二元一次方程组练习题

时间:2022-11-25 07:43:59 作者:小汤同学 综合材料 收藏本文 下载本文

“小汤同学”通过精心收集,向本站投稿了6篇二元一次方程组练习题,下面是小编为大家整理后的二元一次方程组练习题,供大家参考借鉴,希望可以帮助您。

篇1:二元一次方程组练习题

初一数学三角形有关角练习题三

同学们知道三角形边有关角的题目层出不穷,经常练习,基本的解题思路很容易掌握的。现在老师就为大家总结了三角形有关角练习题,大家多多练习很容易掌握技巧的。详情请

三角形有关角练习题三

篇2:二元一次方程组练习题

1、任何一个二元一次方程都有( )

(A)一个解; (B)两个解;

(C)三个解; (D)无数多个解;

2、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )

(A)5个 (B)6个 (C)7个 (D)8个

3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )

(A)15x-3y=6 (B)4x-y=7 (C)10x+2y=4 (D)20x-4y=3

4、若5x-6y=0,且xy≠0,则 的值等于( )

(A) (B) (C)1 (D)-1

5、若x、y均为非负数,则方程6x=-7y的解的情况是( )

(A)无解 (B)有唯一一个解

(C)有无数多个解 (D)不能确定

篇3:二元一次方程组同步练习题

二元一次方程组同步练习题

二元一次方程组同步练习题

一、判断

1、是方程组 的解 …………( )

2、方程组 的解是方程3x-2y=13的一个解( )

3、由两个二元一次方程组成方程组一定是二元一次方程组( )

4、方程组 ,可以转化为 ( )

5、若(a2-1)x2+(a-1)x+(2a-3)y=0是二元一次方程,则a的值为±1( )

6、若x+y=0,且|x|=2,则y的值为2 …………( )

7、方程组 有唯一的解,那么m的值为m≠-5 …………( )

8、方程组 有无数多个解 …………( )

9、x+y=5且x,y的绝对值都小于5的整数解共有5组 …………( )

10、方程组 的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组 的解 ………( )

11、若|a+5|=5,a+b=1则 ………( )

12、在方程4x-3y=7里,如果用x的代数式表示y,则 ( )

二、选择:

13、任何一个二元一次方程都有( )

(A)一个解; (B)两个解;

(C)三个解; (D)无数多个解;

14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )

(A)5个 (B)6个 (C)7个 (D)8个

15、如果 的解都是正数,那么a的取值范围是( )

(A)a<2; (B) ; (C) ; (D) ;

16、关于x、y的方程组 的解是方程3x+2y=34的一组解,那么m的值是( )

(A)2; (B)-1; (C)1; (D)-2;

17、在下列方程中,只有一个解的是( )

(A) (B)

(C) (D)

18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )

(A)15x-3y=6 (B)4x-y=7 (C)10x+2y=4 (D)20x-4y=3

19、下列方程组中,是二元一次方程组的是( )

(A) (B)

(C) (D)

20、已知方程组 有无数多个解,则a、b的值等于( )

(A)a=-3,b=-14 (B)a=3,b=-7

(C)a=-1,b=9 (D)a=-3,b=14

21、若5x-6y=0,且xy≠0,则 的值等于( )

(A) (B) (C)1 (D)-1

22、若x、y均为非负数,则方程6x=-7y的解的情况是( )

(A)无解 (B)有唯一一个解

(C)有无数多个解 (D)不能确定

23、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy的值是( )

(A)14 (B)-4 (C)-12 (D)12

24、已知 与 都是方程y=kx+b的解,则k与b的值为( )

(A) ,b=-4 (B) ,b=4

(C) ,b=4 (D) ,b=-4

三、填空:

25、在方程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______

若x、y都是正整数,那么这个方程的解为___________;

26、方程2x+3y=10中,当3x-6=0时,y=_________;

27、如果0.4x-0.5y=1.2,那么用含有y的代数式表示的代数式是_____________;

28、若 是方程组 的解,则 ;

29、方程|a|+|b|=2的自然数解是_____________;

30、如果x=1,y=2满足方程 ,那么a=____________;

31、已知方程组 有无数多解,则a=______,m=______;

32、若方程x-2y+3z=0,且当x=1时,y=2,则z=______;

33、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________;

34、若x+y=a,x-y=1同时成立,且x、y都是正整数,则a的值为________;

35、从方程组 中可以知道,x:z=_______;y:z=________;

36、已知a-3b=2a+b-15=1,则代数式a2-4ab+b2+3的值为__________;

四、解答题:

47、甲、乙两人在解方程组 时,甲看错了①式中的x的系数,解得 ;乙看错了方程②中的y的系数,解得 ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;

48、使x+4y=|a|成立的x、y的值,满足(2x+y-1)2+|3y-x|=0,又|a|+a=0,求a的值;

49、代数式ax2+bx+c中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式;

50、要使下列三个方程组成的方程组有解,求常数a的值。

2x+3y=6-6a,3x+7y=6-15a,4x+4y=9a+9

51、当a、b满足什么条件时,方程(2b2-18)x=3与方程组 都无解;

52、a、b、c取什么数值时,x3-ax2+bx+c程(x-1)(x-2)(x-3)恒等?

53、m取什么整数值时,方程组 的解:

(1)是正数;

(2)是正整数?并求它的.所有正整数解。

54、试求方程组 的解。

五、列方程(组)解应用题

55、汽车从甲地到乙地,若每小时行驶45千米,就要延误30分钟到达;若每小时行驶50千米,那就可以提前30分钟到达,求甲、乙两地之间的距离及原计划行驶的时间?

56、某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68个,扁担40根,问这个班的男女生各有多少人?

57、甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?

58、甲桶装水49升,乙桶装水56升,如果把乙桶的水倒入甲桶,甲桶装满后,乙桶剩下的水,恰好是乙桶容量的一半,若把甲桶的水倒入乙桶,待乙桶装满后则甲桶剩下的水恰好是甲桶容量的 ,求这两个水桶的容量。

59、甲、乙两人在A地,丙在B地,他们三人同时出发,甲与乙同向而行,丙与甲、乙相向而行,甲每分钟走100米,乙每分钟走110米,丙每分钟走125米,若丙遇到乙后10分钟又遇到甲,求A、B两地之间的距离。

60、有两个比50大的两位数,它们的差是10,大数的10倍与小数的5倍的和的 是11的倍数,且也是一个两位数,求原来的这两个两位数。

【参考答案】

一、1、√; 2、√; 3、×; 4、×; 5、×; 6、×;

7、√; 8、√; 9、×;10、×; 11、×; 12、×;

二、13、D; 14、B; 15、C; 16、A; 17、C; 18、A;

19、C; 20、A;21、A; 22、B; 23、B; 24、A;

三、25、,8, ; 26、2; 27、; 28、a=3,b=1;

29、30、; 31、3,-4 32、1; 33、20;

34、a为大于或等于3的奇数; 35、4:3,7:9 36、0;

四、47、, ; 48、a=-1 49、11x2-30x+19;

50、; 51、,b=±3 52、a=6, b=11, c=-6;

53、(1)m是大于-4的整数,(2)m=-3,-2,0, , , ;

54、或 ;

五、55、A、B距离为450千米,原计划行驶9.5小时;

56、设女生x人,男生y人,

57、设甲速x米/秒,乙速y米/秒

58、甲的容量为63升,乙水桶的容量为84升;

59、A、B两地之间的距离为52875米;

60、所求的两位数为52和62。

篇4:应用二元一次方程组练习题

应用二元一次方程组练习题

1.以下方程中,是二元一次方程的是

A.8x-y=yB.xy=3

C.3x+2yD.y=3

(1)66x+17y=39672

5x+y=1200答案:x=48y=47

1.贰元与伍元纸币共25张,共80元,那么贰元与伍元各________张.

2.在代数式ax+by中,当x=5,y=2时,它的.值是7;当x=8,y=5时,它的值是4,则a=_______,b=_________.应用二元一次方程组—鸡兔同笼

1.已知甲数的60%加乙数的80%等于这两个数和的72%,若设甲数为x,乙数为y,则下列各方程中符合题意的是().

A.60%x+80%y=x+72%yB.60%x+80%y=60%x+y

C.60%x+80%y=72%(x+y)D.60%x+80%y=x+y

篇5:二元一次方程组

教学建议

一、重点、难点分析

本节教学的重点是使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.难点是了解二元一次方程组的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作二元一次方程组的解.用大括号来表示二元一次方程组的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的未知数,把它们的值都写出来才是问题的解答.这是克服这一难点的关键所在.

二、知识结构

本小节通过求两个未知数的实际问题,先应用学生以学过的一元一次方程知识去解决,然后尝试设两个未知数,根据题目中的两个条件列出两个方程,从而引入二元一次方程、二元一次方程组(用描述的语言)以及二元一次方程组的解等概念.

三、教法建议

1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.

2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.

3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.

4.为了减少学习上的困难,使学生学到最基本、最实用的知识,教学中不宜介绍相依方程组如

和矛盾方程组如

等概念,也不要使方程组中任何一个方程的未知数的系数全部为0(因为这种数学中的特例较少实际意义)当然,作为特例,出现类似

之类的二元一次方程组是可以的,这时可以告诉学生,方程(1)中未知数 的系数为0,方程(1)也看作一个二元一次方程.

教学设计示例

一、素质教育目标

(-)知识教学点

1.了解二元一次方程、二元一次方程组和它的解的概念.

2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式.

3.会检验一对数值是不是某个二元一次方程组的解.

(二)能力训练点

培养学生分析问题、解决问题的能力和计算能力.

(三)德育渗透点

培养学生严格认真的学习态度.

(四)美育渗透点

通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情.

二、学法引导

1.教学方法:讨论法、练习法、尝试指导法.

2.学生学法:理解二元一次方程和二元一次方程组及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.

三、重点・难点・疑点及解决办法

(-)重点

使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.

(二)难点

篇6:二元一次方程组

(三)疑点及解决办法

检验一对未知数的值是否为某个二元一次方程组的解必须同时满足方程组的两个方程,这是本节课的疑点.在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了.

四、课时安排

一课时.

五、教具学具准备

电脑或投影仪、自制胶片.

六、师生互动活动设计

1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.

2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.

3.通过二元一次方程组的.解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.

七、教学步骤

(-)明确目标

本节课的教学目标为理解二元一次方程及二元一次方程组的概念并会判断一对未知数的值是否为二元一次方程组的解.

(二)整体感知

由复习方程及其解,导入二元一次方程及二元一次方程组的概念,并会判断它们;同时学会用一个未知数表达另一个未知数为今后的解方程组埋下伏笔;最后学会检验二元一次方程组解的问题.

(三)教学过程

1.创设情境、复习导入

(1)什么叫方程?什么叫方程的解和解方程?你能举一个一元一次方程的例子吗?

回答老师提出的问题并自由举例.

【教法说明】提此问题,可使学生头脑中再现有关一元一次方程的知识,为学习二元一次方程做铺垫.

(2)列一元一次方程求解.

香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

学生活动:思考,设未知数,回答.

设买了香蕉 千克,那么苹果买了 千克,

根据题意,得

解这个方程,得

答:小华买了香蕉3千克,苹果6千克.

上面的问题中,要求的是两个数,能不能同时设两个未知数呢?

设买了香蕉 千克,买了苹果 千克,根据题意可得两个方程

观察以上两个方程是否为一元一次方程,如果不是,那么这两个方程有什么共同特点?

观察、讨论、举手发言,总结两个方程的共同特点.

方程里含有两个未知数,并且未知项的次数是1,像这样的方程,叫做二元一次方程.

这节课,我们就开始学习与二元一次方程密切相关的知识―二元一次方程组.

【教法说明】学生自己归纳总结出方程的特点之后给出二元一次方程的概念,比直接定义印象会更深刻,有助于对概念的理解.

2.探索新知,讲授新课

(1)关于二元一次方程的教学.

我们已经知道了什么是二元一次方程,下面完成练习.

练习一

判断下列方程是否为二元一次方程,并说明理由.

① ② ③

④ ⑤ ⑥

练习二

分组练习:同桌结组,一人举例,一人判断是否为二元一次方程.

学生活动:以抢答形式完成练习1,指定几组同学完成练习2.

【教法说明】这样做既可以活跃气氛,又能加深学生对二元一次方程概念的理解.

练习三

课本第6页练习1.

提出问题:二元一次方程的解是惟一的吗?学生回答后,教师归纳:一元一次方程只有一个解,而二元一次方程有无限多解,其中一个未知数( 或 )每取一个值,另一个未知数( 或 )就有惟一的值与它相对应.

练习四

填表,使上下每对 、的值满足方程 .

-2

0

0.4

2

-1

0

3

师生共同总结方法:已知 ,求 ,用含有 的代数式表示 ,为 ;已知 ,求 ,用含有 的代数式表示 ,为 .

【教法说明】由此练习,学生能真正理解二元一次方程的解是无限多的;并且能把一个二元一次方程定成用含有一个未知数的代数式表示另一个未知数的形式,为用代入法解二元一次方程组奠定了基础.

(2)关于二元一次方程组的教学.

上面的问题包含两个必须同时满足的条件,一是香蕉和苹果共买了9千克,一是共付款33元,也就是必须同时满足两个方程.因此,把这两个方程合在一起,写成

这两个方程合在一起,就组成了一个二元一次方程组.

方程组各方程中,同一字母必须代表同一数量,才能合在一起.

练习五

已知 、都是未知数,判别下列方程组是否为二元一次方程组?

① ②

③ ④

【教法说明】练习五有助于学生理解二元一次方程组的概念,目的是避免学生对二元一次方程组形成错误的认识.

对于前面的问题,列二元一次方程组要比列一元一次方程容易些.根据前面解得的结果可以知道,买了香蕉3千克,苹果6千克,即 , ,这里 , 既满足方程①,又满足方程②,我们说

二元一次方程组练习题及答案

二元一次方程组教学设计

八年级上册数学二元一次方程组的练习题

第八章二元一次方程组单元测试题

课改二元一次方程组及其应用教学工作总结

二元一次方程练习题

初一下册数学同步练习第八章二元一次方程组课时测试题

《一次成功的实验》课后练习题

立体几何练习题

口算练习题

二元一次方程组练习题(精选6篇)

欢迎下载DOC格式的二元一次方程组练习题,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档