【导语】“bailong312”通过精心收集,向本站投稿了19篇《有理数的加减法》教学设计,下面小编给大家整理后的《有理数的加减法》教学设计,欢迎阅读!
- 目录
篇1: 《有理数的加减法》教学设计
教学目标
1、理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;
2、能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;
3、三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;
4、通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;
5、本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节教学的重点是依据有理数的加法法则熟练进行有理数的加法运算。难点是有理数的加法法则的理解。
(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。
(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。
(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。
(二)知识结构
(三)教法建议
1、对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。
2、有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。
3、应强调加法交换律“a+b=b+a”中字母a、b的任意性。
4、计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。
5、可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。
6、在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。
教学设计示例
有理数的加法(第一课时)
教学目的
1、使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算。
2、通过有理数的加法运算,培养学生的运算能力。
教学重点与难点
重点:熟练应用有理数的加法法则进行加法运算。
难点:有理数的加法法则的理解。
教学过程
(一)复习提问
1、有理数是怎么分类的?
2、有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?
3、有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?
―3与―2;|3|与|―3|;|―3|与0;
―2与|+1|;―|+4|与|―3|。
(二)引入新课
在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算、引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算、
(三)进行新课有理数的加法(板书课题)
例1如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?
两次行走后距原点0为8米,应该用加法。
为区别向东还是向西走,这里规定向东走为正,向西走为负、这两数相加有以下三种情况:
1、同号两数相加
(1)某人向东走5米,再向东走3米,两次一共走了多少米?
这是求两次行走的路程的和5+3=8
用数轴表示如图
从数轴上表明,两次行走后在原点0的东边、离开原点的距离是8米、因此两次一共向东走了8米。
可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和。
(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?
显然,两次一共向西走了8米
(―5)+(―3)=―8
用数轴表示如图
从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米、因此两次一共向东走了―8米。
可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和。
总之,同号两数相加,取相同的符号,并把绝对值相加。
例如,(―4)+(―5)……同号两数相加
(―4)+(―5)=―…取相同的符号
4+5=9……把绝对值相加
∴(―4)+(―5)=―9
口答练习:
(1)举例说明算式7+9的实际意义?
(2)(―20)+(―13)=?
2、异号两数相加
(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米
5+(―5)=0
可知,互为相反数的两个数相加,和为零
(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米、因此,两次一共向东走了2米
就是5+(―3)=2
(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米、因此,两次一共向东走了―2米
就是3+(―5)=―2
请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?
最后归纳
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
例如(―8)+5……绝对值不相等的异号两数相加
8>5
(―8)+5=―()……取绝对值较大的加数符号
8―5=3……用较大的绝对值减去较小的绝对值
∴(―8)+5=―3
口答练习
用算式表示:温度由―4℃上升7℃,达到什么温度
(―4)+7=3(℃)
3、一个数和零相加
(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?
显然,5+0=5、结果向东走了5米
(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?
容易得出:(―5)+0=―5,结果向东走了―5米,即向西走了5米
请同学们把(1)、(2)画出图来
由(1),(2)得出:一个数同0相加,仍得这个数,总结有理数加法的三个法则、学生看书,引导他们看有理数加法运算的三种情况。有理数加法运算的三种情况:
特例:两个互为相反数相加;
(3)一个数和零相加、每种运算的法则强调:
1)确定和的符号;
2)确定和的绝对值的方法。
(四)例题分析
例1计算(―3)+(―9)
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征)
解:(―3)+(―9)=―12
例2分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值,(强调“两个较大”“一个较小”)。
解:解题时,先确定和的符号,后计算和的绝对值、
(五)巩固练习
1、计算(口答)
(1)4+9;(2)4+(―9);(3)―4+9;(4)(―4)+(―9);
(5)4+(―4);(6)9+(―2);(7)(―9)+2;(8)―9+0;
2、计算
(1)5+(―22);(2)(―1、3)+(―8)
(3)(―0、9)+1、5;(4)2、7+(―3、5)
篇2:《有理数的加减法》教学设计
教学目标:
1、会将有理数的减法运算转化为有理数的加法运算。
2、会将有理数的加减混合运算转化为有理数的加法运算。
教学重点、难点:
会进行有理数的减法运算,会进行有理数的加减混合运算。
课前复习:
1、有理数加法法则是什么?
2、有理数加法运算律是什么?
教学过程:
一、有理数的减法法则
实际生活中有很多时候要涉及到有理数的减法。例如:某地某天的气温是―2至5C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:C)。显然,这天的温差是5―(―2)。这里就用到了有理数的减法。
我们知道,减法是与加法相反的运算,计算5―(―2),就是要求一个数,使之与(―2)的和得4,因为与―3相加得4,所以这个数应该是7,即:5―(―2)=7。
(1)另一方面,我们知道5+(+2)=7
(2)由(1),(2)有5―(―2)=5+(+2)
(3)从(3)式能看出减―2相当于加哪个数吗?
用上面的方法考虑:
0―(―2)=___, 0+(+2)=___;
1―(―2)=___, 1+(+2)=____;
―5―(―2)=___, ―5+(+2)=___。
这些数减3的结果与它们加+2的结果相同吗?
从(3)式能看出减―2相当于加哪个数吗?把5换成0,1,—5,用上面的方法考虑,并看它们的结果相同吗?
计算:10-8=___,10+(-8)=____;
13-7=___,13+(-7)=____。
上述式子表明:减去一个数,等于加上这个数的相反数。
于是,得到有理数减法法则:减去一个数,等于加这个数的相反数。
用式子可以表示成ab=a+(b)
例题解析:
计算:
(1)(-4)―(―5);
(2)0-6;
(3)7.1―(―4.9);
解:(1)(-4)―(―5)=(-4)+5=1;
(2))0-6=0+(-6)=-6;
(3)7.1―(―4.9)=7.1+4.9=12;
二、有理数加减混合运算
有理数的加减混合运算,可以按照运算顺序,从左到右逐一加以计算,通常也会利用有理数的减法法则,把它写成只有加法运算的和的形式。
例如:(+2)-(-3)-(+4)+(-5)可以写成(+2)+(+3)+(-4)+(-5)
将上面这个式子写成省略加号和括号的形式即为:(+2)+(+3)+(-4)+(-5)=2+3-4-5
对于这个式子,有两种读法:①读作“2加3减4减5”;②读作“2、3、-4、-5的和”
例1计算(-20)+(+3)-(-5)-(+7)
解:(-20)+(+3)-(-5)-(+7)
=(-20)+(+3)+(+5)+(-7)
=-20+
3+5-7
=-20-7+3+5
=-27+8
=-19
说明:计算时,可以按照运算顺序,从左到右逐一加以计算,从以上我们可以得出,引入相反数后,加减混合运算可以统一为加法运算:
a+b
c=a+b+(c)
三、加法运算律在加减混合运算中的作用与方法
加法运算律在加减混合运算中的运用,可以使一些计算简便,例如利用加法运算律使符号相同的加数在一起,或使和为整数的加数在一起,或使分母相同或便于通分的加数在一起等等
例2。用两种方法计算:-4.4-(-4)-(+2)+(-2)+12.4
解法1:-4.4-(-4)-(+2)+(-2)+12.4
=-4.4+4+(-2)+(-2)+12.4
=(-4.4+12.4)+4+[(-2)+(-2)]
=8+[4+(-5)]
=8+(-1)=7
此解法是将和为整数、便于通分的加数在一起
解法2:-4.4-(-4)-(+2)+(-2)+12.4
=-4.4+4-2-2+12.4
=(8+4-2-2)
=8+(-1)=7
此种方法是将整数部分与小数部分分别相加使计算简化
四、小结:
(1)有理数减法法则:减去一个数,等于加这个数的相反数。用式子可以表示成:
ab=a+(b)
(2)有理数加减混合运算可以统一为加法运算,即:a+b
c=a+b+(c)
(3)有理数加法运算律:
①加法交换律:a+b=b+a
②加法结合律:(a+b)+c=a+(b+c)
五、课后作业
篇3:《有理数的加减法》教学设计
教学目标:
【知识与技能】
掌握有理数的减法法则,能运用有理数的减法法则进行运算。
【过程与方法】
经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过对有理数减法法则的探讨,体验数学的转化思想。
【情感、态度与价值观】
在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
教学重点
理解有理数减法法则的.意义,会运用有理数的减法法则进行运算。
教学难点
有理数减法法则的探讨。
教学准备
多媒体课件
教学过程
一、复习回顾
1.-2的相反数是____,+0.3的相反数____,相反数是它的本身的数是___.
2.计算
(1)4+16= (2)(–2)+(–7)=
(3)(–1)+3.6= (4)2+(–4)=
(5)(–5)+5= (6)0+(–8)=
设计意图:通过复习回顾,熟悉旧知,为学生本节课的学习做好知识准备。
二、创设情境、引入新课
北京某天气温是-3C~3C,这天的温差是多少摄氏度呢?
学生列式表示3-(-3)=?但是不知道结果。
设计意图:通过小知识引入问题,然后引出有理数的减法运算,引起学生的探究欲望,激发学生的学习兴趣。
三、探究新知
同学们都知道,减法和加法互为逆运算,3-(-3)=?也就是问什么数加上—3等于3?
因为6+(—3)=3 所以3—(—3)=6
师问:3+?=6 生答:3+3=6
请同学们观察以下两个式子:
(1)3-(–3)=6;(2)3+3=6
你发现了什么?换些数试试。(学生自主思考)
9—8=____, 9+(—8)=____;
15—7=____, 15+(—7)=____。
然后比较上面的式子,能发现其中的规律吗?分小组讨论。
然后师生共同归纳法则,教师板书法则。并强调减法在运算时有2个要素要发生变化,1个要素不变。(两变一不变)
1减 加
2数 相反数
设计意图:通过观察、交流、讨论,归纳发现有理数的减法法则,感受转化的数学思想。
练习:下列括号内各应填什么数?
(1)(—2)—(—3)=(—2)+____;
(2)0—(—4)=0____4;
(3)(—6)—3=(—6)+_______;
(4)1—(+39)=____+(—39)。
设计意图:通过学生边口述,边解释法则,学生能找准在将减法变加法的过程中什么变,什么不变。
四、典例讲解
例4计算:
(1)(—3)—(—5) (2)0—7
(3)7.2—(—4.8) (4)
教师板演示范(1)(4),示范书写过程,学生完成(2)(3)。
设计意图:通过教师的板演,为学生的书写起示范作用,学生练习暴露出来的问题,教师可以及时发现并指正。
思考:在小学,只有当a大于或等于b时,我们才会做a-b,现在,当a小于b时,你会做a-b吗?
一般地,较小的数减去较大的数,所得的差的符号是什么?
通过上述例题,学生不难解答。
五、当堂检测
1.计算:
(1)6-9; (2)(+4)-(-7);
(3)(-5)-(-8); (4)0-(-5);
(5)(-2.5)-5。9; (6)1.9-(-0.6)。
2.计算:
(1)比2C低8C的温度;
(2)比-3C低6C的温度。
3.计算:|(—3)-5|=____。
六、小结
这节课我们学习了哪些知识?你还学到了什么?你能说一说吗?
学生自主谈收获,其他同学补充,教师可给与必要总结。
设计说明:小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生自己总结,谈收获,培养学生善于进行学习反思的良好习惯。
七、作业布置
必做题:
习题1.3第3题(1)(2)(5)(9)(10)第4题(1)(5)
选做题:
已知a=8,b=—5,c=—6,求(c—a)—|b|的值。
设计说明:根据课标和本节课的教学目标的要求,学生要会运用有理数的减法法则进行运算。我将作业分成选做和必做两个层次,这样尽量能让每个同学在今天的学习中都有所收获。
八、板书设计
1.3.2有理数的减法
2.有理数的减法法则 例4计算:
3.两个变化要素
1减 加
2数 相反数
4.转化思想
设计意图:本节课的板书我主要采用提纲式的板书,既直观形象,又能加深理解记忆。
以上是我对本节课的见解,还请各位老师多多指导。
篇4:《有理数的加减法》教学设计
一、教学目标
【知识与技能】
掌握有理数加法运算律,理解其在加法运算中的作用。
【过程与方法】
经历探索有理数加法运算律过程,培养观察思维逻辑推理能力。
【情感、态度与价值观】
问题分析解决过程中,感受数学的魅力。
二、教学重难点
【教学重点】
有理数加法运算律。
【教学难点】
灵活应用有理数加法运算律。
三、教学过程
(一)导入新课
复习导入:小学学习过加法运算律,带领学生回顾加法交换律,加法结合律。
提问:在引入负数之后,这些运算律还能不能成立?
板书课题,有理数加法运算律
(二)生成新知
学生思考,讨论交流,教师展示两组算式:3+(-5)=-5+3=;
提问:上述两个算式相等吗?如果换成其它有理数相加,两个算式的结果还相等吗?
归纳总结得出,有理数的加法中,交换加数的位置,和不变。
加法交换律:a+b=b+a
展示第二组算式:3+(-5)+7=3+(-5+7)=;
提问:分析式子意义,计算一下两个式子结果是否相同,换一些其它有理数试一试?
归纳总结得出,有理数的加法中,先把前两个数相加或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c);
思考:多个有理数相加是不是可以交换两个加数的位置,结合某些加数求和?
(三)巩固提高
计算:
1.(-11)+25+(-9)=
2.(-16)+25+(-24)+15=
总结:多个有理数相加可以任意交换加数的位置,也可以先把其中的几个数相加,使其计算简便。
(四)小结作业
小结:提问学生本节课有什么收获,阐述有理数加法运算律。
作业:课本习题第2题。
篇5:有理数乘法教学设计
有理数乘法教学设计
设计理念
1、注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。
2、本课注意降低了对运算的要求,尤其是删去了繁难的运算。注重使学生理解运算的意义,掌握必要的基本的运算技能。
3、数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。
教学目标1、知识与技能:使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性。
2、过程与方法:培养学生观察、归纳、概括及运算能力。
3、情感态度与价值观:让学生感知数学来源于生活,培养学生学习数学的兴趣。
重点有理数乘法的.运算。
难点有理数乘法中的符号法则。
方法合作交流课型
教学过程
教学环节教学内容
一、复习引入1.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
2.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)
3.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?
(负数问题,符号的确定)
篇6:有理数减法教学设计
有理数减法教学设计
一、成功学习
1、成功目标(学习要高效,目标不可少)
①理解并掌握有理数减法法则,能熟练的进行有理数的减法运算。
②探索把减法运算转化为加法运算的过程,进一步体会转化思想。
2、成功自学(目标已明确,高效来自学)
自学教材第21~22页,完成下列内容
(1)通过21页的小云朵里的内容你知道如何列式吗?
(2)观察课本22页“探究”的内容,你能从中有什么新发现?请同学们换几个数再试一试。
(3)有理数的减法法则是
(4)通过自学课本第22页例4,你认为有理数减法计算的具体步骤是什么呢?
(5)大数减小数结果是数,小数减大数结果是
数,两个相等的数相减差是你能举出一些例子吗?
3、成功合作(小组面对面,交流更方便)
自学课本后,组长带领小组成员,核对(1)(2)(3)(4)(5)题,讨论交流,集思广益,相信你们会学有所获。
4、成功量学( 收获有多少, 量学见分晓)
(1) 列式计算
①比3℃低20℃的`温度是多少?
②比-10℃低31.5℃的温度是多少?
(2) 计算(过程要完整)
①0-(-52) ②(+2)-(-8)③(4/3)-(4/3) ④(4.6)-7.8
二、成功展示(展示风采,相信自己)
1、学生展示自学部分(可分组回答)
2、学生展示量学部分(可黑板展示)
三、成功测学(冲刺检测,相信我最棒!)
1、基础题:比-2小1的数是。
2、计算:
①|-3|-7?? ②7.3-(-6.8)? ③(-2.5)-0.5? ④0-(-2012)
3、综合题:下列结论正确的个数是
①如果两个数的差是正数,那么这个数都是正数;②两个数的差不一定小于这两个数的和;③两个数的差一定小于被减数;④零减去任何数都等于这个数的相反数。
A、1? B、2? C、3 D、4
四、成功思学
————————————————————————————
篇7:七年级有理数教学设计
有理数教学设计
七年级有理数教学反思
通过本节课的教学,我感触很深。初一的学生,刚从小学生变成一个中学生,对于知识的理解和接受大多还停留在小学生的水平上,他们善于思考,但是却把握不好思考的方向,而我们新教师很容易犯的一个错误就是对于知识的深浅拿捏不好,一不小心就又把知识讲深了,但是我一直又在不断重复的一个错误就是明知有些知识讲的时候不够十分的科学,十分的确切却又迫于无法让学生完全的掌握,而只好“舍卒保車”了,我不知道这算不算是初一数学老师的一点悲哀。另外,我对新课程理念所提倡的以学生为主体,充分发挥学生的主动性这一点贯彻的有些不到位。一节课的时间,只有45分钟,除去课前准备,上课的板演时间,上课的时候提问学生,提问成绩好的学生,起不到什么作用。提问成绩不好的学生,等半天还是回答不上来,有时等不及学生说出答案就自己把答案说出来了,有时一节课学生动手动口的机会真的不多。唉,我也不断反思,想办法,希望以后这样的事件在我的课堂上能越来越少!
篇8:《有理数》的教学设计
一、教学内容分析
这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。
二、学生学习情况分析
(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;
(2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;
(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。
三、设计思想
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。
四、教学目标
(一)知识与技能
1、掌握数轴的三要素,能正确画出数轴。
2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。
(二)过程与方法
1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。
2、对学生渗透数形结合的思想方法。
(三)情感、态度与价值观
1、使学生初步了解数学来源于实践,反过来又服务于实践 的辩证唯物主义观点。
2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
五、教学重点及难点
1、重点:正确掌握数轴画法和用数轴上的点表示有理数。
2、难点:有理数和数轴上的点的对应关系。
六、教学建议
1、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。
2、知识结构
有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下:
定 义 规定了原点、正方向、单位长度的直线叫数轴
三要素 原 点 正方向 单位长度
应 用 数形结合
七、学法引导
1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣―手脑并用―启发诱导―反馈矫正”的教学方法。
2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。
八、课时安排
1课时
九、教具学具准备
电脑、投影仪、三角板
十、师生互动活动设计
讲授新课
(出示投影1)
问题1:三个温度计.其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.
师:三个温度计所表示的温度是多少?
生:2℃,-5℃,0℃.
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作)
师:我们能否用类似的图形表示有理数呢?
师:这种表示数的图形就是今天我们要学的内容―数轴(板书课题).
师:与温度计类似,我们也可以在一条直线上画出刻度,标上读
数,用直线上的点表示正数、负数和零.具体方法如下
(边说边画):
1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
师问:我们能不能用这条直线表示任何有理数?(可列举几个数)
让学生观察画好的直线,思考以下问题:
(出示投影2)
(1)原点表示什么数?
(2)原点右方表示什么数?原点左方表示什么数?
(3)表示+2的点在什么位置?表示-1的点在什么位置?
(4)原点向右0.5个单位长度的A点表示什么数?
原点向左1.5个单位长度的B点表示什么数?
根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.
师:在此基础上,给出数轴的定义,即规定了原点、正方向和单
位长度的直线叫做数轴.
进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生指出:数轴的三要素――原点、正方向和单位长度,缺一不可.
【教法说明】通过“观察―类比―思考―概括―表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.
师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习
尝试反馈,巩固练习
(出示投影3).画出数轴并表示下列有理数:
1、1.5,-2.2,-2.5, ,,0.
2.写出数轴上点A,B,C,D,E所表示的数:
请大家回答下列问题:
(出示投影4)
(1)有人说一条直线是一条数轴,对不对?为什么?
(2)下列所画数轴对不对?如果不对,指出错在哪里?
【教法说明】此组练习的目的是巩固数轴的概念.
十一、小结
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.
十二、课后练习习题1.2第2题
十三、教学反思
1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
1.字的教学设计
2.《阳光》的教学设计
3.《示儿》的教学设计
4.秒的教学设计
5.《马说》的教学设计
6.《我选我》的教学设计
7.观刈麦的教学设计
8.《三峡》的教学设计
9.《林中小溪》的教学设计
10.关于中彩那天的教学设计
篇9:有理数优秀教学设计
《有理数加法法则》是华东师大版教材七年级上册第二章第六节第一课时内容,主要是通过问题情境理解有理数加法的意义,探究、总结、归纳有理数的加法法则,并能根据有理数加法法则进行有理数加法运算,它是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础。
教法:以学生为主体创设问题情境,通过设计问题串,诱导学生探究、总结、归纳有理数的加法法则,并能自主运用法则进行计算。重点突出异号两数相加,明确有理数的加法,名义上是加,但实际上同号是加,异号则要转化成减法。最后将巩固法则融入游戏中,并将法则编成顺口溜,活跃课堂气氛,让学生学得轻松。
学法:认真听讲,积极思考回答老师提出的问题,自主分类归纳有理数的加法法则,通过将法则巩固融入游戏、顺口溜中,让学生学得轻松,乐于学习,并提高学习的兴趣。
教学目标:
1、理解加法的意义。
2、总结归纳有理数的加法法则,并能运用法则进行有理数的加法运算。
3、通过法则的探索,向学生渗透分类、归纳、转化的数学思想。
教学重点:法则的探索与应用
教学难点:异号两数相加
教学准备:预习教材,填上相应的空白,思考并举出运用有理数加法的实例。
教学过程:
一、复习回顾
1、一个不为零的有理数可以看做是由哪两部分组成的?
2、比较下列各组数绝对值哪个大?
①-22与30;②-与;③-4.5和6
3、小学里学过哪类数的加法?引入负数后又该如何进行有理数的加法运算呢?
(建立在学生已有知识的基础之上复习回顾与本节课相关的旧知识。)
二、新知探究
1、打开教材,请一位学生将他通过预习得到的加法算式说出来写在黑板上,并说出该式子表示的实际意义。
2、你还能举出类似用加法运算的实例吗?
3、观察这些算式,从加数上看你可以将它们分成几类?每一类和的符号与加数的符号有何关系?和的绝对值与加数的绝对值有何关系?
4、总结归纳有理数的加法法则。
突破难点:异号相加好比正数和负数进行拔河比赛,谁的力量(绝对值)大,谁胜(用谁的符号),结果考察力量悬殊有多大(较大绝对值减较小绝对值)。
(设置问题情境,探究、总结、归纳法则。对比了华东师大版教材和北师版教材,都是以数轴为载体探究法则的,并且这种载体非常有利于理解加法的意义,以前也听过其他老师上这节课,用多媒体课件展示向东走、向西走,要么一晃而过,要么总是纠缠不清,法则刚出来,便下课了,所以,我就更换了一种模式,让学生先预习,然后说出这些算式的实际意义更利于理解加法的意义。我认为只要理解了加法的意义,应该说理解法则中“和”的符号与“和”的绝对值的由来更容易一些。)
三、运用法则
例:计算
(1)(+2)+(-11)
(2)(-12)+(+12)
(3)(+20)+(+12)
(4)(- )+(- )
(5)(-3.4)+(+4.3)
(6)(-5.9)+0
思维过程:一“看”二“定”三“和差”
(主要是通过设置一组题目,理解法则,并展现思维过程“一看、二定、三和差”,规范学生的解题过程)
四、巩固法则
1、开火车游戏。
第一位同学说一个算式,第二位同学说答案,第三位同学接着说一个加法算式,第四位同学说答案,依次类推,谁卡住,谁表演节目。
2、填数游戏。
将-8,-6,-4,-2,0,2,4,6,8这9个数分别填入右图的9个空格中,使得每行的三个数,每列的三个数,斜对角的三个数相加均为0
3、思考:两个有理数相加,和一定大于每一个加数吗?
(设置了两个游戏:开火车和填数,另外就是打破了小学的思维定势“和总是大于加数”,引入负数后,是有变化的。设置问题“两个有理数相加,和一定大于每一个加数吗?”让学生对有理数加法理解的更深一些。)
五、小结
加法顺口溜:有理加减不含糊,同号异号分清楚;同号相加号相随,异号相减号大绝;相反数、和为0;碰见0、不变形。
(用一段“顺口溜”识记加法法则)
六、作业设计
1、练习完成在书上,习题1~2完成在作业本上。
2、在圆圈内填上彼此都不相等的数,使得每条线上的三个数之和为0。
五、小结:用一段“顺口溜”识记加法法则。
反思:“运算能力”是修订后的课程标准提出的“十大核心概念”之一,而“有理数加法”是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础,有理数加法法则是有理数加法运算的准绳,更是难倒了一大片初学者,有的同学学习了有理数的加法法则不但不能叙述法则,反倒连小学学过的非负数的加法运算也不会了,如何突破这个障碍,我认为关键还是加法意义的理解,应让学生置身于现实情境中搞清楚加法究竟是怎么回事,这样一来“和”的符号的确定与“和”的绝对值的确定也就是顺理成章的事儿了。
对比了华东师大版教材和北师版教材,都是以数轴为载体探究法则的,并且这种载体非常有利于理解加法的意义,以前也听过其他老师上这节课,用多媒体课件展示向东走、向西走,要么一晃而过,要么总是纠缠不清,法则刚出来,便下课了,所以,我就更换了一种模式,让学生先预习,熟知加法就是连续两次变化的总结果,然后再给这些算式赋予新的实际意义更利于理解加法的意义。其实,只要理解了加法的意义,应该说理解法则中“和”的符号与“和”的绝对值的由来更容易一些,通过操作,学生对于将算式置于实际情景非常感兴趣。
对于接下来将算式按加数分类,探究和的.符号与加数符号的关系,还有和的绝对值与加数绝对值的关系都有着浓厚的兴趣,尤其是得到“互为相反的两数相加和为零”时就有学生提到:异号两数相加其实就是正负一抵消,余下的部分就是和。看来只要在课堂上通过适当的引导让学生自身释放出琢磨的能量比让学生打开大脑的录音系统录音要好得多。通过后续学习的考察,学生对于加法法则的记忆与应用并非停留在表面的记忆上,而是对法则有了更深层次的理解,也没有学生刻意追求用教材上的句子一字不漏地来叙述加法法则,他们都能用自己理解的语言来说明到底是为什么。
再思考:这节课是我调入新的学校上的汇报课,领导还有同事们对我的课都做出了中肯的点评,最后一位颇有资历的领导谈到:数学教学应体现其本质,用“数轴”探究有理数的的加法更能体现加法的本质,授课者应做好合理的应用。换言之,本节课未能很好体现加法的本质。个人思考再三认为加法的本质就是“连续两次变化的总结果”,用数轴表示向东走向西走,还是举生活中的盈亏实例等都体现了加法的本质。新旧版本的华师大教材都是以“数轴”为载体探究有理数加法法则的,这种载体的应用主要凸显了直观,变化的结果一清二楚,也体现了数与形的有效结合,无疑是一种很好而有效的载体,但我们为什么不在教材现有载体的基础上做一些突破,让学生从多角度多方位理解加法运算呢!其实现实生活中的“盈”与“亏”生活气息浓郁,且学生熟知,会吸引众多的学生参与,“同号相加”就是“盈盈”型或“亏亏”型,“异号两数相加”就是“盈亏”型,(+5)+(-5)为什么是0?显然盈亏一样,最终兜里没钱!而(+3)+(-10)为什么结果取“-”且用“10-3”,盈少亏多呗!最终还是亏了7元!将加法置身于这样的情景更有利于理解加法的意义,总结加法法则,理解加法法则。
篇10:《有理数》的教学设计
《有理数》的教学设计
教学目标
【知识与能力目标】
掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力。
【过程与方法目标】
体验分类是数学上的常用处理问题的方法。
【情感态度价值观目标】
要求学生树立勇于探索、积极实践的学习态度,通过合作交流培养协作精神,撰写小论文进一步了解数的发展历史。
教学重难点
【教学重点】
正确理解有理数的概念。
【教学难点】
课前准备
复习正负数,尝试将之前学过的数进行合理的分类。
教学过程
探索新知
之前我们已经学习了很多不同类型的数,通过上节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。
问题1:观察黑板上的9个数,并给它们进行分类。
学生思考讨论和交流分类的情况。
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。
例如:
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数。“(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’。
按照书本的说法,得出“整数”“分数”和“有理数”的概念。
看书了解有理数名称的由来。
“统称”是指“合起来总的名称”的意思。
试一试:按照以上的分类,你能画出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)
练一练
1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。
2、教科书第8页练习。
此练习中出现了集合的概念,可向学生作如下的说明。
把一些数放在一起,就组成了一个数的`集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
创新探究
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表(略)。
小结与作业
课堂小结
请同学们回顾本节课所学知识,回答下列问题:
1、有理数是怎样定义的?
2、有理数有几种分类方法?具体是怎样分类的?
3、有理数的学习过程中,应注意什么?
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
作业
教科书第14页习题1.2第1题
板书设计(略)
篇11:初一数学有理数的加减法教学反思
我通过看了视频学习之后在《有理数的加法》的教学中,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.
现在,试比较这两类教学设计的得失利弊.
第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.
第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.
这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。
总之,课堂教学千变万化,总会有一些让教师所意想不到的“节外生枝”,比如学生突然提出一个问题,课堂秩序突出失控,学生注意力不集中等等,出现这些问题教师该怎么应付呢?教师如果还按原先设计的方案去教学,那是行不通的,这时考验的就是教师的智慧,它需要教师临时生成适合于当时情境的教学设计,要围绕目标及时调整教学内容、方法,使教学过程能顺利地进行下去,调控课堂的有效方法就是提问。
看过“ 初一数学有理数的加减法教学反思”的还看了:
篇12:《带分数加减法》教学设计
教学目标
(1)使学生进一步掌握分数连加、连减的计算方法。
(2)通过练习,使学生能根据特点正确、合理地选择方法进行计算。
(3)通过思考题探究,培养学生探究数学的兴趣,提高探究能力。
教学重点、难点根据特点正确、合理地选择方法进行计算。
教学过程
一、基本训练
1、口算。(下面这些题目你能很快说出结果吗?为什么?)
1又1/7+2/7+1又3/71-1/2-1/33又17/20+1又8/9+1/9
1-1/8-52又3/14+4+1又11/144-1/3-1/6
4又7/10+2+1/105-1/5-3/52又1/5+4/9+1又7/8
(1)学生谈谈看法后即计算。
(2)反馈时请举例说明“怎样算比较简便”。
2、揭示课题:带分数加减练习。
二、组织练习,提高技能
1、先说说下列各题该如何计算,并独立完成。
3又11/18+7/10+2又1/610-4又6/7-2/5
6又1/12-2又13/15-1又17/202又8/13+4又5/11+1又5/13
(1)学生独立完成,教师巡视指名板演。
(2)反馈计算思路,设问:为什么题目中不要用简便方法计算,而你对第4题则用了简便方法计算。
2、引导讨论:计算带分数加减法,要观察数据特点,能运用运算定律进行简便计算的,则尽量用简便方法计算。
3、专项练习:下列各题怎样简便就怎样算。
5又1/3-1又1/6-2又5/64又5/12+11/12+1又7/12+10/21
9又3/8+3又5/6+1又5/87又3/11-2又8/9+1又7/11-4又1/9
(1)学生独立完成。
(2)同桌交换互批,并说说思路。
(3)全班交流。
三、应用练习,巩固技能
1、谈话导入应用性练习。
2、选择正确的算式,并计算出结果。
(1)4又2/3与1又5/9的和,再加上2又5/6得多少?
A、4又2/3+(1又5/9+2又5/6)B、4又2/3+1又5/9+2又5/6
C、4又2/3+2又5/6+1又5/9
(2)6减去3又5/6的差,再减去1又1/8,得多少?
A、6-3又5/6-1又1/8B、6-(3又5/6-1又4/8)C、6-1又1/8-3又5/6
(3)两个数的和是9又17/20,其中一个数是2又2/3,另一个数比它多多少?
A、9又17/20-2又2/3B、9又17/20-(2又2/3+2又2/3)
C、9又17/20-2又2/3-2又2/3
(对第3题可扩展,设问:还有其他列式方法吗?如9又17/20-2又2/3×2)
3、应用题练习。(要求选择两题完成,喜欢做哪两题就做哪两题)
(1)煤场里有吨煤,第一次运出65又1/2吨,第二次运出74又3/4吨,还剩下多少吨?
(2)有两箱苹果,一箱重23又2/5千克,另一箱比它重2又3/8千克,两箱苹果共重多少千克?
(3)跳高比赛,第一名的成绩是1又2/5米,比第二名高1/10米,第三名比第二名低1/5米。第三名的跳高成绩是多少米?
四、课堂
1、学生带分数加减法的一些知识、方法、注意点等。
2、全班交流。
五、探究思考题
1、教师提出要求:先算算看你能发现什么?
2、学生独立完成后,反馈交流。
3、引导学生,再举一些例子。
4、强调学习数学的态度及学法指导,并提出课后要求:你去找找看,在一些数学计算中,你能发现一些规律吗?把发现的规律拿出来,我们在数学活动课中全班学生进行交流。
篇13:《带分数加减法》教学设计
教学目标
(1)使学生进一步掌握带分数加减法的计算方法,并能熟练地进行计算。
(2)结合形式多样的练习,激发学生的`学习兴趣,培养良好的学习习惯。
教学重点、难点:熟练地进行计算,培养良好的学习习惯
教学过程
一、基本训练
1、口算。(指名口答)
1/3+2又2/39-4又4/75/11+21-3/10
6又2/5-5又3/54+1又11/1215又3/4-103又5/6+2又1/6
2、师生谈话回顾带分数加减的计算法则,导出练习内容。
3、揭题:带分数加减法练习。
二、组织练习,形成技能
1、计算下面各题,并说说计算过程及应注意的地方。
2又3/4+4又5/124又1/15-2/55/8+2又9/203又1/3-2又7/8
(1)学生独立计算,同桌校对答案并交流想法。
(2)全体反馈,谈谈需注意的地方。
2、专项练习:下面的计算正确吗?把不对的改正过来。
(1)1又7/10+2又11/12(2)4又1/6-1又4/9
=42/60+55/60=4又3/18-1又8/18
=97/60=3又5/18
=1又37/60
(3)3又5/9+1/2(4)5又1/8-2又7/12
=3又10/18+9/18=5又3/24-2又14/24
=3又19/18=5又27/24-2又14/24
=3又1/18=3又13/24
①学生判断。(同桌可交流)
②反馈指正,即使改正。
3、进一步带分数加减的计算方法,并练习归纳。
填空,并讨论归纳带分数加减法中对不同情况的处理方法。
2又1/8+2又3/4=7又5/12-3又1/4=
1又3/52又7/9
(1)学生小组合作进行计算。(四人一组,两人做一题)
(2)小组讨论归纳:带分数加减法中对不同情况的处理方法。
(3)全班交流,。
三、课堂,引入应用性练习
1、教师性点拨:在带分数加减的计算中,掌握了计算方法以后,更为主要的是要针对
所给题目中的数据特征,准确运用法则进行计算。
2、应用性练习:
(1)解下列方程:
11/6+Ⅹ=53/4Ⅹ+14/9=411/12
Ⅹ-12/3=22/1563/5-Ⅹ=11/2
1-Ⅹ=3/5+1/104Ⅹ-87/15=38/15
①学生练习,指名板演。
②反馈解题思路,并强调检验。
(2)应用题。
①一块长方形菜地宽6又1/5米,比长短15又3/4米,这块菜地的长是多少米?
②幸福农场第一天耕地3又7/8公顷,比第二天多耕1又4/5公顷,第二天耕地多少公顷?
四、趣味练习
在填上适当的数。
4又3/()-1又4/()=2又3/4
5又()/()+1()/()=7又1/2
(1)学生独立完成,然后同桌交流。
(2)师生共同方法:注意分母的确定。
结合形式多样的练习,虽然激发了学生的学习兴趣,不过良好的计算习惯还没有真正养成,这是这个单元的一个难点。
篇14:《带分数加减法》教学设计
教学目标
使学生进一步掌握分数加减混合运算的计算方法,并能比较熟练地进行计算,正确解答相应的分数应用题。
教学重点、难点熟练地进行计算分数加减混合运算。
一、基本训练
1、师生共同回顾分数加减混合运算的计算方法及计算过程中的一些注意点。
2、看谁算得既对又快,并说说运算顺序。
4/13+8/13-7/135/19-3/19+10/19
2又17/20-1又7/20+3/又7/10-9/10+1/10
1-(1/2+1/3)1/9+(2-2/9)
2又5/8+(5-4又5/8)3又1/20-(1/4-1/5)
二、练习巩固,提高技能
1、用递等式计算下列各题。
4又1/3-5/12+2又5/82又1/2+1又5/8-1又1/8
3又1/2+(4又1/3-7/12)7又8/15-(6又8/15+3/11)
(1)学生独立计算,完成后同桌交流计算过程。
(2)反馈比较,全班交流计算过程。
(3)重点讨论:为什么第2、4题的算法有不同?
(4):在计算中能简便计算的尽量要简便计算。
2、先说说下列各题如何计算比较简便,再计算。
2又7/16+1又6/7+1又9/168-3又6/11-1又5/11
5又11/12-2又4/9-2又11/126-(3又3/8+1又5/24)
(1)学生同桌交流以上各题如何计算比较简便,说出各自的看法,然后分别计算。
(2)教师巡视发现典型算法,指名板演。
(3)反馈比较各种算法,引导学生用比较简便的算法进行计算。
3、分数加减混合运算的一般方法,并提出要求:能根据数据特点灵活、合理地进行计算。
三、应用练习,巩固技能
1、选择相应答案的序号填入各题后面的括号中。
(1)从6又8/9里减去3又1/4,所得差与2又1/6的和是多少?正确的算式是()。
(2)从6又8/9里减去3又1/4与2又1/6的和,差是多少?正确的算式是()。
(3)从6又8/9里减去3又1/4与2又1/6的差,结果是多少?正确的算式是()。
(4)6又8/9加上3又1/4与2又1/6的差,和是多少?正确的算式是()。
A、6又8/9-(3又1/4+2又1/6);B、6又8/9+(3又1/4-2又1/6);
C、6又8/9-3又1/4+2又1/6D、6又8/9-(3又1/4-2又1/6)。
(学生先根据题意选择正确的算式,再各组计算一题,算出结果)
2、应用题练习,根据相应问题列出算式。
农场收割小麦,第一天收了这快地的2/15,第二天收了这快地的3/20,第三天收了前天天的总和。
(1)收了一天后还剩下这快地的几分之几?列式为:
(2)第三天收了这快地的几分之几?列式为:
(3)三天一共收了这快地的几分之几?列式为:
(4)收了三天后还剩下这快地的几分之几?列式为:
(注意引导学生理解所求问题的含义,弄清数量关系)
四、课堂(师生谈话共同完成)
1、通过本节课的练习,你对分数加减混合运算有什么新的认识?
2、在解决分数加减混合运算应用题中要特别注意什么?
五、课堂作业。
1、列式计算。
(1)从4又7/9里减去2又3/4,所得的差与3又1/6的和是多少?
(2)从3又9/10里减去1又1/6与4/5的和,得多少?
(3)1又5/12加上3又11/18减3又2/9的差,和是多少?
(4)从8又1/4里减去3又7/8与2又1/2的差,得多少?
2、应用题。
一个化肥厂一月份生产化肥45又1/2吨,二月份生产42又1/5吨,三月份比一、二月份生产的总数少39又3/10吨。三月份生产化肥多少吨?
通过练习学生进一步掌握了分数加减混合运算的计算方法,但计算的正确率太低,对学生计算能力要加强培养,同时要教育养成学生认真审题,认真验算的好习惯。
篇15:简单小数加减法教学设计
教学内容:
义务教育课程标准实验教科书三年级《数学》下册第95、96页例3、例4及“做一做”。
教材分析:
简单的小数加减法是在学生学过万以内数的加、减法和初步认识一位小数含义的基础上教学的。教材创设了学生十分熟悉的文具店购物情境,学生一般都有自己购物付钱的经历,这方面的经验和整数加减法的认知经历,对于理解小数加减法的算法和算理有比较直接的帮助。 “做一做”主要巩固一位小数的加、减法,并解决一些实际问题。这部分内容的学习是后面学习复杂小数加减法的基础。
学生分析:
三年级的学生已学过整数加减法,绝大多数的同学能正确熟练地计算整数加减法。他们已经初步认识了一位小数的含义,对元、角、分也比较熟悉。且三年级学生一般都有自己购物付钱的经历,这些生活经验和认知经历都为本节课的学习奠定了基础。
教学目标:
知识与能力:⑴理解并掌握一位小数加减法的计算方法,能正确进行一位小数的加减法计算。
⑵通过解决有关小数的实际问题,提高运用数学知识解决实际问题的能力。
过程与方法:通过自主探索、合作交流等活动,提高学生的合作意识,和主动探究精神。
情感与态度:体会小数加减法在生活中的广泛应用,感受数学与生活的密切联系。
教学重难点:理解并掌握一位小数加减法的计算方法。
设计理念:自主建构,互动生成,以学定教
教学准备:多媒体课件、
教学过程:
一、复习旧知,引入新课
1. 1元4)角=( )元 1.5元=( )元( )角
2. 列竖式计算
239+41746-18
师:你能说一说整数加减法的计算方法吗?(数位对齐,满十进一,退一当十)
【设计意图:简单小数的加减法,既涉及到“元,角,分”的知识,也和整数加减法有着密切的联系,因此在新课前复习这两个知识,为后面的学习奠定知识基础。】
二、创设情境,探究小数加法的计算方法。
1.创设情景,引出问题。
师:同学们刚才表现得真棒!很快就是同学们的节日了,“佳佳文具店”赶着“6.1”前夕开业,咱们一起去看看吧!(出示文具店图)瞧,还真热闹呢!看着这幅图,你了解到了哪些商品信息?
生:我了解到一个卷笔刀要6角??
师:这位女同学说要买一个卷笔刀和一枝铅笔,要多少钱呢?怎么列式呢?
生:6+8=14(角)
师:这是用角作单位来计算的,如果用元做单位要怎么列式呢?
生:0.6+0.8(如果学生回答不出来,就引导学生说出6角=0.6元,8角=0.8元)
师:这和我们刚才做过的加法有什么不同?
生:这是小数加小数。
师:对!这就是我们这节课要学习的小数加法,老师边说边板书课题:简单的小数加法。这可有点难度哦,同学们敢不敢试一试?
【设计意图:利用主题图,设置常见的购物情境,一方面可以激发学生的学习兴趣;另一方面可以通过让学生观察主题图,获得数学信息,并提出问题,引出本节课要探究的学习内容——小数加法。利用数学在生活中的运用让学生感觉到研究小数加减法的必要性,再用语言激发学生的好胜心,使学生产生探究的欲望。】
2.小组合作,探究算法
师:如果要列竖式该怎么列呢?请同学们小组合作完成下面的问题:
(1) 小数的整数部分表示什么?小数部分表示什么?
(2) 想想列竖式时,什么和什么要对齐?
(3) 列竖式计算0.6+0.8
老师板书“元,角”后指定一个小组板演并说一说自己的想法,老师适时介入,引导学生说出表示角数的和表示角的数要对齐,表示元的数和表示元的数对齐。
师指着学生的汇报板书提问:这个式子中小数点的位置有点意思,你发现了什么?
0.6
+0.8
1.4
生:3个小数点都是对齐的。
师:也就是说加数和加数的小数点对齐,得数的小数点也和加数的小数点对齐,是吗?
师:为什么要对齐呢?
生:只有小数点对齐了,才能表示角数的和表示角的数要对齐,表示元的数和表示元的数对齐。
师:如果我们擦掉元、角,你还能说一说为什么小数点要对齐吗?小组内同学互相讨论。
讨论后生汇报,学生的说法可能不一定完善,有的可能会说如果小数点没有对齐,个位就不是和个位相加了等等。老师在学生回答的基础上引导学生总结出:只有小数点对齐了,数位才会对齐。
师:接下来你是怎么算的?计算方法和整数加法比有没有改变?
生:没有。
师:如果老师要把笔算小数加法的方法记录下来,你建议我写什么?根据学生的回答板书:小数点对齐,再按照整数加法的计算方法来计算。
【设计意图:先让学生在0.6有0.6元的实际意义的背景下列出竖式,因为有了实际意义的支撑,学生比较容易列出算式。再让学生通过观察算式找到小数点对齐的规律,并进一步追问为什么小数点要对齐,如果擦掉元、角,你还能说一说小数点为什么要对齐吗?一步步引导学生深入思考,让学生从表面的现象深入到数学的本质,理解小数加减法的算理。】
3.游戏激趣,巩固算法。
师:我们一起来玩开车的游戏,你们当指挥官,你们说出发就出发,你们说停就停。
(1)老师课件出示8.1,在8.1的下面开过来一辆卡车,卡车的上面写着+ 5.6。老师根据学生的提示出发、停下,并问一问为什么要在这里停,学生会说,这样小数点才会对齐。卡车停下形成一个竖式,让学生在练习本上演练,集体评议时重点让学生说说得数的小数点应该点在那里。
(2)老师课件出示5.7,卡车上写着+ 6.4,学生说出发后,卡车开动,当7和6对齐时突然停下,要学生说说停在这里可以吗?为什么?学生回答后,继续前进,当学生喊停时,故意不停,当5和4对齐时,再停下,让学生说一说这样为什么不可以,当全体学生都达成共识后,卡车退回来,让两个小数点对齐,形成一个竖式,让学生在练习本上演练,集体评议时重点让学生说说得数的`小数点应该点在那里。
【设计意图:利用游戏的形式,用轻松幽默地语言调动学生的积极性,活跃课堂气氛,并让学生在老师刻意准备的两次小数点没对齐的情况下感受没对齐的感觉,有破才有立,体验过没有对齐,才能更深刻体会对齐,相信通过这样的对比以及有趣的形式,小数点对齐这一方法已经深入学生的内心。】
三、自主迁移,探究小数减法的计算方法。
1.师:我想知道带橡皮的铅笔比不带橡皮的铅笔贵多少元?你能帮帮我吗?怎样列式?
生:1.2-0.6,师板书。
师:两个小数相减应又该怎么计算呢?
2.请同学们在练习本上计算,老师巡视,在巡视过程中找出有代表性的错例上台板演,并让学生说说自己的想法。集体评议。在评议后老师可以说:“原来这几位同学是故意做错,用来考考我们大家,看大家能不能看出来。”以免打击这些学生的积极性。
3.师:同学们觉得刚才在计算小数减法时除了小数点要对齐以外,还有什么要提醒大家注意的?
让学生尽情地说,如果没有说道整数部分是0的不能省略。则老师提出问题:整数部分是0的能省略吗?为什么?师生共同小结小数减法的算法,老师补充完整课题“简单的小数加减法”,和板书“按照整数加、减法的计算方法来计算,整数部分是0的不能省略”。
【设计意图:通过前面的探究,学生已经能掌握了小数加法的计算方法,再把加法的知识迁移到减法上并不困难,所以放手让学生自己去尝试,老师利用课堂生成做教学资源,全班共同探究小数减法要注意的事项。这样的指导更有针对性,真正体现以学定教的理念。也让学生体会了成功的乐趣,从而激发学习兴趣。】
四、练习巩固。
1、我们来做个游戏好吗?如果算式的得数大于1,就请男生举手,女生认为对的话就鼓掌。
如果小于一就请女生举手,男生认为对的话就鼓掌。如果等于1就都举手。
2.完成书本96页做一做
观察上页商店图。
1)买2个练习本多少钱?
2)小东有2元钱,能买什么东西?
3)你还能提出哪些问题?
【设计意图:计算课中,如果单纯的计算会让学生觉得枯燥,也不利于学生利用数学知识解决实际问题,因此我让学生在解决问题的同时来巩固计算方法。并通过一个开放的问题——你还能提出什么问题?来培养学生的问题意识。】
五、课后总结
师:同学们,这节课你们有什么收获?关于小数的加减法,你有什么要提醒大家注意的?
【设计意图:通过老师的提问引导学生回顾整节课所学的知识,让学生对这节课所学的知识有一个全面的概括。“你有什么要提醒大家注意的?换一个角度提问,给学生一种使命感,更能激发他们的兴趣和欲望。】
六、作业布置
完成练习二十三第3题(书本第97面)
【设计意图:这是一道拓展练习,是两位小数的减法,属于学生跳一跳可以摘到的“桃子”,这样适当地对本节课进行一定的拓展,让学生在体会迁移运用知识的乐趣的同时进一步巩固本节课的知识,也加强了和后面知识的联系。】
板书设计:
篇16:小数加减法教学设计
小数加减法教学设计
教材分析:
内容延续了例3的情境,运用小数加、减法解决买东西时钱数是否够用的实际问题,进一步体会小数的含义,培养学生解决问题的能力。
教学内容:
教材第97页的例4、相对应的“做一做”,练习二十一的第5-11题。
教学目标:
1、掌握一位小数的加、减法的计算方法,并能解决有关的实际问题。
2、提高合作意识,培养主动探究精神,体会小数的加减法在生活中的广泛应用,感受数学与生活的密切联系。
教学重点:运用小数加、减法的知识解决生活中的实际问题
教学难点:多种策略解决问题
教具准备:多媒体课件 小数加减法
教学过程
一、复习导入
月月有9元,买两种玩具价格分别是3元和5元,够吗?(两种方法)
今天,我们继续解决在商店里购物方面的问题。
二、探究新知
教学例4
1、多媒体课件出示教材第96页的商店购物图和第97页的例4。
要求学生认真读题,说出从题目中获得哪些数学信息
教师根据学生的`回答呈现出本题完整的信息,小丽有10元钱,买了1个文具盒,还想买1个笔记本和一支铅笔,她的钱够吗?如果把普通铅笔换成带橡皮的铅笔,钱够吗?
2、自主探究
学生根据收集的信息,独立思考解决问题的方法
教师巡视,进行个别辅导。
3、交流讨论,解决问题
(1)、同学们在小组内交流各自解决问题的过程和方法。
(2)、全班交流解决问题的方法和思路。
(3)、分组汇报解决问题的方法和思路:
方法一:
①、先算买了文具盒后,还剩多少钱?再计算买一本笔记本和一支普通铅笔一共多少元?最后买笔记本和铅笔的钱数与买文具盒后剩下的钱比一比,得出结果。
列式:10-6.8=3.2(元)
2.5+0.6=3.1(元)
3.1<3.2 小丽的钱够
②、如果把普通铅笔换成带橡皮的铅笔,
2.5+1.2=3.7(元)
3.7>3.2 所以钱不够
方法二:
先算买了文具盒后,还剩多少钱?再计算买了笔记本又剩下多少钱?最后看剩下的钱
够不够买普通铅笔
列式:
10-6.8=3.2(元)
3.2-2.5=0.7(元)
0.7>0.6, 买普通铅笔够
0.7<1.2, 买带橡皮的铅笔不够
方法三:
还可以把要买商品的价钱都加起来,看比10元多还是少?
6.8+2.5+0.6=9.9(元)
9.9<10,买普通铅笔,够
6.8+2.5+1.2=10.5(元)
10.5>10,买带橡皮的铅笔,不够
教师提示:不同的方法可以互相检验。
三、巩固提升
1、完成教材第97页的“做一做”。
2、完成教材练习二十一的第6、7题
课堂小结
今天,你有什么收获?
课后作业
篇17:分数加减法教学设计
【教学目标】
1.结合具体的情景,体会理解分数加减法的意义。
2.在具体的情景中,理解掌握异分母分数加减法的计算方法与法则。
3.让学生在讨论交流中,感知转化的数学思想,体验成功的乐趣。
【教学重点】
理解并掌握异分母加减法的计算方法与法则。
【教学难点】
掌握异分母分数加减法的算理与算法。
【教学准备】
多媒体课件、两张正方形纸片、题单(看图填空)。
【教学流程】
课前谈话:
我知道我们5年级的学生在语文课中刚刚学习过猜谜语。老师这里也有几个谜语,想不想猜一猜?
1.一加一不是二 (打一字)
2.一减一不是零(打一字)
3.再见了,妈妈 (打一数学名词)
4.考试不作弊 (打一数学名词)
5.七上八下 (打一分数)
师:在猜谜的过程中,我看到很多孩子都在积极地动脑思考,发言声音也很洪亮。那在即将开始的课中,你们能做到吗?
好,我们开始上课。
一、谈话引入
在我们刚才的谜语中,提到了我们本学期学习过的分数。今天,我们便一起来继续研究分数的有关知识――分数加减法。板书课题。
二、学习新知
1.教学同分母分数加减法的计算方法。
(1)课件出示情境图:一工人说,今天上午铺了这个广场的1/16,另一工人说,今天下午铺了这个广场的7/16。
(2)根据信息,你能提出哪些数学问题?
(3)课件出示问题。
①今天一共铺了这个广场的几分之几?
②今天下午比上午多铺了这个广场的几分之几?
(4)拿出本子,列式计算两个问题。不作答。
(5)请一生展示讲解。
预设1:1/16+7/16=8/16=1/2
预设2:7/16-1/16=6/16=3/8
师:你们同意吗?
通常结果要化为最简分数。
师:1/16和7/16两个分数的分母是相同的,我们称为同分母分数。
(6)师:谁来说说1/16+7/16是怎样算的?
生:分母不变,分子相加。
(7)师:在这里,为什么可以分母不变,而只把分子相加呢?
生:因为他们分母相同。
师:在分数中,分母表示什么?
生:平均分的份数。
师:在这里是将这个广场的面积平均分为16份。单位1相同、平均分的份数相同、那每一份的大小呢?也相同。每一份就是它们的分数单位都是1/16;1/16+7/16就是1个1/16+7个1/16,就是8/16。
(8)总结。
师:同分母分数加减法是怎样计算的?
生:分母不变,分子相加减。
师:一起来念一遍,同分母分数相加减,分母不变,分子相加减。(课件)
2.教学异分母分数加减法算理,初步感知算法。
(1)刚才我们用同分母分数加法解决了两个问题,求出今天铺了这个广场的1/2,如果我告诉你,前几天已经铺了这个广场的1/4,您能解决下面的问题吗?
问题:前几天和今天一共铺了这个广场的几分之几?
(2)一起说怎样列式。
生:1/2+1/4。
师:与前面相比,这个算式有什么特别的地方吗?
生:分子相等。
生:分母不同。
师:分母不同的分数我们称为――异分母分数。(板书)
(3)师:1/2+1/4得多少?猜一猜,试着计算一下。
学生独立尝试计算,老师在巡视中注意学生方法。(请三学生板书)
1/2+1/4 1/2+1/4=1/6 1/2+1/4
=2/6 =2/4+1/4
=1/3 =3/4
(4)师:你们同意哪一种呢?
(5)师:1/2+1/4=1/3你们觉得可能吗?为什么?
生1:1/2比1/3大,加上一个数应该比1/2更大,不可能比1/2还小。
师:同意吗?只用估算的方法,就可以做出判断。
生2:他们两个分母不同,不能直接相加减。应该先通分。
师:能直接相加吗?
生:不能。
(6)那第三种答案可能正确吗?有什么办法来验证一下吗?老师给你两个温馨小提示:你可以利用身边的纸折一折、画一画。也可以用其他的计算方法。先自己试一试。
(师巡视,参与学生讨论)
(7)交流汇报。
生1:我采用的是画一画的方法。我先把正方形纸平均分成2份,取其中的一份1/2染上颜色,再取剩下的一半即1/4染上颜色,这样总共就是3/4,所以3/4正确。
师:有图形,有数字,数形结合,清晰明了。
为了使同学们看得更清楚,老师把他这种方法用课件演示给大家。(课件演示)
师:1/2+1/4,他们的分母不同,平均分的份数也不同,每一份的大小也不同。能直接相加吗?先把1/2通分为2/4,2/4+1/4=3/4.
生2:我把他们化成小数再计算。
师:把分数化成小数,你们觉得怎么样?
生:好。
师:好的话就给点掌声吧!
生3:3/4-1/4=1/2。
师:我们看,和减一个加数等于另一个加数,用减法来验证加法,也很有创意!
……
(8)师:各种各样的方法都证明了3/4是正确的。那我们再来看看具体是怎样做的?
板书:1/2+1/4
=2/4+1/4
=3/4
(9)师:面对异分母分数加减法,我们提出猜想、试着解决、想办法验证,再得出结论。短短时间,你们已经经历了科学探究的过程。真了不起!但科学探究并未到此止步,我们还应该将我们的结论进行推广应用。用这种方法,试着做一道题。
3.教学例二。
(1)8/9-5/6 (教师巡视,提醒学生做题格式,学生做完,请两位计算方法不同的学生板演)
(2)交流汇报。
8/9-5/6 8/9-5/6
=48/54-45/54 =16/18-15/18
=3/54 =1/18
=1/18
(3)师:黑板上的答案对吗?观察这两种计算方法,你能找出他们有什么不同点?
生:不同之处,第一个是用两个分母的乘积作为公分母,第二个是用两个分母的最小公倍数作为公分母。
师:也就是选择的公分母不同。
师:那又有什么相同点呢?
生:相同之处是都把分母不相同的分数减法,利用通分转化为分母相同的分数减法。
师:观察得真仔细。
(4)总结法则。
师:你能总结一下异分母分数加减法是怎么计算的吗?
生:我们是把异分母分数先化成同分母分数,再来计算的。(板书:转化,通分)
生:我先通分,化为同分母分数,再按照同分母分数加减法计算。
师:在你的话中用到了一个词――化为。(板书:转化)在这里,我们是把异分母分数转化为同分母分数。
师:转化的方法是什么?通分。
师:一起看看法则。(课件出示)
三、基础练习
师:通过我们努力,探索出了知识,学到了思想方法。你能灵活运用吗?做一做题单上的题。
1.(出示题目,课件)看图填空。
集体对答案。
2.计算。(课件)
我们刚才利用异分母分数加减法的计算法则、数形结合解决了两个问题。如果没有图,你会计算吗?试试看。
1/4+2/5 7/9-2/3 1/10+1/15
师:做完的孩子可以到黑板上板书。
集体讲评。你觉得在计算时要注意什么问题?
师:经过你的提醒,相信你们做题的时候会更认真、仔细,是吗?
四、拓展练习
1.比一比。
那我们来比一比,看谁算得又快又正确。
(1)集体汇报。全对的举手。
(2)观察算式,上面的题有什么特点,怎样算才能比较快。小组讨论。
师:谁来说说你们的发现?
生2:我们发现当两个这样的分数相加时,他们和的分母就是两个分数分母的乘积,他们和的分子就是两个分母的和。
师:你真是善于观察、总结。我们来看第一排。1/2+1/3=5/6中,两个分数分母2和3的积作为和的分母,两个分数分母2和3的和作为和的分子。再来看1/9+1/10=19/90中,有这样的规律吗?
生3:在减法中,差的分母是两个分数分母的和,分子是两个分数分母的差。
师:一起来看,在1/2-1/3=1/6中,差的分母是2和3的积,分子是3和2的差。
师:那是不是每一个分数加减法算式都有这个规律?需要什么条件?
生:分子都是1,分母是互质数。
(3)你能用这个规律,快速计算下面几道题吗?
直接写答案在题单上,看谁做得最快。
2.简单评价。
规律的妙处在这里体现得淋漓尽致。面对试题,我们要有一双善于观察比较的眼睛。
五、全课小结
同学们,回忆一下这节课我们学习的内容。你有什么收获要和大家分享吗?
生:我学到了异分母分数加减可以转化为同分母分数加减法。
生2:我知道了为什么同分母分数可以分母不变,分子直接相加。而异分母分数不能直接相加。
生3:我学到了转化的数学思想。
……
师:同学们收获可真不小,关于分数,还有很多知识等待我们下去继续探究。
1.《同分母分数加减法》小学数学教学设计
2.五年级同分母分数加减法教学设计
3.分数认识教学设计
4.分数比大小教学设计
5.分数除法二的教学设计
6.分数除法教学设计
7.小学分数与除法教学设计
8.《分数的基本性质》教学设计
9.《 分数的认识》教学设计
10.分数的简单应用教学设计
篇18:小数加减法教学设计
课题课时3
教学目标
1、使学生在解决现实问题的过程中,认识到整数加法的运算定律对于小数加法同样适用,能正确运用加法运算定律进行一些小数加法的简便运算
2、使学生在探索与交流的活动中,体会解决问题策略的多样性,增强优化意识;逐步形成积极的自我评价和自我反思的意识,体验学习数学的成就感。
教学重难点:知识的迁移
课前准备:多媒体课件
教学过程
师生活动思考与调整
一、引入
1、口算
用卡片出示练习九的第1题,指名口答。
2、出示例3中的四种文具。
如果让你任意购买其中的两种文具,你想买哪两种?你会计算出所需要的钱数吗?
二、探究
1、出示例3
这四种文具,小华各买了一件,他一共用了多少元?解答这个问题可以怎样列式?
根据学生的回答,教师板书:
引导学生探索算法
你会计算这道题吗?先算一算再把你的计算方法在小组内交流。
学生独立计算,注意选择学生采用的不同的方法,并指名板演。
比较:刚才同学们用不同的方法算出了小华一共用的钱数,请同学们比较这些算法,你认为哪种算法更简便些?
进一步追问用简便算法的学生:你这样算的依据是什么?
小结:整数加法的运算定律,对于小数加法也同样适用。应用加法运算定律可以使一些小数加法的运算简便。这就是我们今天研究的内容。
我们以前学习过哪些加法的运算定律?
根据学生的回答板书:
加法交换律:
加法结合律:
师生活动思考与调整
这里的字母a、b、c可以表示怎样的数?
指出:因为整数加法运算定律对于小数加法同样适用,所以这些字母公式里字母所表示的数的范围既包括整数,也包括小数。
三、练习
1、完成“练一练”的第1、2两题
先让学生独立完成,再让学生说说怎样算简便
完成练习九的第2题
学生练习
比较每组算式的计算过程和结果,你有什么发现?
指出:整数减法的一些规律小数减法里同样适用,也能使一些计算简便。
完成练习九的3~5题
先让学生独立完成,再交流第4、5题的思考过程,说出每一步计算结果的实际意义。
四、总结
这节课你有哪些收获?
对自己的学习表现怎样评价?
教学得与失:
课题小数加减法课时4
教学目标
1、让学生简单了解数的产生过程,对人类发展进程中所出现的计算工具有一个初步的了解,简单了解一些计算工具计数的方法,接受数学事实的教育。
2、认识计算器面板上的按键名称和功能,学会用计算器进行整数、小数的四则运算,探索简单的规律。
3、通过对计算器的运用,体验它的有用性,培养学生的辨证思维能力。
教学重难点:认识计算器面板上的按键名称和功能,学会用计算器进行整数、小数的四则运算,探索一些简单的规律。
课前准备小黑板、多媒体展台
教学过程
师生活动思考与调整
一、谈话导入,揭示课题
同学们,大家都去过广润发吧?它每天都有很多顾客,特别是到了节假日,那更是人山人海。当顾客推着满满一车物品去付款时,营业员总是能在很短的时间内告诉他应该付多少钱,为什么营业员会算得那么快呢,你知道吗?
今天这节课我们就来一起学习用“计算器计算”。
二、学习用计算器计算
1、认识计算器
你知道在我们日常生活中还有哪些地方用到了计算器吗?
你了解计算器吗?今天假如你是一位计算器的推销员,你打算怎样向大家介绍你手中的这款计算器的构造?(同桌之间相互说一说后再全班交流)
让学生了解计算器的最常用的一些键,熟悉加减乘除等运算和运算顺序。
2、用计算器计算
大家已经认识了计算器,你会操作他吗?现在咱们就用计算器来算一些题目,请把计算器准备好。
3、教学例4
要求李芸一共用了多少元应怎样做,先把算式列出来。
你会在计算器上按出买铅笔的钱数吗?同桌交流按键的方法。
你会用计算器算出结果吗?核对结果。
同桌之间说说是怎样用计算器计算的。
4、完成“试一试”题目
你怎样求应找回多少元?
可不可以把刚才的计算结果用起来?
试着求出结果。
用计算器计算方便了我们的计算,当然也方便我们检验了,你会检验吗?怎样判断你的计算是正确的呢?
师生活动思考与调整
5、巩固练习
通过计算,我们发现,用计算器计算时只要从左往右依次按键就可以了。现在我们要来比一比谁算的最快,请准备好。完成“练一练”的第1、2题
提醒学生看清数目和运算符号,认真按键进行计算,对正确率较高的同学给予鼓励。
6、完成练习九的第8题
先示范计算出“小明开学缴费”后的余额,使学生明确计算每次收支后余额的方法。再让学生分别算出其余各栏的余额。
合计支出数怎样算,合计结余数呢?最终余额是多少?与刚才的计算结果一样吗?
三、用计算器探索规律
1、我们已经能用计算器进行计算了,那么计算器还有没有其他的作用呢,下面我们就来一起探索。
学生用计算器计算在计算器位数不够的情况下学生小组讨论发现计算的规律,再集体交流。
2、自主探索:
1122÷34=
111222÷334=
11112222÷3334=
再出示:111111222222÷333334=
111…122…2÷333…34=
1002
四、布置作业
最后我们来一次比赛,分两组:一组用计算器,一组用笔算,愿意用计算器的请举手。
完成练习九的第7题
五、全课总结
今天这节课我们学习了用计算器计算,你有什么体会?你觉得今天的学习对你有用吗,能不能说说?
教学得与失:
篇19:简单小数加减法教学设计
小数点对齐,从最低位算起,按照整数加减法的计算方来来计算,整数部分是0的不能省略。
元 角 1.2-0.6=0.6(元)
6角 0. 6 元 1.2
《有理数的加减法》教学设计(共19篇)




