“颓桃败树”通过精心收集,向本站投稿了11篇二年级数学竞赛试题,以下文章小编为您整理后的二年级数学竞赛试题,供大家阅读。
- 目录
篇1:二年级数学竞赛试题
一、填空(每空1.5分,每空1分)
1、表示物品有多重,可以用( )和( )作单位。
2、表示物品的长短,可以用( )和( )作单位。
3、称较轻的物品有多重,可以用( )作单位,称较重物品有多重,可以用( )作单位。
4、人民币的单位有( )、( ) 、( )。
5、一个西瓜约重5( )。
6、小芳的身高是123( ),体重是32( )。
7、最小的四位数是( ),最大的四位数是( ),
8、读数和写数,都从( )位起。
二、小小神算手
1、口算(14分,每小题1分)
36+19= 74+16= 79-25= 63÷9=
35+46= 37+46= 94-48= 84-26=
450+320= 360+420= +5000=
7300-2000= 320+140= 680-390=
2、用竖式计算下面各题(12分,每小题2分)
410+250= 570-380= 340+370=
280-160= 630+290= 450-260=
三、文字题(6分,1小题2分,2小题4分)
1、一个加数是38,另一个加数是65,和是多少?
2、58比83少多少?比64少21的数是几?
四、应用题(7分)
1、水果店运来100千克水果,其中苹果32千克,香蕉58千克,其余的是葡萄,葡萄有多少千克?(3分)
2、一头牛重246千克,一匹马重286千克,它们能一同乘一个载重限制500千克的船吗?(4分)
篇2:二年级数学竞赛试题
一、填空
1、□÷□=□……5,除数最小是( )。
2、□÷7=□……□,余数最大是( )。
3、小明把6条绳子结起来,一共需要打( )个结。
4、今天下午3点开队会,要用1个半小时,开完队会是( )。
5、电影在7点10分开映,8点50分放完,这部电影放映了( )小时( )分。
6、有一列数:1,3,5,1,3,5,1,3,5,…………第26个数字是( )。
7、鸡兔同笼,一共3个头,10条腿,有( )只鸡,( )只兔
8、最大的三位数比最小的两位数多( )。
9、( )比 46 大 15 ,这个数比 100 少( )。
10、一根绳子 20 厘米长,对折后沿中间剪开。长的一段比短的一段长( )厘米。
11、找规律填空: 1 、2 、4 、7 、11 、( )。
12、用放大镜看角,角的大小( )。
13、一块正方形,剪去一个角后,可能是( )个角,也可能是( )个角,还可能是( )个角。
14、有一堆糖果,比30块多,比40块少,平均分给几个小朋友,如果分的人数和每人分的块数同样多,那么一共有( )个小朋友,有( )块糖果。
15、一个两位数,十位上的`数字与个位上的数字之和是10,如果把这两个数字的位置交换,所得到的数就比原数小36,这个两位数是( )。
16、两个书架上共80本书,从第一个书架拿8本书放入第二个书架,两个书架的本数相等,原来第一个书架有( )本书。
17、爷爷今年74岁,前爷爷的年龄是孙子的8倍,孙子今年( )岁。
18、1瓶油连瓶共重 600克,吃去一半的油,连瓶一起称,还剩450克,瓶里原来有油( )克。
19、筐里有42个橘子,最少拿出( )个就正好平均分给8个同学,最少加上( )个才可以平均放在9个盘子里。
20、有一根5米高的竹竿,一只调皮的小蜗牛,要爬到竹竿的顶端。它白天往上爬3米,到了晚上又向下滑2米。小蜗牛第( )天才能爬到顶端。
22、五月份有31天,一共有( ) 个星期,还 剩( )天。
二、应用题:
1、蓝气球有8个,红气球是蓝气球的5倍,一共有气球多少个?
2、小朋友看电视,一条长凳最多坐4人,27位小朋友最少需要多少条长凳?
3、小新把小棒放在桌上,每5厘米远放1根,到20厘米处,可以放几根?
4、小红和同学排成一队做游戏,小红排的位置,从前往后数是第五,从后往前数是第三,你知道有多少个小朋友在做游戏?
5、二年级参加数学竞赛6人,比三年级少参加12人,三年级参加数学竞赛多少人?三年级参加的人数是二年级的几倍?
6、有一筐苹果,不到30只,平均分给4人和平均分给5人,都多3只,这筐苹果一共有多少只?
7、三年级有32名学生,其中女生16人,将男生分成小组,可以分成多少小组?
8、一个皮球6元,王老师带了35元钱去买皮球,他最多可买多少个皮球?
9、同学们分成4组做风车,每组做了8只,送给幼儿园小朋友18只,还有多少只?
10、贝贝要写40个大字,已经写了15个后,决定每分钟写5个大字,还要几分钟?
11、学校组织故事会,同学们在布置会场。单人椅有26把,双人椅有9把,一共能坐多少人呢?
篇3:二年级上数学竞赛试题
一、我是计算小能手。
1.直接写出得数。
6×1= 9÷3= 54÷6= 30+5=
27÷3= 4×8= 36÷9= 6×7=
3×5= 9×2= 48-8= 5÷5=
84-8= 3×6÷9= 40÷5÷8 3×3×5=
3+5×4= 9-4×2= 15-7×2= 8+20÷4=
2.用竖式计算 。(8分)
65-8+25= 74+16-28=
95-27-39= 45+46-23=
二、我是思维小能手。
1. □×△=30 △-□=1
□=( ) △=( )
2.小红有20颗糖,小亮有12颗糖,小红给小亮( )颗糖,两人的糖一样多,都是( )颗。
3.小刚身高132( ),他从家到学校的路程长约800( )。
4.一根长绳原来长20米,第一次减去5米,第二次减去10米,现在这根绳子比原来短了( )米。
5.猴妈妈摘了一些桃子,比20个多,比40个少,把他们平均分给一些小猴,每只猴分得的个数和猴的只数同样多,猴妈妈摘了( )个桃子,有( )只猴。
8.两盒玻璃球都有100颗,从第一盒拿出30颗放入第二盒,第二盒比第一盒多( )颗。
篇4:二年级上数学竞赛试题
一、知识根据地。
1. 3米-100厘米=( )米 6米+49米=( )米
2. 你喜欢的乘法口诀是( ),你能根据这个口诀写出两个不同算式吗?( ),( )。
4. 一个因数是8,另一个因数是7,列成算式是( ),读作( )。
5.小丽在图画本上画了☆☆☆和一些○和△,其中○的.个数是☆的5倍,○有( )个,△的个数是☆的9倍,△有( )个。
6.在 里填上“+、-、×、>、<或=”。
4○9=36 3×4〇4×5 16+20○35
40○4=36 2×2○2+2 2×8+8○8×3-8
7.( )里最大能填几?
( )×8<65 ( )<5×9 30>5×( )
8.填上合适的单位名称。
一支彩笔长10( ) 妈妈身高1( )62( )
9..小明昨天写了29个大字,今天写了47个大字,两天大约写了( )个大字。
二、是非审判庭。对的在( )里画“√”,错的画“×”。
1、8+8+8=3×8=8×3 ( )
2、有三个同学,每两人握一次手,一共要握6次手。( )
3、钟表上显示3时,时针和分针成一直角。 ( )
4、最小的两位数和最大的两位数相差90。 ( )
三、火眼金睛。把正确答案前面的序号填在括号里。
1. 角的大小和两条边的长短( )。
①有关 ②无关 ③不能确定
2. 一个三角板上有( )个直角。
①1 ②2 ③3
3.( )是你在镜子里看到的F的样子。
四、我是小画家。(9分)
1. 画出比6厘米短2厘米的线段。(3分)
2. 用给出的一点画直角,并写出角的各部分的名称。(3分)
五、生活万花筒。认真审题,仔细分析,下面各题你一定不觉得困难。
1. 小明的妈妈有100元钱,她在下面的衣服中买了一件上衣和一条裤子,应该怎么买?(6分)
2.周日,小明和4个同学去公园玩,公园的儿童票是每张5元,他们一共花了多少元?带30元去,买票的钱够吗?(6分)
3.小明今年8岁,爷爷今年72岁,爸爸的年龄是小明的6倍。(8分)
⑴爸爸今年多少岁?
⑵爷爷比爸爸大多少岁?
篇5:二年级下册数学竞赛试题
二年级下册数学竞赛试题
一、用自己喜欢的方法计算。(每题4分×4)
1、13+14+15+16+17+25=
2、1+2+3+……+14+15=()
3、25×18×4=()
4、464+99+101-164=()
二、生活中的数学.(每空3分×20)
1、二年级下册数学竞赛试题:你今年()岁,到,你就()岁了。
2、一个星期你在学校上学()天,在家()天。
3、5只小鸟和4只小白兔共有()只脚。
4、数字谜语。(1)头尾都是一,身腰也是一,看来都是一,其实不是一。()
5、有12个小朋友一起玩“猫捉老鼠”的游戏,已经捉住了7人,还要捉()人。
6、教室里的10盏日光灯都亮着,现在关掉2盏日光灯,教室里还剩()盏日光灯。
7、如果○+△=12,△+△+○=15。那么△=()、○=()。
8、小力有18张画片,送给小龙3张后,两人的`画片同样多。小龙原来有()张画片。
9、一些笔平均分给8个同学刚好分完,最少有()支笔。
10、在括号中最大能填几?(4分)
8×()﹤7147﹥9×()
()×7﹤6023﹥4×()
11、一集动画片从17时30开始播放,到18时10分结束。这集动画片放映了()分钟。
12、8的一半不是4,请你猜出两个数字,这两个数字是()和()。
三.实践应用。(每题4分×6)
1、小云今年8岁,奶奶说:“你长到12岁的时候,我就62岁了。”奶奶今年()岁。
2、有4盆黄花、5盆红花,每盆都开6朵花,一共开了()朵花。
3、小明从家到学校要走50米,一天早上他从家出发去上学。走了20米后发现忘记带文具盒,于是回家取了文具盒然后去学校,小明一共走了()米。
4、一根铁丝用去一半后,再用去剩下的一半,这时剩下6米,原来这根铁丝长()米。
5、动物园里有只长颈鹿,它的年龄数是用最大的两位数减去最小的两位数,再减去最大的一位数后所得的数。这只长颈鹿有()岁。
6、一只猫吃掉一条鱼需要1分钟。照这样,100只猫同时吃掉100条鱼需要()分钟。
篇6:小学二年级数学解决问题竞赛试题
1、△+△+△=12 □+□+△=10
△=( ) □=( )
2、你会填吗?
( )-1-4=12 8-3+( )=10
3+( )+5=8 8-2-( )=2
3、( )里最大可以填几?
2+( )6 ( )+47
10( )3 4+( )9
4、在2、4、7、9中选出3个数写四道算式。
5、按规律再画4个。
☆○○☆○○☆
6、朋友排队做操,小红的前面有6个小朋友,后面有5个,这一队一共有多少个小朋友?
7、小芳打开数学书,右面是第14页,左面是第( )页,第17页的.前面是第( )页。
篇7:小学二年级数学解决问题竞赛试题
1、□+□□□ □=( )
○+○=○○ ○=( )
2、小明从一楼到二楼要3分钟,他从一楼到六楼要多少分钟?
3、有一堆糖,比40块多,比50块少,要分给几个小朋友,人数和每人的块数同样多,一共有( )个小朋友,有( )块糖。
4、□□=○○○○ ○=☆☆☆
□+○=( )个○ □□+○=( )个☆
□□○○=( )个☆
5、在每两点之间画一条线段,最多可以画几条?
6、把一根18米长的木头锯成6段,每锯一次需2分钟,一共要( )分钟。
7、一只青蛙掉到井里,井深12米,它白天爬3米,夜里滑下2米,它爬到井口要用( )天。
8、17颗糖分成数量不等的5堆,数量最多的一堆有( )颗糖。
9、一个小朋友唱一首歌要5分钟,9个小朋友同时唱这一首歌要( )分钟。
篇8:小学二年级竞赛试题
小学二年级竞赛试题
对于试题的练习是多多益善,这样才能够掌握各种试题类型的解题思路,在考试中应用自如。下面请参考数学网为您整理的,希望同学们对试题的练习能够使成绩突飞猛进的发展
一、填空:
1、5+5+5+5+5+5+20=( )( )+( )
2、找规律填数:6 11 16 ( ) 26 ( )
3、=36 =18 =( ), =( )
4、6个小朋友一起玩跳棋,如果每人玩的时间加在一起是60分钟,他们每人玩了( )时间。
5、笼子里有3只公鸡,5只白兔,笼子里共有( )个头,( )只脚。
6、2只猫2天抓了2只老鼠,那么在10天里抓10只老鼠,需要( )只猫。
7、黄线的长是红线的2倍,红线的长是蓝线的2倍,蓝线的`长是黑线的2倍,黄线的长是黑线的( )倍。
8、筐里有42个橘子,最少拿出( )个就正好平均分给8个同学,最少加上( )个才可以平均放在9个盘子里。
9、佳佳有3件上衣,2条裙子,2条裤子,一共有( )种不同的穿法。
10、有一只猴子在树上玩,突然看见水里面有一个月亮,它就找了一根绳子,准备去捞月亮。它将这根绳子对折再对折,最后扭成一股长6米的绳子,正好够到水面。这根绳子原来有( )长。
11、有一根5米高的竹竿,一只调皮的小蜗牛,爬到竹竿的最顶端。它白天往下爬3米,到了晚上又向上爬2米。小蜗牛第( )天才能爬到地面。
12、一个标准油桶,桶连油共重7千克。司机马叔叔已经用去一半油,现在连桶还重4千克。桶里还有( )油。
二、简答题:
1、二年级参加数学竞赛6人,比三年级少参加12人,三年级参加数学竞赛多少人?三年级参加的人数是二年级的几倍?
篇9:九年级数学竞赛试题
基础题
1.(北京)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出1个小球,其标号大于2的概率为( )
A.15 B.25 C.35 D.45
2.(20上海)将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取1张,那么取到字母e的概率为____________.
3.(年湖北宜昌)~2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( )
A.科比罚球投篮2次,一定全部命中 B.科比罚球投篮2次,不一定全部命中
C.科比罚球投篮1次,命中的可能性较大 D.科比罚球投篮1次,不命中的可能性较小
4.(2013年福建福州)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出1个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )
A.3个 B.不足3个 C.4个 D.5个或5个以上
5.(2013年海南益阳)有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是________.
6.在一个不透明的盒子中,共有“一白三黑”四个围棋子,它们除了颜色之外没有其他区别.
(1)随机地从盒中提出一子,则提出白子的概率是多少?
(2)随机地从盒中提出一子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.
B级 中等题
7.(2013年重庆)从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.
8.(2013年湖北襄阳)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是________.
9.在一个口袋中有4个完全相同的小球,把它们分别标上1,2,3,4.小明先随机地摸出1个小球,小强再随机的摸出1个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.
(1)若小明摸出的球不放回,求小明获胜的概率;
(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.
10.(江西)如图7?2?3,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].
(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;
(2)若从这四只拖鞋中随机地取出两
11.(2013年江西)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.
(1)下列事件是必然事件的是( )
A.乙抽到一件礼物 B.乙恰好抽到自己带来的礼物
C.乙没有抽到自己带来的礼物 D.只有乙抽到自己带来的礼物
证明题
例1.已知:△ABC中,∠B=2∠C,AD是高
求证:DC=AB+BD
分析一:用分解法,把DC分成两部分,分别证与AB,BD相等。
可以高AD为轴作△ADB的对称三角形△ADE,再证EC=AE。
∵∠AEB=∠B=2∠C且∠AEB=∠C+∠EAC,∴∠EAC=∠C
辅助线是在DC上取DE=DB,连结AE。
分析二:用合成法,把AB,BD合成一线段,证它与DC相等。
仍然以高AD为轴,作出DC的对称线段DF。
为便于证明,辅助线用延长DB到F,使BF=AB,连结AF,则可得
∠ABD=2∠F=2∠C。
例2.已知:△ABC中,两条高AD和BE相交于H,两条边BC和AC的中垂线相交于O,垂足是M,N
求证:AH=2MO, BH=2NO
证明一:(加倍法――作出OM,ON的2倍)
连结并延长CO到G使OG=CO连结AG,BG
则BG∥OM,BG=2MO,AG∥ON,AG=2NO
∴四边形AGBH是平行四边形,
∴AH=BG=2MO,BH=AG=2NO
证明二:(折半法――作出AH,BH的一半)
分别取AH,BH的中点F,G连结FG,MN
则FG=MN= AB,FG∥MN∥AB
篇10:九年级数学竞赛试题
1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.
2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.
3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.
4.解方程2|x+1|+|x-3|=6.
5.解不等式||x+3|-|x-1||>2.
6.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.
7.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?
8.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).
9.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?
答案:
1.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以
原式=-b+(a+b)-(c-b)-(a-c)=b.
2.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,
|x+m|+|x-n|=x+m-x+n=m+n.
3.分别令x=1,x=-1,代入已知等式中,得
a0+a2+a4+a6=-8128.
4.略
5.略
6.商式为x2-3x+3,余式为2x-4
7.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.
8.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以,p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).
9.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,
即5x+6y=43.
所以x=5,y=3是的非负整数解.从而房间里有8个人.
排列组合问题:
1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有
A768种B32种C24种D2的10次方中
解:
根据乘法原理,分两步:
第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种
综合两步,就有24×32=768种。
2若把英语单词hello的字母写错了,则可能出现的错误共有()
A119种B36种C59种D48种
解:
5全排列5_4_3_2_1=120
有两个l所以120/2=60
原来有一种正确的所以60-1=59
篇11:九年级数学竞赛试题
一.选择题
1.﹣22=()
A.﹣2B.﹣4C.2D.4
【分析】根据幂的乘方的运算法则求解.
【解答】解:﹣22=﹣4,
故选B.
【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.
2.太阳与地球的平均距离大约是150000000千米,数据150000000用科学记数法表示为()
A.1.5×108B.1.5×109C.0.15×109D.15×107
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:将150000000用科学记数法表示为:1.5×108.
故选A.
【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()
A.B.C.D.
【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.
【解答】解:∵DE∥BC,
∴△ADE∽△ABC,
∵BD=2AD,
∴===,
则=,
∴A,C,D选项错误,B选项正确,
故选:B.
【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.
4.|1+|+|1﹣|=()
A.1B.C.2D.2
【分析】根据绝对值的性质,可得答案.
【解答】解:原式1++﹣1=2,
故选:D.
【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.
5.设x,y,c是实数,()
A.若x=y,则x+c=y﹣cB.若x=y,则xc=yc
C.若x=y,则D.若,则2x=3y
【分析】根据等式的性质,可得答案.
【解答】解:A、两边加不同的数,故A不符合题意;
B、两边都乘以c,故B符合题意;
C、c=0时,两边都除以c无意义,故C不符合题意;
D、两边乘以不同的数,故D不符合题意;
故选:B.
【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关.
6.若x+5>0,则()
A.x+1<0B.x﹣1<0C.<﹣1D.﹣2x<12
【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.
【解答】解:∵x+5>0,
∴x>﹣5,
A、根据x+1<0得出x<﹣1,故本选项不符合题意;
B、根据x﹣1<0得出x<1,故本选项不符合题意;
C、根据<﹣1得出x<5,故本选项符合题意;
D、根据﹣2x<12得出x>﹣6,故本选项不符合题意;
故选C.
【点评】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.
7.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()
A.10.8(1+x)=16.8B.16.8(1﹣x)=10.8
C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.8
【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.
【解答】解:设参观人次的平均年增长率为x,由题意得:
10.8(1+x)2=16.8,
故选:C.
【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
8.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()
A.l1:l2=1:2,S1:S2=1:2B.l1:l2=1:4,S1:S2=1:2
C.l1:l2=1:2,S1:S2=1:4D.l1:l2=1:4,S1:S2=1:4
【分析】根据圆的周长分别计算l1,l2,再由扇形的面积公式计算S1,S2,求比值即可.
【解答】解:∵l1=2π×BC=2π,
l2=2π×AB=4π,
∴l1:l2=1:2,
∵S1=×2π×=π,
S2=×4π×=2π,
∴S1:S2=1:2,
故选A.
【点评】本题考查了圆锥的计算,主要利用了圆的周长为2πr,侧面积=lr求解是解题的关键.
9.设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()
A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0
C.若m<1,则(m﹣1)a+b>0D.若m<1,则(m﹣1)a+b<0
【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.
【解答】解:由对称轴,得
b=﹣2a.
(m﹣1)a+b=ma﹣a﹣2a=(m﹣3)a
当m<1时,(m﹣3)a>0,
故选:C.
【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.
10.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()
A.x﹣y2=3B.2x﹣y2=9C.3x﹣y2=15D.4x﹣y2=21
【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.
【解答】解:
过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,
∵BE的垂直平分线交BC于D,BD=x,
∴BD=DE=x,
∵AB=AC,BC=12,tan∠ACB=y,
∴==y,BQ=CQ=6,
∴AQ=6y,
∵AQ⊥BC,EM⊥BC,
∴AQ∥EM,
∵E为AC中点,
∴CM=QM=CQ=3,
∴EM=3y,
∴DM=12﹣3﹣x=9﹣x,
在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,
即2x﹣y2=9,
故选B.
【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键
抽屉原理、奇偶性问题:
1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?
解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。
把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)
答:最少要摸出9只手套,才能保证有3副同色的。
2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?
答案为21
解:
每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.
当有11人时,能保证至少有2人取得完全一样:
当有21人时,才能保证到少有3人取得完全一样.
3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?解:需要分情况讨论,因为无法确定其中黑球与白球的个数。
当黑球或白球其中没有大于或等于7个的,那么就是:
6_4+10+1=35(个)
如果黑球或白球其中有等于7个的,那么就是:
6_5+3+1=34(个)
如果黑球或白球其中有等于8个的,那么就是:
6_5+2+1=33
如果黑球或白球其中有等于9个的,那么就是:
6_5+1+1=32
4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)
不可能。
因为总数为1+9+15+31=56
56/4=14
14是一个偶数
而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个)
★ 语文竞赛试题
二年级数学竞赛试题(推荐11篇)




