出18和24的公因数。
(2)归纳整理找公因数的方法。
2.情境引入,进行找倍数活动。
出示题目:暑假其间,*每隔2天上网,苏老师每隔4天上网,7月31号 她们都同时上了网,8月份两个老师哪几天上网的?分别用不同的颜色圈出来。
2.让学生观察日历之后回答:*上网和苏老师同时上网的日子是( )。它们都是和()共同的倍数,也就是它们的公倍数;其中最小的公倍数是(),这也是它们的最小公倍数。
板书:最小公倍数
二、探讨新知
1.出示教材中的表格,让学生用符号标出4的倍数、6的倍数
问:既是4的倍数又是6的倍数有哪些?
根据我们刚学过的知识它们是4和6的( ),它们的最小公数是( ) 。
2.明确给出定义。
3.自主探索:找6和8的最小公倍数,总结找两个数的公倍数的方法
4.总结常用的求最小公倍数方法是:短除法
三、巩固提高
1.教材做一做
2.用短除法求下面每组数的最小公倍数
四、思维训练
16和24 5和8 18和36
有一袋果,3个3个分余1个,5个5个分还余1个,这袋果至少有多少个?
五、课堂总结
这节课你们有什么收获吗?
板书设计:
找最小公倍数
定义:几个数公有的倍数叫做它们的最小公倍数,其中最小的公倍数叫做这几个数的最小公倍数。
方法:1.列举法;2.短除法;3.分解质因数法
评价设计:
学生学习活动评价设计
1. 学生积极思考问题,给予表扬肯定。
2. 学生有比较类推的能力及时鼓励和加以培养。
3. 课堂中学生的闪光点要及时表扬,对典型的合作学习给予肯定性评价。
4. 学困生要适宜鼓励。
篇18:小学五年级数学《找最小公倍数》优秀教案
教学目标:
1、初步建立公倍数和最小公倍数的概念;
2、初步培养学生的数学应用意识与解决简单实际问题的能力。
3、培养学生的比较推理与抽象概括能力。
教学重点:
公倍数与最小公倍数的概念建立。
教学难点:
运用“公倍数与最小公倍数”解决生活实际问题
教法学法:
根据教学的要求,结合教材的特点,为了完成教学任务,我主要采用情景教学法,创造生动具体的教学情境,使学生在愉快的情景中学习数学知识。学生通过独立思考、小组合作的方法进行学习。独立思考可以使每个人深入的探究、冷静的分析;小组合作,可以更全面的思考,解题思路得以发散。
教具准备:
印有月历纸。
教学过程:
一、创设情境,设疑引入
教师谈话:从11月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打
算等爸爸妈妈休息时,全家一块儿去公园玩。(小黑板出示:小兰一家和一张11月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?
请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找小兰妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出小兰爸爸和妈妈共同的休息日了。
根据学生的回答,教师逐步完成以下板书
妈妈的休息日:4、8、12、16、20、24、28
爸爸的休息日:6、12、18、24、30
他们共同的休息日:12、24
其中最早的一天:12
(以讲故事的形式提出问题,为学生提供了一个“公倍数”的实体模型,让学生借助“日期”这一具体有实际意义的“数”,初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。)
二、激思引探,教学新知
1.几个数的公倍数和最小公倍数的概念教学
从“妈妈的休息日”、“爸爸的休息日”、“他们共同的休息日”、“其中最早的一天”分别引出“4的倍数”、“6的倍数”、“4和6的公倍数”、“4和6的最小公倍数”的概念,教师修改并完成板书。
4的倍数:4、8、12、16、20、24、28
6的倍数:6、12、18、24、30
4和6的公倍数:12、24
其中最小的一个:12
师:教师:为什么要打省略号呢?(因为一个数的倍数是无限的,不可能写出一个数的所有倍数).
师:请你仔细观察妈妈和爸爸的休息的日子又什么特点?(引出4的倍数和6的倍数,并板书)
师:在6的倍数和4的倍数中,你觉得哪些数字比较特别呢?(引出4和6的公倍数)师:其中最小的一个是12。(引出最小公倍数)
(通过引导学生对具体问题作进一步研究并根据研究结果修改板书,让学生亲身经历了一个从具体到抽象的数学化过程。通过这一过程,不仅能帮助学生借助生活经验理解数学知识,同时也能让学生感受到数学与生活的联系,体会到数学源于生活又高于生活的特点。)
2、及时练习
师:认识了那么多关于倍数的关系,我们就来用一用。完成(试一试)。
三、巩固练习
1、书本练一练的第一题
2、书本练一练的第三题
3、书本练一练的第四题。
4、判断题
(1)两个数的积一定是这两个数的公倍数。()
(2)两个数的积一定是这两个数的最小公倍数。()
(3)两个数的公倍数是无限的,而最小公倍数只有一个。()
此题从整体上挈领知识要点,要求学生对各项知识进行抽象的比较、类比,进而推理、概括,对知识有深入完整的理解。学生有条理地表述自己的思考过程,做到言之有理,用数学语言进行合乎逻辑的讨论与质疑。
四、课堂小结:学生回忆整堂课所学知识。
学生通过这一环节可以将整个学习过程进行回顾、按一定的线条梳理新知,形成整体印象,便于知识的理解记忆。
整节课的设计,我通过四个环节的教学设计来体现数学来源于生活,服务与生活的理念。我主要通过动手操作、自主探索等方法,限度发挥学生的主体作用,使学生在爱数学、学数学、用数学过程中获得知识。
篇19:求特殊情况下两个数的最小公倍数 教案教学设计(人教新课标五年级下册)
课题二:
教学要求 在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的最小公倍数。
教学重点 掌握求两个数的最小公倍数的方法。
教学难点 正确、熟练地求出特殊情况下两个数的最小公倍数。
教学过程
一、创设情境
1.口算练习:将练习十五的第五题做在书上,做完后集体修订正。
2.回答问题:什么是公倍数?什么是是最小公倍数?
3.求24和32的最小公倍数。
4.说说下面每组中的两个数有什么关系?
12和36 4和5
二、揭示课题
我们已经学会求两个数的最小公倍数,这节课我们将继续学习求特殊情况下两个数的最小公倍数。(板书课题:求特殊情况下两个数的最小公倍数)
三、探索研究
1.教学例3
(1)先让学生用上节课学的方法分别求出这两组数的最小公倍数。
(2)观察结果:通过这两组数的最小公倍数,你发现了什么?
(3)归纳方法:先让学生讲,再指导学生看教材第73页的结论。
(4)尝试练习。
做教材第74页下面的“做一做”,先让学生判断每组中两个数的关系,再解答出来集体订正。
四、课堂实践
1、做练习十五的第6题,先让学生写,再让学生说,最后集体订正。
2、做练习十五的第7题,先让学生观察每组中两个数的关系,再让学生正确、熟练地说出它们的最小公倍数,并订正。
3、做练习十五的第9题。先让学生独立判断,对的打√,错的打×,再点几名学生讲打√或×的理由。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
做练习十五的第8题。
★ 初中数学优秀教案
小学数学《求两个数的最小公倍数》优秀教案(精选19篇)




